8,910 research outputs found

    Reinforcement Learning for Racecar Control

    Get PDF
    This thesis investigates the use of reinforcement learning to learn to drive a racecar in the simulated environment of the Robot Automobile Racing Simulator. Real-life race driving is known to be difficult for humans, and expert human drivers use complex sequences of actions. There are a large number of variables, some of which change stochastically and all of which may affect the outcome. This makes driving a promising domain for testing and developing Machine Learning techniques that have the potential to be robust enough to work in the real world. Therefore the principles of the algorithms from this work may be applicable to a range of problems. The investigation starts by finding a suitable data structure to represent the information learnt. This is tested using supervised learning. Reinforcement learning is added and roughly tuned, and the supervised learning is then removed. A simple tabular representation is found satisfactory, and this avoids difficulties with more complex methods and allows the investigation to concentrate on the essentials of learning. Various reward sources are tested and a combination of three are found to produce the best performance. Exploration of the problem space is investigated. Results show exploration is essential but controlling how much is done is also important. It turns out the learning episodes need to be very long and because of this the task needs to be treated as continuous by using discounting to limit the size of the variables stored. Eligibility traces are used with success to make the learning more efficient. The tabular representation is made more compact by hashing and more accurate by using smaller buckets. This slows the learning but produces better driving. The improvement given by a rough form of generalisation indicates the replacement of the tabular method by a function approximator is warranted. These results show reinforcement learning can work within the Robot Automobile Racing Simulator, and lay the foundations for building a more efficient and competitive agent

    The path inference filter: model-based low-latency map matching of probe vehicle data

    Full text link
    We consider the problem of reconstructing vehicle trajectories from sparse sequences of GPS points, for which the sampling interval is between 10 seconds and 2 minutes. We introduce a new class of algorithms, called altogether path inference filter (PIF), that maps GPS data in real time, for a variety of trade-offs and scenarios, and with a high throughput. Numerous prior approaches in map-matching can be shown to be special cases of the path inference filter presented in this article. We present an efficient procedure for automatically training the filter on new data, with or without ground truth observations. The framework is evaluated on a large San Francisco taxi dataset and is shown to improve upon the current state of the art. This filter also provides insights about driving patterns of drivers. The path inference filter has been deployed at an industrial scale inside the Mobile Millennium traffic information system, and is used to map fleets of data in San Francisco, Sacramento, Stockholm and Porto.Comment: Preprint, 23 pages and 23 figure

    Modelling supported driving as an optimal control cycle: Framework and model characteristics

    Get PDF
    Driver assistance systems support drivers in operating vehicles in a safe, comfortable and efficient way, and thus may induce changes in traffic flow characteristics. This paper puts forward a receding horizon control framework to model driver assistance and cooperative systems. The accelerations of automated vehicles are controlled to optimise a cost function, assuming other vehicles driving at stationary conditions over a prediction horizon. The flexibility of the framework is demonstrated with controller design of Adaptive Cruise Control (ACC) and Cooperative ACC (C-ACC) systems. The proposed ACC and C-ACC model characteristics are investigated analytically, with focus on equilibrium solutions and stability properties. The proposed ACC model produces plausible human car-following behaviour and is unconditionally locally stable. By careful tuning of parameters, the ACC model generates similar stability characteristics as human driver models. The proposed C-ACC model results in convective downstream and absolute string instability, but not convective upstream string instability observed in human-driven traffic and in the ACC model. The control framework and analytical results provide insights into the influences of ACC and C-ACC systems on traffic flow operations.Comment: Submitted to Transportation Research Part C: Emerging Technologie

    Empowerment for Continuous Agent-Environment Systems

    Full text link
    This paper develops generalizations of empowerment to continuous states. Empowerment is a recently introduced information-theoretic quantity motivated by hypotheses about the efficiency of the sensorimotor loop in biological organisms, but also from considerations stemming from curiosity-driven learning. Empowemerment measures, for agent-environment systems with stochastic transitions, how much influence an agent has on its environment, but only that influence that can be sensed by the agent sensors. It is an information-theoretic generalization of joint controllability (influence on environment) and observability (measurement by sensors) of the environment by the agent, both controllability and observability being usually defined in control theory as the dimensionality of the control/observation spaces. Earlier work has shown that empowerment has various interesting and relevant properties, e.g., it allows us to identify salient states using only the dynamics, and it can act as intrinsic reward without requiring an external reward. However, in this previous work empowerment was limited to the case of small-scale and discrete domains and furthermore state transition probabilities were assumed to be known. The goal of this paper is to extend empowerment to the significantly more important and relevant case of continuous vector-valued state spaces and initially unknown state transition probabilities. The continuous state space is addressed by Monte-Carlo approximation; the unknown transitions are addressed by model learning and prediction for which we apply Gaussian processes regression with iterated forecasting. In a number of well-known continuous control tasks we examine the dynamics induced by empowerment and include an application to exploration and online model learning

    Statistical Physics of Vehicular Traffic and Some Related Systems

    Full text link
    In the so-called "microscopic" models of vehicular traffic, attention is paid explicitly to each individual vehicle each of which is represented by a "particle"; the nature of the "interactions" among these particles is determined by the way the vehicles influence each others' movement. Therefore, vehicular traffic, modeled as a system of interacting "particles" driven far from equilibrium, offers the possibility to study various fundamental aspects of truly nonequilibrium systems which are of current interest in statistical physics. Analytical as well as numerical techniques of statistical physics are being used to study these models to understand rich variety of physical phenomena exhibited by vehicular traffic. Some of these phenomena, observed in vehicular traffic under different circumstances, include transitions from one dynamical phase to another, criticality and self-organized criticality, metastability and hysteresis, phase-segregation, etc. In this critical review, written from the perspective of statistical physics, we explain the guiding principles behind all the main theoretical approaches. But we present detailed discussions on the results obtained mainly from the so-called "particle-hopping" models, particularly emphasizing those which have been formulated in recent years using the language of cellular automata.Comment: 170 pages, Latex, figures include
    • 

    corecore