416 research outputs found

    Real-Time Heuristics and Metaheuristics for Static and Dynamic Weapon Target Assignments

    Get PDF
    The problem of targeting and engaging individual missiles (targets) with an arsenal of interceptors (weapons) is known as the weapon target assignment problem. This problem has been well-researched since the seminal work in 1958. There are two distinct categories of the weapon target assignment problem: static and dynamic. The static weapon target assignment problem considers a single instance in which a known number of incoming missiles is to be engaged with a finite number of interceptors. By contrast, the dynamic weapon target assignment problem considers either follow on engagement(s) should the first engagement(s) fail, a subsequent salvo of incoming missiles, or both. This research seeks to define and solve a realistic dynamic model. First, assignment heuristics and metaheuristics are developed to provide rapid near-optimal solutions to the static weapon target assignment. Next, a technique capable of determining how many of each interceptor type to reserve for a second salvo by means of approximate dynamic programming is developed. Lastly, a model that realistically considers erratic flight paths of incoming missiles and determines assignments and firing sequences of interceptors within a simulation to minimize the number of hits to a protected asset is developed. Additionally, the first contemporary survey of the weapon target assignment problem since 1985 is presented. Collectively, this work extends the research of missile defense into practical application more so than currently is found within the literature

    Approximate Dynamic Programming for Military Resource Allocation

    Get PDF
    This research considers the optimal allocation of weapons to a collection of targets with the objective of maximizing the value of destroyed targets. The weapon-target assignment (WTA) problem is a classic non-linear combinatorial optimization problem with an extensive history in operations research literature. The dynamic weapon target assignment (DWTA) problem aims to assign weapons optimally over time using the information gained to improve the outcome of their engagements. This research investigates various formulations of the DWTA problem and develops algorithms for their solution. Finally, an embedded optimization problem is introduced in which optimization of the multi-stage DWTA is used to determine optimal weaponeering of aircraft. Approximate dynamic programming is applied to the various formulations of the WTA problem. Like many in the field of combinatorial optimization, the DWTA problem suffers from the curses of dimensionality and exact solutions are often computationally intractability. As such, approximations are developed which exploit the special structure of the problem and allow for efficient convergence to high-quality local optima. Finally, a genetic algorithm solution framework is developed to test the embedded optimization problem for aircraft weaponeering

    Maximizing Strike Planning Efficiency for a Given Class of Targets

    Get PDF
    Strike planning is one of the fundamental tasks of the Turkish Air Force and involves assignment of strike aircraft to targets with a maximum level of efficiency. Therefore, planning an optimal strike plan based on the preferences of the decision maker is crucial. The efficiency of the strike plan in this research implies attacking the maximum number of targets while considering target priority and the desired level of damage on each target. Another objective is to minimize the cost of the plan. This research develops an exact model that maximizes the efficiency of the strike plan using LINGO with Excel Spreadsheets. Given this efficiency, the aircraft and weapon costs plus the distance own is minimized while maintaining efficiency. The model also takes into account the aircraft and weapon capacities for particular types at each base to avoid assigning aircraft to targets from a base where there is an insufficient resource in terms of the aircraft and weapon capacity. The results show that the model developed in this research provides a great deal of cost saving (i.e., approximately 50 %) for a strike plan compared to a strike plan which does not consider the total cost

    A Survey on Weapon Target Allocation Models and Applications

    Get PDF
    In Command and Control (C2), Threat Evaluation (TE) and Weapon Target Allocation (WTA) are two key components. To build an automated system in this area after modeling Threat Evaluation and Weapon Target Allocation processes, solving these models and finding the optimal solution are further important issues. This setting demands instantaneous operational planning and decision making under inherent severe stress conditions. The associated responsibilities are usually divided among a number of operators and also computerized decision support systems that aid these operators during the decision making process. In this Chapter, the literature in the area of WTA system with the emphasis on the modeling and solving methods are surveyed

    Makespan minimizing on multiple travel salesman problem with a learning effect of visiting time

    Get PDF
    -The multiple traveling salesman problem (MTSP) involves the assignment and sequencing procedure simultaneously. The assignment of a set of nodes to each visitors and determining the sequence of visiting of nodes for each visitor. Since specific range of process is needed to be carried out in nodes in commercial environment, several factors associated with routing problem are required to be taken into account. This research considers visitors’ skill and category of customers which can affect visiting time of visitors in nodes. With regard to learning-by-doing, visiting time in nodes can be reduced. And different class of customers which are determined based on their potential purchasing of power specifies that required time for nodes can be vary. So, a novel optimization model is presented to formulate MTSP, which attempts to ascertain the optimum routes for salesmen by minimizing the makespan to ensure the balance of workload of visitors. Since this problem is an NP-hard problem, for overcoming the restriction of exact methods for solving practical large-scale instances within acceptable computational times. So, Artificial Immune System (AIS) and the Firefly (FA) metaheuristic algorithm are implemented in this paper and algorithms parameters are calibrated by applying Taguchi technique. The solution methodology is assessed by an array of numerical examples and the overall performances of these metaheuristic methods are evaluated by analyzing their results with the optimum solutions to suggested problems. The results of statistical analysis by considering 95% confidence interval for calculating average relative percentage of deviation (ARPD) reveal that the solutions of proposed AIS algorithm has less variation and Its’ confidence interval of closer than to zero with no overlapping with that of FA. Although both proposed meta-heuristics are effective and efficient in solving small-scale problems, in medium and large scales problems, AIS had a better performance in a shorter average time. Finally, the applicability of the suggested pattern is implemented in a case study in a specific company, namely Kalleh
    • …
    corecore