1,228 research outputs found

    A genetic algorithm to minimize chromatic entropy

    Get PDF
    We present an algorithmic approach to solving the problem of chromatic entropy, a combinatorial optimization problem related to graph coloring. This problem is a component in algorithms for optimizing data compression when computing a function of two correlated sources at a receiver. Our genetic algorithm for minimizing chromatic entropy uses an order-based genome inspired by graph coloring genetic algorithms, as well as some problem-specific heuristics. It performs consistently well on synthetic instances, and for an expositional set of functional compression problems, the GA routinely finds a compression scheme that is 20-30% more efficient than that given by a reference compression algorithm

    `The frozen accident' as an evolutionary adaptation: A rate distortion theory perspective on the dynamics and symmetries of genetic coding mechanisms

    Get PDF
    We survey some interpretations and related issues concerning the frozen hypothesis due to F. Crick and how it can be explained in terms of several natural mechanisms involving error correction codes, spin glasses, symmetry breaking and the characteristic robustness of genetic networks. The approach to most of these questions involves using elements of Shannon's rate distortion theory incorporating a semantic system which is meaningful for the relevant alphabets and vocabulary implemented in transmission of the genetic code. We apply the fundamental homology between information source uncertainty with the free energy density of a thermodynamical system with respect to transcriptional regulators and the communication channels of sequence/structure in proteins. This leads to the suggestion that the frozen accident may have been a type of evolutionary adaptation

    Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011

    Get PDF

    Fusion of Visual and Thermal Images Using Genetic Algorithms

    Get PDF
    Biometric technologies such as fingerprint, hand geometry, face and iris recognition are widely used to identify a person's identity. The face recognition system is currently one of the most important biometric technologies, which identifies a person by comparing individually acquired face images with a set of pre-stored face templates in a database

    Fusion of Visual and Thermal Images Using Genetic Algorithms

    Get PDF
    Demands for reliable person identification systems have increased significantly due to highly security risks in our daily life. Recently, person identification systems are built upon the biometrics techniques such as face recognition. Although face recognition systems have reached a certain level of maturity, their accomplishments in practical applications are restricted by some challenges, such as illumination variations. Current visual face recognition systems perform relatively well under controlled illumination conditions while thermal face recognition systems are more advantageous for detecting disguised faces or when there is no illumination control. A hybrid system utilizing both visual and thermal images for face recognition will be beneficial. The overall goal of this research is to develop computational methods that improve image quality by fusing visual and thermal face images. First, three novel algorithms were proposed to enhance visual face images. In those techniques, specifical nonlinear image transfer functions were developed and parameters associated with the functions were determined by image statistics, making the algorithms adaptive. Second, methods were developed for registering the enhanced visual images to their corresponding thermal images. Landmarks in the images were first detected and a subset of those landmarks were selected to compute a transformation matrix for the registration. Finally, A Genetic algorithm was proposed to fuse the registered visual and thermal images. Experimental results showed that image quality can be significantly improved using the proposed framework

    Epileptic Seizure Classification Using Image-Based Data Representation

    Get PDF
    Epilepsy is a recurrence of seizures caused by a disorder of the brain in over 3.4 million people nationwide. Some people are able to predict their seizures based off prodrome, which is an early sign or symptom that usually resembles mood changes or a euphoric feeling even days to an hour before occurrence. Consequently, the natural instincts of the body to react to an upcoming attack lends credence to the existence of a pre-ictal state that precedes seizure episodes. Physicians and researchers have thus sought for an automated approach for predicting or detecting seizures. In this research, we evaluate the image-based representation of EEG as a basis for classification and training of machine learning algorithms. We explore only the raw EEG data for images in lossless image file formats, though there are other forms including symbolized and noise-filtered that can be explored. Furthermore, we evaluate different color mapping schemes (symbolized, default, chromatic, and binned) that assign EEG data values to Red-Green-Blue (RGB) pixel values. We report the performance of machine learning algorithms such as Random Forest to accurately classify EEG-based images as either event (with a seizure) or non-event (without a seizure)
    • ā€¦
    corecore