2,787 research outputs found

    A decision-theoretic approach for segmental classification

    Full text link
    This paper is concerned with statistical methods for the segmental classification of linear sequence data where the task is to segment and classify the data according to an underlying hidden discrete state sequence. Such analysis is commonplace in the empirical sciences including genomics, finance and speech processing. In particular, we are interested in answering the following question: given data yy and a statistical model π(x,y)\pi(x,y) of the hidden states xx, what should we report as the prediction x^\hat{x} under the posterior distribution π(x∣y)\pi (x|y)? That is, how should you make a prediction of the underlying states? We demonstrate that traditional approaches such as reporting the most probable state sequence or most probable set of marginal predictions can give undesirable classification artefacts and offer limited control over the properties of the prediction. We propose a decision theoretic approach using a novel class of Markov loss functions and report x^\hat{x} via the principle of minimum expected loss (maximum expected utility). We demonstrate that the sequence of minimum expected loss under the Markov loss function can be enumerated exactly using dynamic programming methods and that it offers flexibility and performance improvements over existing techniques. The result is generic and applicable to any probabilistic model on a sequence, such as Hidden Markov models, change point or product partition models.Comment: Published in at http://dx.doi.org/10.1214/13-AOAS657 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Virtual CGH: an integrative approach to predict genetic abnormalities from gene expression microarray data applied in lymphoma

    Get PDF
    Background: Comparative Genomic Hybridization (CGH) is a molecular approach for detecting DNA Copy Number Alterations (CNAs) in tumor, which are among the key causes of tumorigenesis. However in the post-genomic era, most studies in cancer biology have been focusing on Gene Expression Profiling (GEP) but not CGH, and as a result, an enormous amount of GEP data had been accumulated in public databases for a wide variety of tumor types. We exploited this resource of GEP data to define possible recurrent CNAs in tumor. In addition, the CNAs identified by GEP would be more functionally relevant CNAs in the disease pathogenesis since the functional effects of CNAs can be reflected by altered gene expression. Methods: We proposed a novel computational approach, coined virtual CGH (vCGH), which employs hidden Markov models (HMMs) to predict DNA CNAs from their corresponding GEP data. vCGH was first trained on the paired GEP and CGH data generated from a sufficient number of tumor samples, and then applied to the GEP data of a new tumor sample to predict its CNAs. Results: Using cross-validation on 190 Diffuse Large B-Cell Lymphomas (DLBCL), vCGH achieved 80% sensitivity, 90% specificity and 90% accuracy for CNA prediction. The majority of the recurrent regions defined by vCGH are concordant with the experimental CGH, including gains of 1q, 2p16-p14, 3q27-q29, 6p25-p21, 7, 11q, 12 and 18q21, and losses of 6q, 8p23-p21, 9p24-p21 and 17p13 in DLBCL. In addition, vCGH predicted some recurrent functional abnormalities which were not observed in CGH, including gains of 1p, 2q and 6q and losses of 1q, 6p and 8q. Among those novel loci, 1q, 6q and 8q were significantly associated with the clinical outcomes in the DLBCL patients (p \u3c 0.05). Conclusions: We developed a novel computational approach, vCGH, to predict genome-wide genetic abnormalities from GEP data in lymphomas. vCGH can be generally applied to other types of tumors and may significantly enhance the detection of functionally important genetic abnormalities in cancer research

    Virtual CGH: an integrative approach to predict genetic abnormalities from gene expression microarray data applied in lymphoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comparative Genomic Hybridization (CGH) is a molecular approach for detecting DNA Copy Number Alterations (CNAs) in tumor, which are among the key causes of tumorigenesis. However in the post-genomic era, most studies in cancer biology have been focusing on Gene Expression Profiling (GEP) but not CGH, and as a result, an enormous amount of GEP data had been accumulated in public databases for a wide variety of tumor types. We exploited this resource of GEP data to define possible recurrent CNAs in tumor. In addition, the CNAs identified by GEP would be more functionally relevant CNAs in the disease pathogenesis since the functional effects of CNAs can be reflected by altered gene expression.</p> <p>Methods</p> <p>We proposed a novel computational approach, coined virtual CGH (vCGH), which employs hidden Markov models (HMMs) to predict DNA CNAs from their corresponding GEP data. vCGH was first trained on the paired GEP and CGH data generated from a sufficient number of tumor samples, and then applied to the GEP data of a new tumor sample to predict its CNAs.</p> <p>Results</p> <p>Using cross-validation on 190 Diffuse Large B-Cell Lymphomas (DLBCL), vCGH achieved 80% sensitivity, 90% specificity and 90% accuracy for CNA prediction. The majority of the recurrent regions defined by vCGH are concordant with the experimental CGH, including gains of 1q, 2p16-p14, 3q27-q29, 6p25-p21, 7, 11q, 12 and 18q21, and losses of 6q, 8p23-p21, 9p24-p21 and 17p13 in DLBCL. In addition, vCGH predicted some recurrent functional abnormalities which were not observed in CGH, including gains of 1p, 2q and 6q and losses of 1q, 6p and 8q. Among those novel loci, 1q, 6q and 8q were significantly associated with the clinical outcomes in the DLBCL patients (p < 0.05).</p> <p>Conclusions</p> <p>We developed a novel computational approach, vCGH, to predict genome-wide genetic abnormalities from GEP data in lymphomas. vCGH can be generally applied to other types of tumors and may significantly enhance the detection of functionally important genetic abnormalities in cancer research.</p

    Applications of Hidden Markov Models in Microarray Gene Expression Data

    Get PDF
    Hidden Markov models (HMMs) are well developed statistical models to capture hidden information from observable sequential symbols. They were first used in speech recognition in 1970s and have been successfully applied to the analysis of biological sequences since late 1980s as in finding protein secondary structure, CpG islands and families of related DNA or protein sequences [1]. In a HMM, the system being modeled is assumed to be a Markov process with unknown parameters, and the challenge is to determine the hidden parameters from the observable parameters. In this chapter, we described two applications using HMMs to predict gene functions in yeast and DNA copy number alternations in human tumor cells, based on gene expression microarray data

    Genomic alterations in rectal tumors and response to neoadjuvant chemoradiotherapy: an exploratory study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neoadjuvant chemoradiotherapy is the treatment of choice in advanced rectal cancer, even though there are many patients who will not benefit from it. There are still no effective methods for predicting which patients will respond or not. The present study aimed to define the genomic profile of rectal tumors and to identify alterations that are predictive of response in order to optimize therapeutic strategies.</p> <p>Methods</p> <p>Forty-eight candidates for neoadjuvant chemoradiotherapy were recruited and their pretherapy biopsies analyzed by array Comparative Genomic Hybridization (aCGH). Pathologic response was evaluated by tumor regression grade.</p> <p>Results</p> <p>Both Hidden Markov Model and Smoothing approaches identified similar alterations, with a prevalence of DNA gains. Non responsive patients had a different alteration profile from responsive ones, with a higher number of genome changes mainly located on 2q21, 3q29, 7p22-21, 7q21, 7q36, 8q23-24, 10p14-13, 13q12, 13q31-34, 16p13, 17p13-12 and 18q23 chromosomal regions.</p> <p>Conclusions</p> <p>This exploratory study suggests that an in depth characterization of chromosomal alterations by aCGH would provide useful predictive information on response to neoadjuvant chemoradiotherapy and could help to optimize therapy in rectal cancer patients.</p> <p>The data discussed in this study are available on the NCBI Gene Expression Omnibus [GEO: GSE25885].</p

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    A hidden Markov model-based algorithm for identifying tumour subtype using array CGH data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The recent advancement in array CGH (aCGH) research has significantly improved tumor identification using DNA copy number data. A number of unsupervised learning methods have been proposed for clustering aCGH samples. Two of the major challenges for developing aCGH sample clustering are the high spatial correlation between aCGH markers and the low computing efficiency. A mixture hidden Markov model based algorithm was developed to address these two challenges.</p> <p>Results</p> <p>The hidden Markov model (HMM) was used to model the spatial correlation between aCGH markers. A fast clustering algorithm was implemented and real data analysis on glioma aCGH data has shown that it converges to the optimal cluster rapidly and the computation time is proportional to the sample size. Simulation results showed that this HMM based clustering (HMMC) method has a substantially lower error rate than NMF clustering. The HMMC results for glioma data were significantly associated with clinical outcomes.</p> <p>Conclusions</p> <p>We have developed a fast clustering algorithm to identify tumor subtypes based on DNA copy number aberrations. The performance of the proposed HMMC method has been evaluated using both simulated and real aCGH data. The software for HMMC in both R and C++ is available in ND INBRE website <url>http://ndinbre.org/programs/bioinformatics.php.</url></p
    • …
    corecore