2,579 research outputs found

    Prediction assisted fast handovers for seamless IP mobility

    Get PDF
    Word processed copy.Includes bibliographical references (leaves 94-98).This research investigates the techniques used to improve the standard Mobile IP handover process and provide proactivity in network mobility management. Numerous fast handover proposals in the literature have recently adopted a cross-layer approach to enhance movement detection functionality and make terminal mobility more seamless. Such fast handover protocols are dependent on an anticipated link-layer trigger or pre-trigger to perform pre-handover service establishment operations. This research identifies the practical difficulties involved in implementing this type of trigger and proposes an alternative solution that integrates the concept of mobility prediction into a reactive fast handover scheme

    Improved Handover Through Dual Connectivity in 5G mmWave Mobile Networks

    Full text link
    The millimeter wave (mmWave) bands offer the possibility of orders of magnitude greater throughput for fifth generation (5G) cellular systems. However, since mmWave signals are highly susceptible to blockage, channel quality on any one mmWave link can be extremely intermittent. This paper implements a novel dual connectivity protocol that enables mobile user equipment (UE) devices to maintain physical layer connections to 4G and 5G cells simultaneously. A novel uplink control signaling system combined with a local coordinator enables rapid path switching in the event of failures on any one link. This paper provides the first comprehensive end-to-end evaluation of handover mechanisms in mmWave cellular systems. The simulation framework includes detailed measurement-based channel models to realistically capture spatial dynamics of blocking events, as well as the full details of MAC, RLC and transport protocols. Compared to conventional handover mechanisms, the study reveals significant benefits of the proposed method under several metrics.Comment: 16 pages, 13 figures, to appear on the 2017 IEEE JSAC Special Issue on Millimeter Wave Communications for Future Mobile Network

    Enhanced bicasting and buffering

    Get PDF
    Includes abstract. Includes bibliographical references

    Modeling Seamless Vertical Handovers in Heterogeneous Wireless Networks

    Get PDF
    Vertical handover in heterogeneous wireless networks provides customers with better Quality of Service (QoS) experience. For seamless handover, timely initiation of handover process plays a key role. Various vertical handover management protocols have been proposed and standardized to support mobility across heterogeneous networks. In Media Independent Handover (MIH) based schemes, distributed handover decision is made via certain predefined triggers that consider user context. In this paper, we present a comprehensive review of the modeling techniques used during management of vertical handover. We have also defined a novel architecture, HRPNS: Handoff Resolving and Preferred Network Selection module enabling vertical handover that ensures QoS. The construction of HRPNS module involves integration of fuzzy logic and Markov Decision Process (MDP) for providing precise decision of handover

    Analysis of the effect of mobile terminal speed on WLAN/3G vertical handovers

    Get PDF
    Proceedings of IEEE Global Telecommunications Conference, GLOBECOM '06, San Francisco, California, 27 november - 1 december, 2006.WLAN hot-spots are becoming widely spread. This, combined with the availability of new multi-mode terminals integrating heterogeneous technologies, opens new business opportunities for mobile operators. Scenarios in which 3G coverage is complemented by WLAN deployments are becoming available. Thus, true all-IP based networks are ready to offer a new variety of services across heterogeneous access. However, to achieve this, some aspects still need to be analyzed. In particular, the effect of the terminal speed on the detection and selection process of the preferred access network is not yet well understood. In fact, efficiency of vertical handovers depends on the appropriate configuration of mobile devices. In this paper we present a simulation study of handover performance between 3G and WLAN access networks showing the impact of mobile users’ speed. The mobile devices are based on the IEEE 802.21 cross layer architecture and use WLAN signal level thresholds as handover criteria. A novel algorithm to dynamically adjust terminals’ configuration is presented.Publicad
    • …
    corecore