3,973 research outputs found

    Bottom-Up and Top-Down Reasoning with Hierarchical Rectified Gaussians

    Full text link
    Convolutional neural nets (CNNs) have demonstrated remarkable performance in recent history. Such approaches tend to work in a unidirectional bottom-up feed-forward fashion. However, practical experience and biological evidence tells us that feedback plays a crucial role, particularly for detailed spatial understanding tasks. This work explores bidirectional architectures that also reason with top-down feedback: neural units are influenced by both lower and higher-level units. We do so by treating units as rectified latent variables in a quadratic energy function, which can be seen as a hierarchical Rectified Gaussian model (RGs). We show that RGs can be optimized with a quadratic program (QP), that can in turn be optimized with a recurrent neural network (with rectified linear units). This allows RGs to be trained with GPU-optimized gradient descent. From a theoretical perspective, RGs help establish a connection between CNNs and hierarchical probabilistic models. From a practical perspective, RGs are well suited for detailed spatial tasks that can benefit from top-down reasoning. We illustrate them on the challenging task of keypoint localization under occlusions, where local bottom-up evidence may be misleading. We demonstrate state-of-the-art results on challenging benchmarks.Comment: To appear in CVPR 201

    Semantic Segmentation of Ambiguous Images

    Get PDF
    Medizinische Bilder können schwer zu interpretieren sein. Nicht nur weil das Erkennen von Strukturen und möglichen Veränderungen Erfahrung und jahrelanges Training bedarf, sondern auch weil die dargestellten Messungen oft im Kern mehrdeutig sind. Fundamental ist dies eine Konsequenz dessen, dass medizinische Bild-Modalitäten, wie bespielsweise MRT oder CT, nur indirekte Messungen der zu Grunde liegenden molekularen Identitäten bereithalten. Die semantische Bedeutung eines Bildes kann deshalb im Allgemeinen nur gegeben einem größeren Bild-Kontext erfasst werden, welcher es oft allerdings nur unzureichend erlaubt eine eindeutige Interpretation in Form einer einzelnen Hypothese vorzunehmen. Ähnliche Szenarien existieren in natürlichen Bildern, in welchen die Kontextinformation, die es braucht um Mehrdeutigkeiten aufzulösen, limitiert sein kann, beispielsweise aufgrund von Verdeckungen oder Rauschen in der Aufnahme. Zusätzlich können überlappende oder vage Klassen-Definitionen zu schlecht gestellten oder diversen Lösungsräumen führen. Die Präsenz solcher Mehrdeutigkeiten kann auch das Training und die Leistung von maschinellen Lernverfahren beeinträchtigen. Darüber hinaus sind aktuelle Modelle ueberwiegend unfähig komplex strukturierte und diverse Vorhersagen bereitzustellen und stattdessen dazu gezwungen sich auf sub-optimale, einzelne Lösungen oder ununterscheidbare Mixturen zu beschränken. Dies kann besonders problematisch sein wenn Klassifikationsverfahren zu pixel-weisen Vorhersagen wie in der semantischen Segmentierung skaliert werden. Die semantische Segmentierung befasst sich damit jedem Pixel in einem Bild eine Klassen-Kategorie zuzuweisen. Diese Art des detailierten Bild-Verständnisses spielt auch eine wichtige Rolle in der Diagnose und der Behandlung von Krankheiten wie Krebs: Tumore werden häufig in MRT oder CT Bildern entdeckt und deren präzise Lokalisierung und Segmentierung ist von grosser Bedeutung in deren Bewertung, der Vorbereitung möglicher Biopsien oder der Planung von Fokal-Therapien. Diese klinischen Bildverarbeitungen, aber auch die optische Wahrnehmung unserer Umgebung im Rahmen von täglichen Aufgaben wie dem Autofahren, werden momentan von Menschen durchgeführt. Als Teil des zunehmenden Einbindens von maschinellen Lernverfahren in unsere Entscheidungsfindungsprozesse, ist es wichtig diese Aufgaben adequat zu modellieren. Dies schliesst Unsicherheitsabschätzungen der Modellvorhersagen mit ein, mitunter solche Unsicherheiten die den Bild-Mehrdeutigkeiten zugeschrieben werden können. Die vorliegende Thesis schlägt mehrere Art und Weisen vor mit denen mit einer mehrdeutigen Bild-Evidenz umgegangen werden kann. Zunächst untersuchen wir den momentanen klinischen Standard der im Falle von Prostata Läsionen darin besteht, die MRT-sichtbaren Läsionen subjektiv auf ihre Aggressivität hin zu bewerten, was mit einer hohen Variabilität zwischen Bewertern einhergeht. Unseren Studien zufolge können bereits einfache machinelle Lernverfahren und sogar simple quantitative MRT-basierte Parameter besser abschneiden als ein individueller, subjektiver Experte, was ein vielversprechendes Potential der Quantifizerung des Prozesses nahelegt. Desweiteren stellen wir die derzeit erfolgreichste Segmentierungsarchitektur auf einem stark mehrdeutigen Datensatz zur Probe der während klinischer Routine erhoben und annotiert wurde. Unsere Experimente zeigen, dass die standard Segmentierungsverlustfuntion in Szenarien mit starkem Annotationsrauschen sub-optimal sein kann. Als eine Alternative erproben wir die Möglichkeit ein Modell der Verlustunktion zu lernen mit dem Ziel die Koexistenz von plausiblen Lösungen während des Trainings zuzulassen. Wir beobachten gesteigerte Performanz unter Verwendung dieser Trainingsmethode für ansonsten unveränderte neuronale Netzarchitekturen und finden weiter gesteigerte relative Verbesserungen im Limit weniger Daten. Mangel an Daten und Annotationen, hohe Maße an Bild- und Annotationsrauschen sowie mehrdeutige Bild-Evidenz finden sich besonders häufig in Datensätzen medizinischer Bilder wieder. Dieser Teil der Thesis exponiert daher einige der Schwächen die standard Techniken des maschinellen Lernens im Lichte dieser Besonderheiten aufweisen können. Derzeitige Segmentierungsmodelle, wie die zuvor Herangezogenen, sind dahingehend eingeschränkt, dass sie nur eine einzige Vorhersage abgeben können. Dies kontrastiert die Beobachtung dass eine Gruppe von Annotierern, gegeben mehrdeutiger Bilddaten, typischer Weise eine Menge an diverser aber plausibler Annotationen produziert. Um die vorgenannte Modell-Einschränkung zu beheben und die angemessen probabilistische Behandlung der Aufgabe zu ermöglichen, entwickeln wir zwei Modelle, die eine Verteilung über plausible Annotationen vorhersagen statt nur einer einzigen, deterministischen Annotation. Das erste der beiden Modelle kombiniert ein `encoder-decoder\u27 Modell mit dem Verfahren der `variational inference\u27 und verwendet einen globalen `latent vector\u27, der den Raum der möglichen Annotationen für ein gegebenes Bild kodiert. Wir zeigen, dass dieses Modell deutlich besser als die Referenzmethoden abschneidet und gut kalibrierte Unsicherheiten aufweist. Das zweite Modell verbessert diesen Ansatz indem es eine flexiblere und hierarchische Formulierung verwendet, die es erlaubt die Variabilität der Segmentierungen auf verschiedenden Skalen zu erfassen. Dies erhöht die Granularität der Segmentierungsdetails die das Modell produzieren kann und erlaubt es unabhängig variierende Bildregionen und Skalen zu modellieren. Beide dieser neuartigen generativen Segmentierungs-Modelle ermöglichen es, falls angebracht, diverse und kohärente Bild Segmentierungen zu erstellen, was im Kontrast zu früheren Arbeiten steht, welche entweder deterministisch sind, die Modellunsicherheiten auf der Pixelebene modellieren oder darunter leiden eine unangemessen geringe Diversität abzubilden. Im Ergebnis befasst sich die vorliegende Thesis mit der Anwendung von maschinellem Lernen für die Interpretation medizinischer Bilder: Wir zeigen die Möglichkeit auf den klinischen Standard mit Hilfe einer quantitativen Verwendung von Bildparametern, die momentan nur subjektiv in Diagnosen einfliessen, zu verbessern, wir zeigen den möglichen Nutzen eines neuen Trainingsverfahrens um die scheinbare Verletzlichkeit der standard Segmentierungsverlustfunktion gegenüber starkem Annotationsrauschen abzumildern und wir schlagen zwei neue probabilistische Segmentierungsmodelle vor, die die Verteilung über angemessene Annotationen akkurat erlernen können. Diese Beiträge können als Schritte hin zu einer quantitativeren, verstärkt Prinzipien-gestützten und unsicherheitsbewussten Analyse von medizinischen Bildern gesehen werden -ein wichtiges Ziel mit Blick auf die fortschreitende Integration von lernbasierten Systemen in klinischen Arbeitsabläufen

    Hierarchical Uncertainty Estimation for Medical Image Segmentation Networks

    Full text link
    Learning a medical image segmentation model is an inherently ambiguous task, as uncertainties exist in both images (noise) and manual annotations (human errors and bias) used for model training. To build a trustworthy image segmentation model, it is important to not just evaluate its performance but also estimate the uncertainty of the model prediction. Most state-of-the-art image segmentation networks adopt a hierarchical encoder architecture, extracting image features at multiple resolution levels from fine to coarse. In this work, we leverage this hierarchical image representation and propose a simple yet effective method for estimating uncertainties at multiple levels. The multi-level uncertainties are modelled via the skip-connection module and then sampled to generate an uncertainty map for the predicted image segmentation. We demonstrate that a deep learning segmentation network such as U-net, when implemented with such hierarchical uncertainty estimation module, can achieve a high segmentation performance, while at the same time provide meaningful uncertainty maps that can be used for out-of-distribution detection.Comment: 8 pages, 3 figure

    DiffMatch: Diffusion Model for Dense Matching

    Full text link
    The objective for establishing dense correspondence between paired images consists of two terms: a data term and a prior term. While conventional techniques focused on defining hand-designed prior terms, which are difficult to formulate, recent approaches have focused on learning the data term with deep neural networks without explicitly modeling the prior, assuming that the model itself has the capacity to learn an optimal prior from a large-scale dataset. The performance improvement was obvious, however, they often fail to address inherent ambiguities of matching, such as textureless regions, repetitive patterns, and large displacements. To address this, we propose DiffMatch, a novel conditional diffusion-based framework designed to explicitly model both the data and prior terms. Unlike previous approaches, this is accomplished by leveraging a conditional denoising diffusion model. DiffMatch consists of two main components: conditional denoising diffusion module and cost injection module. We stabilize the training process and reduce memory usage with a stage-wise training strategy. Furthermore, to boost performance, we introduce an inference technique that finds a better path to the accurate matching field. Our experimental results demonstrate significant performance improvements of our method over existing approaches, and the ablation studies validate our design choices along with the effectiveness of each component. Project page is available at https://ku-cvlab.github.io/DiffMatch/.Comment: Project page is available at https://ku-cvlab.github.io/DiffMatch

    Attentional Prototype Inference for Few-Shot Segmentation

    Full text link
    This paper aims to address few-shot segmentation. While existing prototype-based methods have achieved considerable success, they suffer from uncertainty and ambiguity caused by limited labeled examples. In this work, we propose attentional prototype inference (API), a probabilistic latent variable framework for few-shot segmentation. We define a global latent variable to represent the prototype of each object category, which we model as a probabilistic distribution. The probabilistic modeling of the prototype enhances the model's generalization ability by handling the inherent uncertainty caused by limited data and intra-class variations of objects. To further enhance the model, we introduce a local latent variable to represent the attention map of each query image, which enables the model to attend to foreground objects while suppressing the background. The optimization of the proposed model is formulated as a variational Bayesian inference problem, which is established by amortized inference networks. We conduct extensive experiments on four benchmarks, where our proposal obtains at least competitive and often better performance than state-of-the-art prototype-based methods. We also provide comprehensive analyses and ablation studies to gain insight into the effectiveness of our method for few-shot segmentation.Comment: Pattern Recognition Journa

    End-to-end Driving via Conditional Imitation Learning

    Get PDF
    Deep networks trained on demonstrations of human driving have learned to follow roads and avoid obstacles. However, driving policies trained via imitation learning cannot be controlled at test time. A vehicle trained end-to-end to imitate an expert cannot be guided to take a specific turn at an upcoming intersection. This limits the utility of such systems. We propose to condition imitation learning on high-level command input. At test time, the learned driving policy functions as a chauffeur that handles sensorimotor coordination but continues to respond to navigational commands. We evaluate different architectures for conditional imitation learning in vision-based driving. We conduct experiments in realistic three-dimensional simulations of urban driving and on a 1/5 scale robotic truck that is trained to drive in a residential area. Both systems drive based on visual input yet remain responsive to high-level navigational commands. The supplementary video can be viewed at https://youtu.be/cFtnflNe5fMComment: Published at the International Conference on Robotics and Automation (ICRA), 201
    corecore