5,470 research outputs found

    Self-stabilizing cluster routing in Manet using link-cluster architecture

    Full text link
    We design a self-stabilizing cluster routing algorithm based on the link-cluster architecture of wireless ad hoc networks. The network is divided into clusters. Each cluster has a single special node, called a clusterhead that contains the routing information about inter and intra-cluster communication. A cluster is comprised of all nodes that choose the corresponding clusterhead as their leader. The algorithm consists of two main tasks. First, the set of special nodes (clusterheads) is elected such that it models the link-cluster architecture: any node belongs to a single cluster, it is within two hops of the clusterhead, it knows the direct neighbor on the shortest path towards the clusterhead, and there exist no two adjacent clusterheads. Second, the routing tables are maintained by the clusterheads to store information about nodes both within and outside the cluster. There are two advantages of maintaining routing tables only in the clusterheads. First, as no two neighboring nodes are clusterheads (as per the link-cluster architecture), there is no need to check the consistency of the routing tables. Second, since all other nodes have significantly less work (they only forward messages), they use much less power than the clusterheads. Therefore, if a clusterhead runs out of power, a neighboring node (that is not a clusterhead) can accept the role of a clusterhead. (Abstract shortened by UMI.)

    Design and Analysis of SD_DWCA - A Mobility based clustering of Homogeneous MANETs

    Full text link
    This paper deals with the design and analysis of the distributed weighted clustering algorithm SD_DWCA proposed for homogeneous mobile ad hoc networks. It is a connectivity, mobility and energy based clustering algorithm which is suitable for scalable ad hoc networks. The algorithm uses a new graph parameter called strong degree defined based on the quality of neighbours of a node. The parameters are so chosen to ensure high connectivity, cluster stability and energy efficient communication among nodes of high dynamic nature. This paper also includes the experimental results of the algorithm implemented using the network simulator NS2. The experimental results show that the algorithm is suitable for high speed networks and generate stable clusters with less maintenance overhead

    A survey on Routing Protocols in Wireless Sensor Networks

    Full text link
    In ad-hoc WSN is a collection of mobile nodes that are dynamically and randomly located in such a manner that the interconnections between nodes are changing on a continual basis. The dynamic nature of these networks demands new set of network routing strategy protocols to be implemented in order to provide efficient end-to end communication. Moreover, such issues are very critical due to severe resource constraints like efficient energy utilization, lifetime of network, and drastic environmental conditions in WSNs. Neither hop-by-hop nor neither direct reach ability is possible in case of WSNs. In order to facilitate communication within the network, a routing protocol is used. In this paper we have carried out an extensive survey on WSN protocols based on structure of network, routing protocol of network & clustering techniques of routing protocols
    • …
    corecore