169,378 research outputs found

    A Graph Encoder-Decoder Network for Unsupervised Anomaly Detection

    Full text link
    A key component of many graph neural networks (GNNs) is the pooling operation, which seeks to reduce the size of a graph while preserving important structural information. However, most existing graph pooling strategies rely on an assignment matrix obtained by employing a GNN layer, which is characterized by trainable parameters, often leading to significant computational complexity and a lack of interpretability in the pooling process. In this paper, we propose an unsupervised graph encoder-decoder model to detect abnormal nodes from graphs by learning an anomaly scoring function to rank nodes based on their degree of abnormality. In the encoding stage, we design a novel pooling mechanism, named LCPool, which leverages locality-constrained linear coding for feature encoding to find a cluster assignment matrix by solving a least-squares optimization problem with a locality regularization term. By enforcing locality constraints during the coding process, LCPool is designed to be free from learnable parameters, capable of efficiently handling large graphs, and can effectively generate a coarser graph representation while retaining the most significant structural characteristics of the graph. In the decoding stage, we propose an unpooling operation, called LCUnpool, to reconstruct both the structure and nodal features of the original graph. We conduct empirical evaluations of our method on six benchmark datasets using several evaluation metrics, and the results demonstrate its superiority over state-of-the-art anomaly detection approaches

    A Multi-view Context-aware Approach to Android Malware Detection and Malicious Code Localization

    Full text link
    Existing Android malware detection approaches use a variety of features such as security sensitive APIs, system calls, control-flow structures and information flows in conjunction with Machine Learning classifiers to achieve accurate detection. Each of these feature sets provides a unique semantic perspective (or view) of apps' behaviours with inherent strengths and limitations. Meaning, some views are more amenable to detect certain attacks but may not be suitable to characterise several other attacks. Most of the existing malware detection approaches use only one (or a selected few) of the aforementioned feature sets which prevent them from detecting a vast majority of attacks. Addressing this limitation, we propose MKLDroid, a unified framework that systematically integrates multiple views of apps for performing comprehensive malware detection and malicious code localisation. The rationale is that, while a malware app can disguise itself in some views, disguising in every view while maintaining malicious intent will be much harder. MKLDroid uses a graph kernel to capture structural and contextual information from apps' dependency graphs and identify malice code patterns in each view. Subsequently, it employs Multiple Kernel Learning (MKL) to find a weighted combination of the views which yields the best detection accuracy. Besides multi-view learning, MKLDroid's unique and salient trait is its ability to locate fine-grained malice code portions in dependency graphs (e.g., methods/classes). Through our large-scale experiments on several datasets (incl. wild apps), we demonstrate that MKLDroid outperforms three state-of-the-art techniques consistently, in terms of accuracy while maintaining comparable efficiency. In our malicious code localisation experiments on a dataset of repackaged malware, MKLDroid was able to identify all the malice classes with 94% average recall

    Craquelure as a Graph: Application of Image Processing and Graph Neural Networks to the Description of Fracture Patterns

    Full text link
    Cracks on a painting is not a defect but an inimitable signature of an artwork which can be used for origin examination, aging monitoring, damage identification, and even forgery detection. This work presents the development of a new methodology and corresponding toolbox for the extraction and characterization of information from an image of a craquelure pattern. The proposed approach processes craquelure network as a graph. The graph representation captures the network structure via mutual organization of junctions and fractures. Furthermore, it is invariant to any geometrical distortions. At the same time, our tool extracts the properties of each node and edge individually, which allows to characterize the pattern statistically. We illustrate benefits from the graph representation and statistical features individually using novel Graph Neural Network and hand-crafted descriptors correspondingly. However, we also show that the best performance is achieved when both techniques are merged into one framework. We perform experiments on the dataset for paintings' origin classification and demonstrate that our approach outperforms existing techniques by a large margin.Comment: Published in ICCV 2019 Workshop

    Metrics for Graph Comparison: A Practitioner's Guide

    Full text link
    Comparison of graph structure is a ubiquitous task in data analysis and machine learning, with diverse applications in fields such as neuroscience, cyber security, social network analysis, and bioinformatics, among others. Discovery and comparison of structures such as modular communities, rich clubs, hubs, and trees in data in these fields yields insight into the generative mechanisms and functional properties of the graph. Often, two graphs are compared via a pairwise distance measure, with a small distance indicating structural similarity and vice versa. Common choices include spectral distances (also known as λ\lambda distances) and distances based on node affinities. However, there has of yet been no comparative study of the efficacy of these distance measures in discerning between common graph topologies and different structural scales. In this work, we compare commonly used graph metrics and distance measures, and demonstrate their ability to discern between common topological features found in both random graph models and empirical datasets. We put forward a multi-scale picture of graph structure, in which the effect of global and local structure upon the distance measures is considered. We make recommendations on the applicability of different distance measures to empirical graph data problem based on this multi-scale view. Finally, we introduce the Python library NetComp which implements the graph distances used in this work
    • …
    corecore