32,052 research outputs found

    Efficient Adjustment Sets for Population Average Causal Treatment Effect Estimation in Graphical Models

    Get PDF
    The method of covariate adjustment is often used for estimation of total treatment effects from observational studies. Restricting attention to causal linear models, a recent article (Henckel et al., 2019) derived two novel graphical criteria: one to compare the asymptotic variance of linear regression treatment effect estimators that control for certain distinct adjustment sets and another to identify the optimal adjustment set that yields the least squares estimator with the smallest asymptotic variance. In this paper we show that the same graphical criteria can be used in non-parametric causal graphical models when treatment effects are estimated using non-parametrically adjusted estimators of the interventional means. We also provide a new graphical criterion for determining the optimal adjustment set among the minimal adjustment sets and another novel graphical criterion for comparing time dependent adjustment sets. We show that uniformly optimal time dependent adjustment sets do not always exist. For point interventions, we provide a sound and complete graphical criterion for determining when a non-parametric optimally adjusted estimator of an interventional mean, or of a contrast of interventional means, is semiparametric efficient under the non-parametric causal graphical model. In addition, when the criterion is not met, we provide a sound algorithm that checks for possible simplifications of the efficient influence function of the parameter. Finally, we find an interesting connection between identification and efficient covariate adjustment estimation. Specifically, we show that if there exists an identifying formula for an interventional mean that depends only on treatment, outcome and mediators, then the non-parametric optimally adjusted estimator can never be globally efficient under the causal graphical model.Fil: Rotnitzky, Andrea Gloria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Economía; ArgentinaFil: Smucler, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Economía; Argentin

    Graphical models for mediation analysis

    Full text link
    Mediation analysis seeks to infer how much of the effect of an exposure on an outcome can be attributed to specific pathways via intermediate variables or mediators. This requires identification of so-called path-specific effects. These express how a change in exposure affects those intermediate variables (along certain pathways), and how the resulting changes in those variables in turn affect the outcome (along subsequent pathways). However, unlike identification of total effects, adjustment for confounding is insufficient for identification of path-specific effects because their magnitude is also determined by the extent to which individuals who experience large exposure effects on the mediator, tend to experience relatively small or large mediator effects on the outcome. This chapter therefore provides an accessible review of identification strategies under general nonparametric structural equation models (with possibly unmeasured variables), which rule out certain such dependencies. In particular, it is shown which path-specific effects can be identified under such models, and how this can be done

    Half-trek criterion for generic identifiability of linear structural equation models

    Get PDF
    A linear structural equation model relates random variables of interest and corresponding Gaussian noise terms via a linear equation system. Each such model can be represented by a mixed graph in which directed edges encode the linear equations and bidirected edges indicate possible correlations among noise terms. We study parameter identifiability in these models, that is, we ask for conditions that ensure that the edge coefficients and correlations appearing in a linear structural equation model can be uniquely recovered from the covariance matrix of the associated distribution. We treat the case of generic identifiability, where unique recovery is possible for almost every choice of parameters. We give a new graphical condition that is sufficient for generic identifiability and can be verified in time that is polynomial in the size of the graph. It improves criteria from prior work and does not require the directed part of the graph to be acyclic. We also develop a related necessary condition and examine the "gap" between sufficient and necessary conditions through simulations on graphs with 25 or 50 nodes, as well as exhaustive algebraic computations for graphs with up to five nodes.Comment: Published in at http://dx.doi.org/10.1214/12-AOS1012 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore