127 research outputs found

    Off-the-Grid Line Spectrum Denoising and Estimation with Multiple Measurement Vectors

    Full text link
    Compressed Sensing suggests that the required number of samples for reconstructing a signal can be greatly reduced if it is sparse in a known discrete basis, yet many real-world signals are sparse in a continuous dictionary. One example is the spectrally-sparse signal, which is composed of a small number of spectral atoms with arbitrary frequencies on the unit interval. In this paper we study the problem of line spectrum denoising and estimation with an ensemble of spectrally-sparse signals composed of the same set of continuous-valued frequencies from their partial and noisy observations. Two approaches are developed based on atomic norm minimization and structured covariance estimation, both of which can be solved efficiently via semidefinite programming. The first approach aims to estimate and denoise the set of signals from their partial and noisy observations via atomic norm minimization, and recover the frequencies via examining the dual polynomial of the convex program. We characterize the optimality condition of the proposed algorithm and derive the expected convergence rate for denoising, demonstrating the benefit of including multiple measurement vectors. The second approach aims to recover the population covariance matrix from the partially observed sample covariance matrix by motivating its low-rank Toeplitz structure without recovering the signal ensemble. Performance guarantee is derived with a finite number of measurement vectors. The frequencies can be recovered via conventional spectrum estimation methods such as MUSIC from the estimated covariance matrix. Finally, numerical examples are provided to validate the favorable performance of the proposed algorithms, with comparisons against several existing approaches.Comment: 14 pages, 10 figure

    Algorithms for Sparse Signal Recovery in Compressed Sensing

    Get PDF
    Compressed sensing and sparse signal modeling have attracted considerable research interest in recent years. The basic idea of compressed sensing is that by exploiting the sparsity of a signal one can accurately represent the signal using fewer samples than those required with traditional sampling. This thesis reviews the fundamental theoretical results in compressed sensing regarding the required number of measurements and the structure of the measurement system. The main focus of this thesis is on algorithms that accurately recover the original sparse signal from its compressed set of measurements. A number of greedy algorithms for sparse signal recovery are reviewed and numerically evaluated. Convergence properties and error bounds of some of these algorithms are also reviewed. The greedy approach to sparse signal recovery is further extended to multichannel sparse signal model. A widely-used non-Bayesian greedy algorithm for the joint recovery of multichannel sparse signals is reviewed. In cases where accurate prior information about the unknown sparse signals is available, Bayesian estimators are expected to outperform non-Bayesian estimators. A Bayesian minimum mean-squared error (MMSE) estimator of the multichannel sparse signals with Gaussian prior is derived in closed-form. Since computing the exact MMSE estimator is infeasible due to its combinatorial complexity, a novel algorithm for approximating the multichannel MMSE estimator is developed in this thesis. In comparison to the widely-used non-Bayesian algorithm, the developed Bayesian algorithm shows better performance in terms of mean-squared error and probability of exact support recovery. The algorithm is applied to direction-of-arrival estimation with sensor arrays and image denoising, and is shown to provide accurate results in these applications
    • …
    corecore