4,355 research outputs found

    Sidelobe Control in Collaborative Beamforming via Node Selection

    Full text link
    Collaborative beamforming (CB) is a power efficient method for data communications in wireless sensor networks (WSNs) which aims at increasing the transmission range in the network by radiating the power from a cluster of sensor nodes in the directions of the intended base station(s) or access point(s) (BSs/APs). The CB average beampattern expresses a deterministic behavior and can be used for characterizing/controling the transmission at intended direction(s), since the mainlobe of the CB beampattern is independent on the particular random node locations. However, the CB for a cluster formed by a limited number of collaborative nodes results in a sample beampattern with sidelobes that severely depend on the particular node locations. High level sidelobes can cause unacceptable interference when they occur at directions of unintended BSs/APs. Therefore, sidelobe control in CB has a potential to increase the network capacity and wireless channel availability by decreasing the interference. Traditional sidelobe control techniques are proposed for centralized antenna arrays and, therefore, are not suitable for WSNs. In this paper, we show that distributed, scalable, and low-complexity sidelobe control techniques suitable for CB in WSNs can be developed based on node selection technique which make use of the randomness of the node locations. A node selection algorithm with low-rate feedback is developed to search over different node combinations. The performance of the proposed algorithm is analyzed in terms of the average number of trials required to select the collaborative nodes and the resulting interference. Our simulation results approve the theoretical analysis and show that the interference is significantly reduced when node selection is used with CB.Comment: 30 pages, 10 figures, submitted to the IEEE Trans. Signal Processin

    Self-Stabilizing TDMA Algorithms for Dynamic Wireless Ad-hoc Networks

    Get PDF
    In dynamic wireless ad-hoc networks (DynWANs), autonomous computing devices set up a network for the communication needs of the moment. These networks require the implementation of a medium access control (MAC) layer. We consider MAC protocols for DynWANs that need to be autonomous and robust as well as have high bandwidth utilization, high predictability degree of bandwidth allocation, and low communication delay in the presence of frequent topological changes to the communication network. Recent studies have shown that existing implementations cannot guarantee the necessary satisfaction of these timing requirements. We propose a self-stabilizing MAC algorithm for DynWANs that guarantees a short convergence period, and by that, it can facilitate the satisfaction of severe timing requirements, such as the above. Besides the contribution in the algorithmic front of research, we expect that our proposal can enable quicker adoption by practitioners and faster deployment of DynWANs that are subject changes in the network topology

    Guest editorial : In Journal of networks, v.6 n.1

    Full text link
    In recent years, networking of computing devices has been going through rapid evolution and thus continuing to be an ever expanding area of importance. Different technologies, protocols, services and usage patterns have contributed to the major research interests in this area of computer science. The current special issue is an effort to bring forward some of these interesting developments that are being pursued by researchers at present in different parts of the globe. Our objective is to provide the readership with some insight into the latest innovations in computer networking through this

    Performance evaluation of wireless sensor networks for mobile sink considering consumed energy metric

    Get PDF
    Sensor networks are a sensing, computing and communication infrastructure that are able to observe and respond to phenomena in the natural environment and in our physical and cyber infrastructure. The sensors themselves can range from small passive micro-sensors to larger scale, controllable weather-sensing platforms. To reduce the consumed energy of a large scale sensor network, we consider a mobile sink node in the observing area. In this work, we investigate how the sensor network performs in the case when the sink node moves. We compare the simulation results for two cases: when the sink node is mobile and stationary considering lattice and random topologies using AODV protocol. The simulation results have shown that for the case of mobile sink, the consumed energy is better than the stationary sink (about half of stationary sink in lattice topology). Also for mobile sink, the consumed energy of lattice topology is better than random topologyPeer ReviewedPostprint (published version

    Hybrid Communication Protocols and Control Algorithms for NextGen Aircraft Arrivals

    Get PDF
    Capacity constraints imposed by current air traffic management technologies and protocols could severely limit the performance of the Next Generation Air Transportation System (NextGen). A fundamental design decision in the development of this system is the level of decentralization that balances system safety and efficiency. A new surveillance technology called automatic dependent surveillance-broadcast (ADS-B) can be potentially used to shift air traffic control to a more distributed architecture; however, channel variations and interference with existing secondary radar replies can affect ADS-B systems. This paper presents a framework for managing arrivals at an airport by using a hybrid centralized/distributed algorithm for communication and control. The algorithm combines the centralized control that is used in congested regions with the distributed control that is used in lower traffic density regions. The hybrid algorithm is evaluated through realistic simulations of operations around a major airport. The proposed strategy is shown to significantly improve air traffic control performance under various operating conditions by adapting to the underlying communication, navigation, and surveillance systems. The performance of the proposed strategy is found to be comparable to fully centralized strategies, despite requiring significantly less ground infrastructure.National Science Foundation (U.S.) (Grant CNS-931843)United States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N0014-08-0696)United States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N00014-09-1-1051)United States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N00014-12-1-0609)United States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (Grant FA9550-10-1-0567
    corecore