1,856 research outputs found

    A Graph-based Approach for Detecting Critical Infrastructure Disruptions on Social Media in Disasters

    Get PDF
    The objective of this paper is to propose and test a graph-based approach for detection of critical infrastructure disruptions in social media data in disasters. Understanding the situation and disruptive events of critical infrastructure is essential to effective disaster response and recovery of communities. The potential of social media data for situation awareness during disasters has been highlighted in recent studies. However, the application of social sensing in detecting disruptions of critical infrastructure is limited because existing approaches cannot provide complete and non-ambiguous situational information about critical infrastructure. Therefore, to address this methodological gap, we developed a graph-based approach including data filtering, burst time-frame detection, content similarity and graph analysis. A case study of Hurricane Harvey in 2017 in Houston was conducted to illustrate the application of the proposed approach. The findings highlighted the temporal patterns of critical infrastructure events that occurred in disasters including disruptive events and their adverse impacts on communities. The findings also provided insights for better understanding critical infrastructure interdependencies in disasters. From the practical perspective, the proposed methodology study can improve the ability of community members, first responders and decision makers to detect and respond to infrastructure disruptions in disasters

    Rethinking Infrastructure Resilience Assessment with Human Sentiment Reactions on Social Media in Disasters

    Get PDF
    The objective of this study is to propose and test a theoretical framework which integrates the human sentiment reactions on social media in disasters into infrastructure resilience assessment. Infrastructure resilience assessment is important for reducing adverse consequences of infrastructure failures and promoting human well-being in natural disasters. Integrating societal impacts of infrastructure disruptions can enable a better understanding of infrastructure performance in disasters and human capacities under the stress of disruptions. However, the consideration of societal impacts of infrastructure disruptions is limited in existing studies for infrastructure resilience assessment. The reasons are twofold: first, an integrative theoretical framework for connecting the societal impacts to infrastructure resilience is missing; and second, gathering empirical data for capturing societal impacts of disaster disruptions is challenging. This study proposed a theoretical framework to examine the relationship between the societal impacts and infrastructure performance in disasters using social media data. Sentiments of human messages for relevant infrastructure systems are adopted as an indicator of societal impacts of infrastructure disruptions. A case study for electricity and transportation systems in Houston during the 2017 Hurricane Harvey was conducted to illustrate the application of the proposed framework. We find a relation between human sentiment and infrastructure status and validate it by extracting situational information from relevant tweets and official public data. The findings enable a better understanding of societal expectations and collective sentiments regarding the infrastructure disruptions. Practically, the findings also improve the ability of infrastructure management agencies in infrastructure prioritization and planning decisions

    Understanding Network Dynamics in Flooding Emergencies for Urban Resilience

    Get PDF
    Many cities around the world are exposed to extreme flooding events. As a result of rapid population growth and urbanization, cities are also likely to become more vulnerable in the future and subsequently, more disruptions would occur in the face of flooding. Resilience, an ability of strong resistance to and quick recovery from emergencies, has been an emerging and important goal of cities. Uncovering mechanisms of flooding emergencies and developing effective tools to sense, communicate, predict and respond to emergencies is critical to enhancing the resilience of cities. To overcome this challenge, existing studies have attempted to conduct post-disaster surveys, adopt remote sensing technologies, and process news articles in the aftermath of disasters. Despite valuable insights obtained in previous literature, technologies for real-time and predictive situational awareness are still missing. This limitation is mainly due to two barriers. First, existing studies only use conventional data sources, which often suppress the temporal resolution of situational information. Second, models and theories that can capture the real-time situation is limited. To bridge these gaps, I employ human digital trace data from multiple data sources such as Twitter, Nextdoor, and INTRIX. My study focuses on developing models and theories to expand the capacity of cities in real-time and predictive situational awareness using digital trace data. In the first study, I developed a graph-based method to create networks of information, extract critical messages, and map the evolution of infrastructure disruptions in flooding events from Twitter. My second study proposed and tested an online network reticulation theory to understand how humans communicate and spread situational information on social media in response to service disruptions. The third study proposed and tested a network percolation-based contagion model to understand how floodwaters spread over urban road networks and the extent to which we can predict the flooding in the next few hours. In the last study, I developed an adaptable reinforcement learning model to leverage human trace data from normal situations and simulate traffic conditions during the flooding. All proposed methods and theories have significant implications and applications in improving the real-time and predictive situational awareness in flooding emergencies

    Infastructure Interdependencies Modeling and Analysis - A Review and Synthesis

    Get PDF
    The events of 9/11 and the occurrence of major natural disasters in recent years has resulted in increased awareness and renewed desire to protect critical infrastructure that are the pillars to maintaining what has become normal life in our economy. The problem has been compounded because the increased connectedness between the various sectors of the economy has resulted in interdependencies that allow for problems and issues with one infrastructure to affect other infrastructures. This area is now being investigated extensively after the Department of Homeland Security (DHS) prioritized this issue. There is now a vast extant of literature in the area of infrastructure interdependencies and the modeling of it. This paper presents a synthesis and survey of the literature in the area of infrastructure interdependency modeling methods and proposes a framework for classification of these studies. The framework classifies infrastructure interdependency modeling and analysis methods into four quadrants in terms of system complexities and risks. The directions of future research are also discussed in this paper

    HETEROGENEOUS DATA AND PROBABILISTIC SYSTEM MODEL ANALYSES FOR ENHANCED SITUATIONAL AWARENESS AND RESILIENCE OF CRITICAL INFRASTRUCTURE SYSTEMS

    Get PDF
    The protection and resilience of critical infrastructure systems (CIS) are essential for public safety in daily operations and times of crisis and for community preparedness to hazard events. Increasing situational awareness and resilience of CIS includes both comprehensive monitoring of CIS and their surroundings, as well as evaluating CIS behaviors in changing conditions and with different system configurations. Two frameworks for increasing the monitoring capabilities of CIS are presented. The proposed frameworks are (1) a process for classifying social media big data for monitoring CIS and hazard events and (2) a framework for integrating heterogeneous data sources, including social media, using Bayesian inference to update prior probabilities of event occurrence. Applications of both frameworks are presented, including building and evaluating text-based machine learning classifiers for identifying CIS damages and integrating disparate data sources to estimate hazards and CIS damages. Probabilistic analyses of CIS vulnerabilities with varying system parameters and topologies are also presented. In a water network, the impact of varying parameters on component performance is evaluated. In multiple, small-size water networks, the impacts of system topology are assessed to identify characteristics of more resilient networks. This body of work contributes insights and methods for monitoring CIS and assessing their performance. Integrating heterogeneous data sources increases situational awareness of CIS, especially during or after failure events, and evaluating the sensitivity of CIS outcomes to changes in the network facilitates decisions for CIS investments and emergency response.Ph.D

    Crowdsourcing Cybersecurity: Cyber Attack Detection using Social Media

    Full text link
    Social media is often viewed as a sensor into various societal events such as disease outbreaks, protests, and elections. We describe the use of social media as a crowdsourced sensor to gain insight into ongoing cyber-attacks. Our approach detects a broad range of cyber-attacks (e.g., distributed denial of service (DDOS) attacks, data breaches, and account hijacking) in an unsupervised manner using just a limited fixed set of seed event triggers. A new query expansion strategy based on convolutional kernels and dependency parses helps model reporting structure and aids in identifying key event characteristics. Through a large-scale analysis over Twitter, we demonstrate that our approach consistently identifies and encodes events, outperforming existing methods.Comment: 13 single column pages, 5 figures, submitted to KDD 201

    Understanding the Socio-infrastructure Systems During Disaster from Social Media Data

    Get PDF
    Our socio-infrastructure systems are becoming more and more vulnerable due to the increased severity and frequency of extreme events every year. Effective disaster management can minimize the damaging impacts of a disaster to a large extent. The ubiquitous use of social media platforms in GPS enabled smartphones offers a unique opportunity to observe, model, and predict human behavior during a disaster. This dissertation explores the opportunity of using social media data and different modeling techniques towards understanding and managing disaster more dynamically. In this dissertation, we focus on four objectives. First, we develop a method to infer individual evacuation behaviors (e.g., evacuation decision, timing, destination) from social media data. We develop an input output hidden Markov model to infer evacuation decisions from user tweets. Our findings show that using geo-tagged posts and text data, a hidden Markov model can be developed to capture the dynamics of hurricane evacuation decision. Second, we develop evacuation demand prediction model using social media and traffic data. We find that trained from social media and traffic data, a deep learning model can predict well evacuation traffic demand up to 24 hours ahead. Third, we present a multi-label classification approach to identify the co-occurrence of multiple types of infrastructure disruptions considering the sentiment towards a disruption—whether a post is reporting an actual disruption (negative), or a disruption in general (neutral), or not affected by a disruption (positive). We validate our approach for data collected during multiple hurricanes. Fourth, finally we develop an agent-based model to understand the influence of multiple information sources on risk perception dynamics and evacuation decisions. In this study, we explore the effects of socio-demographic factors and information sources such as social connectivity, neighborhood observation, and weather information and its credibility in forming risk perception dynamics and evacuation decisions

    Global Risks 2012, Seventh Edition

    Get PDF
    The World Economic Forum's Global Risks 2012 report is based on a survey of 469 experts from industry, government, academia and civil society that examines 50 global risks across five categories. The report emphasizes the singular effect of a particular constellation of global risks rather than focusing on a single existential risk. Three distinct constellations of risks that present a very serious threat to our future prosperity and security emerged from a review of this year's set of risks. Includes a special review of the important lessons learned from the 2011 earthquake, tsunami and the subsequent nuclear crisis at Fukushima, Japan. It focuses on therole of leadership, challenges to effective communication in this information age and resilient business models in response to crises of unforeseen magnitude
    corecore