1 research outputs found

    ํฌํ† ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ ๊ฒ€์‚ฌ ์‹œ์Šคํ…œ์˜ ์ด๋ฏธ์ง€ ๋ถ„ํ• ์„ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๊นŠ์€ ์•„ํ‚คํ…์ฒ˜

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์œตํ•ฉ๊ณผํ•™๋ถ€(์ง€๋Šฅํ˜•์œตํ•ฉ์‹œ์Šคํ…œ์ „๊ณต), 2021.8. ํ™์„ฑ์ˆ˜.In semiconductor manufacturing, defect detection is critical to maintain high yield. Typically, the defects of semiconductor wafer may be generated from the manufacturing process. Most computer vision systems used in semiconductor photolithography process inspection still have adopt to image processing algorithm, which often occur inspection faults due to sensitivity to external environment changes. Therefore, we intend to tackle this problem by means of converging the advantages of image processing algorithm and deep learning. In this dissertation, we propose Image Segmentation Detector (ISD) to extract the enhanced feature-maps under the situations where training dataset is limited in the specific industry domain, such as semiconductor photolithography inspection. ISD is used as a novel backbone network of state-of-the-art Mask R-CNN framework for image segmentation. ISD consists of four dense blocks and four transition layers. Especially, each dense block in ISD has the shortcut connection and the concatenation of the feature-maps produced in layer with dynamic growth rate for more compactness. ISD is trained from scratch without using recently approached transfer learning method. Additionally, ISD is trained with image dataset pre-processed by means of our designed image filter to extract the better enhanced feature map of Convolutional Neural Network (CNN). In ISD, one of the key design principles is the compactness, plays a critical role for addressing real-time problem and for application on resource bounded devices. To empirically demonstrate the model, this dissertation uses the existing image obtained from the computer vision system embedded in the currently operating semiconductor manufacturing equipment. ISD achieves consistently better results than state-of-the-art methods at the standard mean average precision which is the most common metric used to measure the accuracy of the instance detection. Significantly, our ISD outperforms baseline method DenseNet, while requiring only 1/4 parameters. We also observe that ISD can achieve comparable better results in performance than ResNet, with only much smaller 1/268 parameters, using no extra data or pre-trained models. Our experimental results show that ISD can be useful to many future image segmentation research efforts in diverse fields of semiconductor industry which is requiring real-time and good performance with only limited training dataset.๋ฐ˜๋„์ฒด ์ œ์กฐ์—์„œ ๊ฒฐํ•จ ๊ฒ€์ถœ์€ ๋†’์€ ์ˆ˜์œจ์„ ์œ ์ง€ํ•˜๋Š”๋ฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ์ „ํ˜•์ ์œผ๋กœ, ๋ฐ˜๋„์ฒด ์›จ์ดํผ์˜ ๊ฒฐํ•จ์€ ์ œ์กฐ ๊ณต์ •์—์„œ ๋ฐœ์ƒํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋ฐ˜๋„์ฒด ํฌํ† ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ ๊ณต์ • ๊ฒ€์‚ฌ์— ์‚ฌ์šฉ๋˜๋Š” ๋Œ€๋ถ€๋ถ„์˜ ์ปดํ“จํ„ฐ ๋น„์ „ ์‹œ์Šคํ…œ๋“ค์€ ์—ฌ์ „ํžˆ ์™ธ๋ถ€ ํ™˜๊ฒฝ ๋ณ€ํ™”์— ๋ฏผ๊ฐํ•œ ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜๊ณ  ์žˆ์–ด์„œ ๊ฒ€์‚ฌ ์˜ค๋ฅ˜๊ฐ€ ์ž์ฃผ ๋ฐœ์ƒํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์žฅ์ ๊ณผ ๋”ฅ ๋Ÿฌ๋‹์˜ ์žฅ์ ์„ ์œตํ•ฉํ•˜์—ฌ ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ ์šฐ๋ฆฌ๋Š” ๋ฐ˜๋„์ฒด ํฌํ† ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ ๊ฒ€์‚ฌ์™€ ๊ฐ™์ด ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ ์„ธํŠธ๊ฐ€ ์ œํ•œ๋œ ์ƒํ™ฉ์—์„œ ํ–ฅ์ƒ๋œ ๊ธฐ๋Šฅ ๋งต์„ ์ถ”์ถœํ•˜๊ธฐ ์œ„ํ•ด ์ด๋ฏธ์ง€ ๋ถ„ํ•  ๊ฒ€์ถœ๊ธฐ(Image Segmentation Detector, ์ดํ•˜ ISD)๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ISD๋Š” ์ด๋ฏธ์ง€ ๋ถ„ํ• ์„ ์œ„ํ•œ ์ตœ์‹  Mask R-CNN ํ”„๋ ˆ์ž„ ์›Œํฌ์˜ ์ƒˆ๋กœ์šด ๋ฐฑ๋ณธ ๋„คํŠธ์›Œํฌ๋กœ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ISD๋Š” 4 ๊ฐœ์˜ ์กฐ๋ฐ€ํ•œ ๋ธ”๋ก๊ณผ 4 ๊ฐœ์˜ ์ „ํ™˜ ๋ ˆ์ด์–ด๋กœ ๊ตฌ์„ฑํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ISD์˜ ๊ฐ ์กฐ๋ฐ€ํ•œ ๋ธ”๋ก์€ ๋ณด๋‹ค ์ปดํŒฉํŠธํ•จ์„ ์œ„ํ•ด ๋‹จ์ถ• ์—ฐ๊ฒฐ ๋ฐ ๋™์  ์„ฑ์žฅ๋ฅ ์„ ๊ฐ€์ง€๊ณ  ๋ ˆ์ด์–ด์—์„œ ์ƒ์„ฑ๋œ ํ”ผ์ณ ๋งต์„ ๊ฒฐํ•ฉํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ISD๋Š” ์ตœ๊ทผ ์ ์šฉํ•˜๊ณ  ์žˆ๋Š” ์ „์ด ํ•™์Šต ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ  ์ฒ˜์Œ๋ถ€ํ„ฐ ํ›ˆ๋ จํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ISD๋Š” ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง(Convolutional Neural Network, ์ดํ•˜ CNN)์˜ ํ–ฅ์ƒ๋œ ๊ธฐ๋Šฅ ๋งต์„ ์ถ”์ถœํ•˜๊ธฐ ์œ„ํ•ด ์šฐ๋ฆฌ๊ฐ€ ์„ค๊ณ„ํ•œ ์ด๋ฏธ์ง€ ํ•„ํ„ฐ๋ฅผ ํ†ตํ•ด ์‚ฌ์ „ ์ฒ˜๋ฆฌ๋œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋กœ ํ›ˆ๋ จ์„ ํ•ฉ๋‹ˆ๋‹ค. ISD์˜ ์„ค๊ณ„ ํ•ต์‹ฌ ์›์น™ ์ค‘ ํ•˜๋‚˜๋Š” ์†Œํ˜•ํ™”๋กœ ์‹ค์‹œ๊ฐ„ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ  ๋ฆฌ์†Œ์Šค์— ์ œํ•œ์ด ์žˆ๋Š” ์žฅ์น˜์— ์ ์šฉํ•˜๋Š”๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ๋ชจ๋ธ์„ ์‹ค์ฆ์ ์œผ๋กœ ์ž…์ฆํ•˜๊ธฐ ์œ„ํ•ด ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ํ˜„์žฌ ์šด์˜ ์ค‘์ธ ๋ฐ˜๋„์ฒด ์ œ์กฐ ์žฅ๋น„์— ๋‚ด์žฅ๋œ ์ปดํ“จํ„ฐ ๋น„์ „ ์‹œ์Šคํ…œ์—์„œ ํš๋“ํ•œ ์‹ค์ œ ์ด๋ฏธ์ง€๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ISD๋Š” ๊ฐ€์žฅ ์ผ๋ฐ˜์ ์ธ ์„ฑ๋Šฅ ์ธก์ • ์ง€ํ‘œ์ธ ํ‰๊ท  ์ •๋ฐ€๋„์—์„œ ์ตœ์ฒจ๋‹จ ๋ฐฑ๋ณธ ๋„คํŠธ์›Œํฌ ๋ณด๋‹ค ์ผ๊ด€๋˜๊ฒŒ ๋” ๋‚˜์€ ์„ฑ๋Šฅ์„ ์–ป์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ISD๋Š” ๋ฒ ์ด์Šค ๋ผ์ธ์œผ๋กœ ์‚ผ์€ DenseNet ๋ณด๋‹ค ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์ด 4๋ฐฐ ๋” ์ ์ง€๋งŒ, ์„ฑ๋Šฅ์ด ์šฐ์ˆ˜ ํ•ฉ๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ๋˜ํ•œ ISD๊ฐ€ Mask R-CNN ๋ฐฑ๋ณธ ๋„คํŠธ์›Œํฌ๋กœ ์ฃผ๋กœ ์‚ฌ์šฉํ•˜๋Š” ResNet ๋ณด๋‹ค 268๋ฐฐ ํ›จ์”ฌ ๋” ์ ์€ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์„ ๊ฐ€์ง€๊ณ , ์ถ”๊ฐ€ ๋ฐ์ดํ„ฐ ๋˜๋Š” ์‚ฌ์ „ ํ›ˆ๋ จ๋œ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ , ์„ฑ๋Šฅ์—์„œ ๋น„์Šทํ•˜๊ฑฐ๋‚˜ ๋” ๋‚˜์€ ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Œ์„ ๊ด€์ฐฐํ•ฉ๋‹ˆ๋‹ค. ์šฐ๋ฆฌ์˜ ์‹คํ—˜ ๊ฒฐ๊ณผ๋“ค์€ ISD๊ฐ€ ์ œํ•œ๋œ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋งŒ์œผ๋กœ ์‹ค์‹œ๊ฐ„ ๋ฐ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ์š”๊ตฌํ•˜๋Š” ๋ฐ˜๋„์ฒด ์‚ฐ์—…์˜ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ๋“ค์—์„œ ๋งŽ์€ ๋ฏธ๋ž˜์˜ ์ด๋ฏธ์ง€ ๋ถ„ํ•  ์—ฐ๊ตฌ ๋…ธ๋ ฅ์— ์œ ์šฉํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.Chapter 1. Introduction ๏ผ‘ 1.1. Background and Motivation ๏ผ” Chapter 2. Related Work ๏ผ‘๏ผ’ 2.1. Inspection Method ๏ผ‘๏ผ’ 2.2. Instance Segmentation ๏ผ‘๏ผ– 2.3. Backbone Structure ๏ผ’๏ผ” 2.4. Enhanced Feature Map ๏ผ“๏ผ• 2.5. Detection Performance Evaluation ๏ผ”๏ผ— 2.6. Learning Network Model from Scratch ๏ผ•๏ผ Chapter 3. Proposed Method ๏ผ•๏ผ’ 3.1. ISD Architecture ๏ผ•๏ผ’ 3.2. Pre-processing ๏ผ–๏ผ“ 3.3. Model Training ๏ผ—๏ผ‘ 3.4. Training Objective ๏ผ—๏ผ“ 3.5. Setting and Configurations ๏ผ—๏ผ• Chapter 4. Experimental Evaluation ๏ผ—๏ผ˜ 4.1. Classification Results on ISD ๏ผ˜๏ผ‘ 4.2. Comparison with Pre-processing ๏ผ˜๏ผ• 4.3. Image Segmentation Results on ISD ๏ผ™๏ผ” 4.3.1. Results on Suck-back State ๏ผ™๏ผ” 4.3.2. Results on Dispensing State ๏ผ‘๏ผ๏ผ” 4.4. Comparison with State-of-the-art Methods ๏ผ‘๏ผ‘๏ผ“ Chapter 5. Conclusion ๏ผ‘๏ผ’๏ผ‘ Bibliography ๏ผ‘๏ผ’๏ผ— ์ดˆ๋ก ๏ผ‘๏ผ”๏ผ–๋ฐ•
    corecore