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Abstract 
 

 

In semiconductor manufacturing, defect detection is critical to 

maintain high yield. Typically, the defects of semiconductor wafer 

may be generated from the manufacturing process. Most computer 

vision systems used in semiconductor photolithography process 

inspection still have adopt to image processing algorithm, which often 

occur inspection faults due to sensitivity to external environment 

changes. Therefore, we intend to tackle this problem by means of 

converging the advantages of image processing algorithm and deep 

learning.  

In this dissertation, we propose Image Segmentation Detector 

(ISD) to extract the enhanced feature-maps under the situations 

where training dataset is limited in the specific industry domain, such 

as semiconductor photolithography inspection. ISD is used as a novel 

backbone network of state-of-the-art Mask R-CNN framework for 

image segmentation. ISD consists of four dense blocks and four 

transition layers. Especially, each dense block in ISD has the shortcut 

connection and the concatenation of the feature-maps produced in 

layer with dynamic growth rate for more compactness. ISD is trained 

from scratch without using recently approached transfer learning 

method. Additionally, ISD is trained with image dataset pre-
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processed by means of our designed image filter to extract the better 

enhanced feature map of Convolutional Neural Network (CNN). In 

ISD, one of the key design principles is the compactness, plays a 

critical role for addressing real-time problem and for application on 

resource bounded devices.  

To empirically demonstrate the model, this dissertation uses the 

existing image obtained from the computer vision system embedded 

in the currently operating semiconductor manufacturing equipment. 

ISD achieves consistently better results than state-of-the-art 

methods at the standard mean average precision which is the most 

common metric used to measure the accuracy of the instance 

detection. Significantly, our ISD outperforms baseline method 

DenseNet, while requiring only 1/4 parameters. We also observe that 

ISD can achieve comparable better results in performance than 

ResNet, with only much smaller 1/268 parameters, using no extra 

data or pre-trained models. Our experimental results show that ISD 

can be useful to many future image segmentation research efforts in 

diverse fields of semiconductor industry which is requiring real-time 

and good performance with only limited training dataset. 

 

Keyword : Photolithography inspection, backbone network, image 

segmentation, deep learning, convolutional neural networks, 

computer vision. 
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Chapter 1. Introduction 

 

 

 

 

Semiconductor manufacturing has emerged as one of the most 

important world industries. In semiconductor manufacturing, defect 

detection is critical to maintain high yield. Even with the highly 

automated and precisely monitored facilities used to process the 

complex manufacturing steps in a near particle free environment, 

wafer defect still exist. The causes of defect may be generated from 

equipment malfunctions in delicate and difficult processing steps. In 

order to be competitive in the semiconductor manufacturing industry, 

the detection of these problems becomes a critical issue. In this 

dissertation, In order to identify and tackle the problems of computer 

vision systems used to inspect the malfunction of equipment in the 

semiconductor photolithography process, the-state-of-art 

technologies are researched, converged and applied. 

Object detection or localization is one of the most important and 

challenging branches of computer vision, which has been widely 
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applied in people’s life, such as monitoring security, autonomous 

driving and military field, transportation field, medical field, industry 

field so on, with the purpose of locating instances of semantic objects 

of a certain class. Detection or object localization is an incremental 

step from coarse to fine inference, which provides not only classes 

of the image objects but also gives the location of the classified image 

objects in the form of bounding boxes or centroids. 

Semantic segmentation [1, 2] gives fine inference by predicting 

labels for every pixel in the input image. Each pixel is labelled 

according to the object class within which it is enclosed. Furthering 

this evolution, instance segmentation gives different labels for 

separate instances of objects belonging to the same class. Hence, 

instance segmentation may be defined as the technique of 

simultaneously solving the problem of object detection as well as that 

of semantic segmentation. 

Instance segmentation methods that focus on detection bounding 

box proposals, ignore the classes that are not well suited for 

detection, e.g., background, scenery. On the other hand, semantic 

segmentation does not provide instance boundaries for classes in a 

given image. Furthermore, panoptic segmentation task, first coined 

by Kirillov et al. [3] unifies these tasks and defines an ideal output 

for thing classes as instance segmentations, as well as for stuff 

classes as semantic segmentation.  

These segmentation are developing a technique/algorithm that 

performs well in the two domains of better segmentation accuracy 
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and better segmentation efficiency. Better segmentation accuracy 

encompasses accurate localization and recognition of objects in 

images/frames, with the result that the large variety of object related 

categories in real scenario can be distinguished (i.e. better 

distinctiveness), and that instances of objects belonging to same 

class which are subject to intra-class appearance variation, may be 

localized and recognized (i.e. better robustness). Better 

segmentation efficiency refers to computational cost of the 

segmentation algorithm. It refers efficient real-time computational 

costs like acceptable memory/storage requirements, and lesser 

burden on the processor(s). One of the important components in an 

object detector for segmentation is good feature representation 

which is of primary importance in object detection. Methods based on 

deep learning [4] (like Deep CNNs) are able to learn powerful 

representations of features with various abstraction levels from 

images. Subsequently, the problem of feature representation has 

been transferred to the development of better performing network 

architectures and more optimized training procedures. Deep CNN 

based detectors like RCNN [5], Fast RCNN [6], Faster RCNN [7], 

Mask R-CNN [8] and YOLO [9], usually use the deep CNN 

architectures and subsequently use features from the topmost CNN 

layer for object representation. However, there are many issues e.g., 

various scale, geometric transformations, occlusions, image 

degradations to be addressed. Therefore, in order to good feature 

representation, the objective of this dissertation is to present a novel 
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deep architecture that convergences image processing technology 

and deep learning image segmentation technology, which is strong 

against image degradation among these problems and can be applied 

with better efficiency to semiconductor photolithography inspection 

systems. 

As mentioned earlier, we introduced object detection, localization, 

segmentation, issues of segmentation and the objective to be covered 

in this dissertation. 

 

 

 

1.1. Background and Motivation 

 

Instance segmentation has come to be one of the relatively important, 

complex and challenging areas in machine vision research. Aimed at 

predicting the object class-label and the pixel-specific object 

instance-mask, it localizes different classes of object instances 

present in various images. Instance segmentation aims to help largely 

robotics, autonomous driving, surveillance etc. Specifically, instance 

segmentation is an important task for biomedical and biological image 

analysis. Due to the complicated background components, the high 

variability of object appearances, numerous overlapping objects, and 

ambiguous object boundaries, this task still remains challenging. 

Recently, Jiao et al [10] list the traditional and new applications of 

deep learning based object detection (instance segmentation). 
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However, there is no application in semiconductor industry due to 

specific process domain.  

 

Figure 1.1 Semiconductor photolithography process. 
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As illustrated in Figure 1.1, the semiconductor photolithography 

is a process of drawing semiconductor circuits on wafers, coating 

them thinly with photosensitive polymer materials that respond to 

light on wafers, then placing a mask on top of the desired pattern and 

pecking the light to form the desired pattern. 

 

 

 

Figure 1.2 The computer vision system embedded in the currently operating 

semiconductor manufacturing equipment for photolithography inspection. (a) 

The semiconductor equipment with embedded computer vision system, 

providing sophisticated process control and techniques in the photomask 

manufacturing process. (b) An example of suck-back state monitoring in 

computer vision system. (c) An example of dispensing state monitoring in 

computer vision system. 
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In this process, the photoresist spin coating is used to spread the 

required thickness of the photoresist uniformly on the wafer. 

Therefore, the spin coating is an important process. If inspection 

faults occur in this process, a defective product is produced no matter 

how well the subsequent process is performed. It is greatly affecting 

the defect rate in wafer-based process. Thus, in this study, we focus 

on photoresist spin coating process of semiconductor 

photolithography. As illustrated in Figure 1.2, the computer vision 

system is used to prevent defects in semiconductor products by 

monitoring these processes and predicting defects in the photo 

process in advance. Generally, the computer vision system uses the 

digital image processing [11-20] to try and perform emulation of 

vision at human scale. The computer vision system used in the 

process of spin coating also finds defects through digital image 

processing algorithm. 

 

 

(a) 

 

 (b) 

Figure 1.3 An example of image distorted by external environment factors: 

(a) Normal image; (b) Distorted image. 
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However, many detection errors occur due to external 

environmental factors such as various types of wafers and 

photoresist, motor rotation speed, and diffuse reflection of light. 

Figure 1.3 illustrates an example of image distorted by external 

environment factors. Digital image processing algorithm has high 

performance in case of images with little influence on the external 

environment. However, performance is extremely degraded when 

image distortion occurs due to the external environment. Therefore, 

in the computer vision system, if the characteristics of the image is 

changed or distorted, there is a disadvantage in that a new or modified 

technique of digital image processing algorithm and the specialized 

signal processing method should be applied to overcome it. To 

overcome the influence of various image distortion, we adopt deep 

learning image segmentation technology that is robust even in the 

external environment. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 1.4 Three inspection type for detecting defects in the spin coating 

process of semiconductor photolithography: (a) Suck-back state; (b) 

Contamination state; (c) Dispensing state. 
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As illustrated in Figure 1.4, there are three inspection type for 

detecting defects in the spin coating process of semiconductor 

photolithography: First is the suck-back state of the nozzle that 

sprays the photoresist, Second is the contamination state of the 

nozzle, and Third is the dispensing state to measure the time to spray 

the photoresist. However, among these, we do not include inspecting 

contamination state shown in Figure 1.4 (b) in this study, because 

sufficient images cannot be obtained to perform this study. We leave 

it for future work. In this dissertation, we propose a method for 

detecting defects by monitoring the suck-back state and the 

dispensing state. Therefore, in order to this, it is necessary to find a 

specific area in an image and extract features within the area to 

determine whether the defect is defective. Deep learning techniques 

[21] that can detect specific areas in an image have object detection, 

semantic segmentation, and instance segmentation. Among them, the 

instance segmentation technique can be applied to image 

segmentation for inspecting not only the suck-back state but also the 

dispensing state. 

Image segmentation is a computer vision process designed to 

simplify image analysis by splitting input into segments that 

represent objects or parts of objects and form a collection of pixels. 

Instance segmentation is a subtype of image segmentation which 

identifies each instance of each object within the image at the pixel 

level. Instance segmentation can also be thought as object detection 

where the output is a mask instead of just a bounding box. Agarwal 
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et al. [22] presented recent advances in object detection in the age 

of deep convolutional neural networks. The objective of instance 

segmentation is to detect specific objects in an image and create a 

mask around the object of interest. Thus, in this work, instance 

segmentation is used to image segmentation required for 

semiconductor photolithography inspection. 

In computer vision, transfer learning is usually expressed 

through the use of pre-trained models. To achieve desired 

performance, the common practice in advanced instance 

segmentation systems is to fine-tune models pre-trained on 

ImageNet [23]. This fine-tuning process can be viewed as transfer 

learning [24-29]. Researchers usually train CNN models on large 

scale classification datasets like ImageNet [23] first, then fine-tune 

the models on target tasks, such as object detection [5-7, 9, 30-

40], image segmentation [41-44], etc. However, we directly train 

model without involving any other additional data or extra fine-tuning 

process. There are numerous state-of-the-art pre-trained CNN 

models available. Fine-tuning on pre-trained models can quickly 

convergence to a final state and requires less instance-level 

annotated training data than basic classification task. As is well-

known, fine-tuning can mitigate the gap between different target 

category distributions. However, it is still a severe problem when the 

source domain (e.g., ImageNet) has a huge mismatch to the target 

domain such as industrial images, medical images, etc. As illustrated 

in Figure 1.4, the image used for inspection is completely different 
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from the image on source domain (e.g., ImageNet). Without having 

enough number of dataset, deep artificial neural networks cannot be 

trained well and it is difficult to collect enough image data in the 

specific industry domain. 

In this work, we investigate three questions. First, is it possible 

to train image segmentation networks from scratch directly with only 

smaller dataset without the pre-trained models? Second, are there 

any principles to design a resource efficient network structure for 

image segmentation, meanwhile keeping high detection accuracy? 

Third, is there any methodology to improve inspection performance 

other than network design? To meet this goal, we propose image 

segmentation detector (ISD) and pre-processing that is performed 

by using image filter before training. 
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Chapter 2. Related Work 

 

 

 

 

In this section, we first summarize current inspection method of 

computer vision system used in currently operating semiconductor 

photolithography process for defect detection. We also review the 

state-of-the-art deep learning based instance segmentation and 

backbone structure. Then, we review the development of improved 

network structure for extracting enhanced feature map. Finally, we 

briefly introduce the metrics adopted to assess the detections in most 

competitions, and the method for learning from scratch. 

 

 

 

2.1. Inspection Method 

 

Efficacious recognition and consistent identification of visual features 

is an important problem in applications, such as Pattern Recognition, 
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Structure from motion, Image Registration and Visual Localization. 

The input data takings, numerous arrangements such as audiovisual 

arrangements, interpretations from manifold cameras or 

multidimensional statistics from a scanner. Concurrent performance 

is a perilous demand to utmost of these applications, which 

necessitate the finding and corresponding of the visual features in 

real-time. Although feature recognition and empathy approaches 

have been deliberate in the work due to their computational intricacy 

therefore pure software execution by unique hardware is far suitable 

in their performance for real-time applications. As illustrated in 

Figure 2.1, Computer vision is related to various other fields, 

however it is closely linked to the field of image processing. 

Computer vision systems [45-51] are widely used for on-line 

inspection and quality control to improve the finished product quality 

and lower the costs in various industries.  

 

Figure 2.1 Relationship between Computer Vision and Various Other Fields. 
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The computer vision system used in existing semiconductor 

photolithography process, performs the specialized digital image 

processing and signal processing to extract features necessary for 

defect detection, and determines the defect by means of a neural 

network as a classifier. The specialized digital image processing 

removes noise from the input image of specific domain, improves 

brightness or contrast, emphasizes edges, and makes the image more 

clearly to extract features. Feature extraction is obtained by the 

signal processing method that calculates the sum of the vertical 

component pixels and the horizontal components of the pre-

processed image by means of digital image processing, and applies 

an adaptive threshold. Recognizing the extracted features and 

determining whether there are defects is composed of a neural 

network. Figure 2.2 (c) illustrates an example of automatically 

detecting the contamination state of nozzle by means of digital image 

processing.  

 

(a) 

 

(b) 

 

(c) 

Figure 2.2 An example of detecting the contamination state of nozzle by 

means of the specialized digital image processing: (a) Original image; (b) Pre-

processed Image; (c) Image where contamination is detected. 
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(a) 

 

(b) 

Figure 2.3 An example of detecting the suck-back state of nozzle by means 

of the specialized signal processing: (a) The suck-back line is detected by 

means of filtering image within processing area; (b) The suck-back line is 

detected by means of signal processing which is adopting adaptive threshold 

and sum of pixels in x direction. 

 

Figure 2.4 An example of various types of nozzle for spraying photoresist. 

Figure 2.3 also illustrates an example of automatically detecting the 

suck-back state of nozzle by means of signal processing during the 
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spin coating process of semiconductor photolithography. In the spin 

coating process of semiconductor photolithography, various types of 

nozzle for spraying photoresist are used depending on the kind of 

photoresist and the characteristic of wafer. Figure 2.4 illustrates an 

example of various types of nozzle. Therefore, digital image 

processing and signal processing method used in the computer vision 

system should be applied to the specialized technique depending on 

external environment such as various types of nozzle, wafer 

characteristics and diffuse reflection of light etc. If a new nozzle or a 

new wafer is used, the defect detection accuracy of the computer 

vision system is inevitably reduced.  

Considering these problems, we propose image segmentation 

method based on generalized deep learning in order to be more robust 

to the external environment and further improve performance instead 

of the specialized digital image processing and signal processing 

method used for semiconductor photolithography inspection.  

 

 

 

2.2. Instance Segmentation 

 

Object recognition contains detection and classification, which is the 

basis of video-based ITS [52]. Classical video based vehicle 

detection methods mainly include frame difference, optical flow, 

background subtraction based on Gaussian mixture model (GMM) 
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[52]. And the methods for vehicle classification usually use global or 

local features such as scale-invariant feature transform (SIFT), 

pyramid histogram of oriented gradients (PHOG), Gabor features, 

Harris corner [53]. In recent years, a series of famous region-based 

convolutional neural networks (CNNs) are proposed for 

simultaneously detection and classification, which have higher 

precision compared with the traditional methods. Girshick et al. [5] 

combine region proposals with CNNs to generate regions with CNN 

features (R-CNN). In R-CNN, candidate regions are produced 

through selective search [54]. Nevertheless, the inference of R-

CNN is time-consuming because the CNNs is repeatedly applied for 

about 2000 regions per image. For improving the performance, 

Spatial Pyramid Pooling Network (SPP-net) is introduced by He et 

al. [55]. In SPP-net, the feature maps of an input image are 

computed only once. In order to further increase training and 

inference speed and improve detection precision, Fast R-CNN is 

developed [6]. However, Fast R-CNN still adopts the method like 

selective search in the step of generating the proposal regions, which 

is time-consuming. Ren et al. [7] propose a region proposal network 

(RPN) to efficiently generate proposal regions that are classified and 

regressed by Fast R-CNN, and the entire network composed of RPN 

and Fast R-CNN is called Faster R-CNN. By adding a branch for 

segmentation in Faster R-CNN and enhancing the features of input 

image through FPN [56], Mask R-CNN is proposed [8], which is 

used to recognize the objects. 
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There are two types of typical frameworks for instance 

segmentation principally: the proposal-based method and the 

proposal-free method. The former detects bounding boxes first and 

then refines the instances to pixel-wise masks, while the latter 

directly generates instance masks with no need for proposals. 

Currently, most of popular and advanced methods for instance 

segmentation use proposals, which usually include multiple stages 

[57-59]. 

Proposal-free methods belong to another stream for instance 

segmentation [60, 61]. Proposal free network (PFN) [62] tends to 

predict instance numbers and location vectors, and then clusters 

pixels into instances. InstanceCut [63] feeds both semantic 

segmentation scores and instance boundary scores into an image 

partition module for mask prediction. Deep Watershed Transform [64] 

performs an energy map learning, which is followed by a cutting 

operation based on a single energy level, to yield instances from 

related components. Sequential grouping networks (SGN) [65] 

employs a sequence of networks to gradually compose objects from 

pixels to lines and eventually to instances. Arnab et al. [66] design a 

dynamically instantiated conditional random field (CRF) network to 

predict instances mask, where they also utilize box information. Liu 

et al. [67] present an instance segmentation scheme via affinity 

derivation and graph merge, where the former estimates pixel-wise 

similarity and the latter merges instances with a constructed affinity 

graph. Single-shot instance segmentation with affinity pyramid 
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(SSAP) [68] also learns pixel affinity but produces affinity pyramid 

instead, then performs the cascade graph partition to merge instances. 

SSAP achieves state-of-the-art performance of proposal-free 

methods on Cityscapes [69]. Very recently, YOLACT [70] devotes 

to a real-time instance algorithm implementation, which is based on 

an object detection framework with lighter box prediction heads and 

a mask coefficient prediction head. Xu et al. [71] propose another 

method, i.e., explicit shape encoding for real-time instance 

segmentation (ESE-Seg), toward real-time instance segmentation, 

which predicts the boundary of instances by shape encoding directly. 

With Chebyshev polynomials, ESE-Seg approximates the shape 

coefficients of the instance inside the bounding box, thus greatly 

reduces the computational consumption. PolarMask [72] formulates 

the instance segmentation problem as instance center classification 

and dense distance regression in a polar coordinate, extending a 

similar scheme with fully convolutional one-stage object detection 

(FCOS) [73]. The novel polar loU loss benefits dense distance 

regression of instances. Proposal-free is another important method 

for instance segmentation, which also has succeeded in instance 

segmentation [65], [67], [68], [74], [75], [76]. Proposal-free does 

not need a proposal box prepared in advance, so it won’t be 

influenced by bounding boxes or region proposals’accuracy. Instead, 

proposal-free usually exploits the spatial or semantic relation 

between pixel and pixel, or pixel and instance to find instance and 

segment instance. Besides, due to the lack of a one-stage or two-
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stage object detection process, proposal-free methods are usually 

faster but fail on the performance compared with a proposal-based 

method. Neven et al. [75] proposes the loss function to pull the 

spatial embedding of pixels together, which belong to the same 

instance. This method of clustering is representative of proposal-

free. To cluster pixels into instances, Liu et al. [67] proposes a graph 

merge algorithm that regards pixels as the vertexes and affinities as 

edges. By jointly learning the affinity pyramid and the semantic class 

labeling to compute the probability that two pixels belong to the same 

instance in a hierarchical manner, the performance of SSAP [68] can 

complete with proposal-free methods. Without instance wise labeling, 

Inter-pixel Relation Network (IRNet) [74] aims to learn and predict 

semantic affinities between pixels with image-level supervision 

through class boundary detection to achieve instance segmentation. 

These proposal-free methods achieve remarkable performance in 

instance segmentation. However, because of lacking a localization 

step compared with proposal-based methods, there is still a 

performance gap between proposal-free and proposal-based 

methods.  

Proposal-based is the most dominant method of instance 

segmentation and achieves outstanding performance. It usually gets 

bounding boxes by object detector and segments these bounding 

boxes to get instance masks. If the object detector cannot predict an 

accurate bounding box, the part of instance beyond the bounding 

boxes cannot be segmented. Currently, the most dominant methods 
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[8], [77], [78], [79] for instance segmentation are proposal-based, 

which need to get bounding boxes or region proposals first, then 

segment the instance within the bounding box. Mask R-CNN [8] is 

the most representative work, which extends Faster R-CNN [7] by 

adding a fully convolutional network for instance segmentation, in 

parallel with the existing branch for object detection. With the 

instance-first strategy, the forward stream of the most 

representative proposal-based instance segmentation framework, 

Mask R-CNN [8], is: (i) region proposal network (RPN) [7] is 

employed to propose possible object regions; (ii) after that, the 

proposals are fed into the subsequent detection head to classify the 

category and regress accurate position coordinate offsets; (iii) at last, 

fully convolutional networks (FCN) [41] is utilized on the feature 

maps inside the bounding boxes to label the pixel-wise instance 

masks. Because of its great success, many other state-of-the-art 

methods adopt a similar framework. For instance, PANet [77] is built 

on Mask R-CNN, which improves information paths and aggregates 

features to achieve enhanced performance. DetNet [80] is an 

effective backbone network designed for object detection, which also 

benefits instance segmentation task. MaskLab [81] shows 

comparable performance with other state-of-the-art methods with 

the help of fused features from two extra outputs, namely, semantic 

segmentation and instance center direction. Furthermore, based on 

Mask R-CNN [8], Mask Scoring R-CNN [78] adds a Mask IOU head 

to predict a quality score for instance mask to take the place of 
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confidence score and achieves competitive performance. Compared 

with the top-down path in FPN [56], PANet [77] creates a bottom-

up path augmentation to enhance the feature pyramid and shorten the 

information path, which improves the instance segmentation 

performance based on Mask R-CNN [8]. Extending on Cascade R-

CNN [82], HTC [79] successes in instance segmentation by adding 

a semantic segmentation branch to enrich spatial context information 

while enhancing the information flow between each mask branch in 

different stages. YOLACT [70] and CenterMask [83] are 

respectively developed an instance segmentation sub-network on 

RetinaNet [32] and FCOS [73]. These methods extend on a one-

stage object detector, achieve fast instance segmentation, and 

succeed in performance. However, these successful instance 

segmentation methods rely on the accuracy of object detection 

incredibly. If the object detector cannot predict an accurate bounding 

box, instance segmentation’s performance will degenerate. Instance 

segmentation requires both pixel-level classification accuracy and 

high-level semantic features at the target instance level, which is 

very challenging, and the cascade structure can effectively improve 

both of these problems. To make full use of the relationship between 

detection and segmentation, Wen et al. [84] proposed a joint multi-

tasking cascade structure, which is not simply to cascade the two 

tasks of detection and segmentation, but to unitedly put them into 

multi-stage processing, and especially to integrate the information 

at different stages of the mask branch. In addition, the feature fusion 
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process is introduced in the full convolution networks (FCN) branch, 

and the high-level and low-level features are effectively fused to 

enhance the contextual information of the picture semantic features. 

In order to create a more accurate instance segmentation, various 

improved and extended methods based on mask R-CNN have been 

presented. Zhang et al. [85] designed the segmenting beyond the 

bounding box (S3B-Net) extended on Mask R-CNN to help instance 

segmentation methods based on object detection to segment the part 

of an instance beyond the bounding box. Specifically, the sub-

network first predicts a two-dimensional pixel embedding for each 

pixel. Then, the Gaussian function is employed to calculate a pixel’s 

probability belongs to a corresponding instance according to the 

two-dimensional pixel embedding. Finally, the output of the sub-

network combines with the output of instance segmentation based on 

object detection to generate a more precise instance mask. Wen et 

al. [86] proposed an automatic building extraction method based on 

improved mask region convolutional neural network method that can 

detect the rotated bounding boxes of buildings and segment them 

from very complex backgrounds, simultaneously. In order to tackle 

the ambiguity in the acquired outdoor depth map, Xu et al. [87] 

proposed a residual regretting mechanism, incorporated into current 

flexible, general and solid instance segmentation framework Mask R-

CNN in an end-to-end manner. Specifically, regretting cascade is 

designed to gradually refine and fully unearth useful information in 

depth maps, acting in a filtering and backup way. Additionally, 
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embedded by a novel residual connection structure, the regretting 

module combines RGB and depth branches with pixel-level mask 

robustly.  

Instance segmentation based on Mask R-CNN has a wide range 

of application scenarios. Zhang et al. [88] presented that a traffic 

surveillance system for obtaining comprehensive vehicle information, 

including type, speed, length, current driving lane, and traffic volume, 

is proposed based on instance segmentation which is realized by 

Mask R-CNN. Chen et al. [89] presented a novel method based on 

Mask R-CNN to estimate building areas in property assessment. 

This method is to fine-tune an initial model obtained from transfer 

learning with a small number of drone aerial images. Our approach 

also is to use proposal-based Mask R-CNN framework for 

inspection of semiconductor photolithography process. 

 

 

 

2.3. Backbone Structure 

 

Recent years have witnessed numerous backbone networks [90], 

[91], [92], [93], [94], [95], [96], achieving state-of-the-art 

performance in various vision tasks with stronger multiscale 

representations. As designed, CNNs are equipped with basic multi-

scale feature representation ability since the input information 

follows a fine-to-coarse fashion. The AlexNet [92] stacks filters 
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sequentially and achieves significant performance gain over 

traditional methods for visual recognition. However, due to the 

limited network depth and kernel size of filters, the AlexNet [92] has 

only a relatively small receptive field. The VGGNet [93] increases 

the network depth and uses filters with smaller kernel size. A deeper 

structure can expand the receptive fields, which is useful for 

extracting features from a larger scale. It is more efficient to enlarge 

the receptive field by stacking more layers than using large kernels. 

As such, the VGGNet [93] provides a stronger multi-scale 

representation model than AlexNet [92], with fewer parameters. 

However, both AlexNet [92] and VGGNet [93] stack filters directly, 

which means each feature layer has a relatively fixed receptive field. 

Network in Network (NIN) inserts multi-layer perceptron as micro-

networks into the large network to enhance model discriminability for 

local patches within the receptive field. The 1×1 convolution 

introduced in NIN has been a popular module to fuse features. The 

GoogLeNet [94] utilizes parallel filters with different kernel sizes to 

enhance the multi-scale representation capability. However, such 

capability is often limited by the computational constraints due to its 

limited parameter efficiency. The Inception Nets [97], [98] stack 

more filters in each path of the parallel paths in the GoogLeNet [94] 

to further expand the receptive field. On the other hand, the ResNet 

[90] introduces shortcut connections to neural networks, thereby 

alleviating the gradient vanishing problem while obtaining much 

deeper network structures. During the feature extraction procedure,  
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Figure 2.5 The structure of four architectures. The vertically aligned 

features are merged by element-wise addition, and the horizontally aligned 

features are merged by concatenation. (a), (b) and (c) are the three derivative 

architectures with various representative settings of (d). 
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Figure 2.6 The structure of our architecture. The vertically aligned features 

are merged by element-wise addition, and the horizontally aligned features are 

merged by concatenation. The k1 is the same size as the output of the block. 

The k2 is dynamic growth rate which is different in each layer. 

shortcut connections allow different combinations of convolutional 

operators, resulting in a large number of equivalent feature scales. 

Shortcut connection is a connection that skips one or more layers. In 

case of ResNet, as shown in Figure 2.5 (a), the shortcut connections 

simply perform identity mapping, and their outputs are added to the 

outputs of the stacked layers. Similarly, densely connected layers in 

the DenseNet [91] enable the network to process objects in a very 
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wide range of scales. DPN [99] combines the ResNet with DenseNet 

to enable feature re-usage ability of ResNet and the feature 

exploration ability of DenseNet. Furthermore, Wang et al. [100] 

presents Mixed Link Network (MixNet) which is a more generalized 

form than other existing modern networks (ResNet, DenseNet and 

DPN). It can be seen from Figure 2.5 that the mixed link architecture 

(Figure 2.5 (d)) with different parametric configurations can reach 

three representative architectures (Figure 2.5 (a) (b) (c)). Our 

architecture has the same concept of combining feature re-usage 

ability of ResNet and feature re-exploration ability of DenseNet as 

in DPN and MixNet. However the structure is significantly different 

as shown in Figure 2.6. Notably, in order to achieve superior 

efficiency with compactness, we combine feature re-usage with 

same size in unit of block which is a group of layers and feature re-

exploration with dynamic growth rate in unit of layer. Additionally, 

the recently proposed DLA [96] method combines layers in a tree 

structure. The hierarchical tree structure enables the network to 

obtain even stronger layer-wise multi-scale representation 

capability. 

In object detection, the backbone acts as the main feature 

extractor, which takes images or videos as input and yields 

corresponding feature maps [10]. According to the specific needs of 

detection accuracy and efficiency, different backbones can be 

developed for a model after modification or tuning. For high accuracy, 

a deep and densely connected backbone, such as the ResNet and 
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DenseNet, can be employed in the model. Considering the speed and 

efficiency, lightweight backbones, such as the MobileNets and 

EfficientNet, would be preferred.  

In practice application, to accurately identify multiple railroad 

track components, Guo et al. [101] proposed and evaluated 

YOLACT-Res2Net-50 and YOLACT-Res2Net-101, which adapt a 

new backbone architecture compared to the original models. 

ResNet-50 and ResNet-101 backbone [90] are adopted in the 

original YOLACT models. As the name indicates, ResNet-50 and 

ResNet-101 include 50 layers and 101 layers, respectively. To 

reduce the inference computations, the bottleneck structure is 

introduced in the ResNet. With the bottleneck design for ResNet-50 

and ResNet-101, the first 1×1 convolution reduces a 256 dimension 

channel to a 64-dimension channel, and it is recovered by a 1×1 

convolution at the end. Res2Net [102] is a new backbone 

architecture which can improve the multi-scale representation 

capability at a granular level. The architecture of the Res2Net 

bottleneck plays an important role in the new backbone. In this 

bottleneck structure, the original 3×3 filter of n channels is replaced 

with a set of smaller filter groups. 

Backbone network is acting as the basic feature extractor for 

object detection task which takes images as input and outputs feature 

maps of the corresponding input image. Most of backbone networks 

for detection are the network for classification task taking out the 

last fully connected layers. The improved version of basic 
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classification network is also available. For instance, Lin et al. [103] 

add or subtract layers or replace some layers with special designed 

layers. Redmon et al. [104] proposed extremely fast network which 

is inspired by the GoogLeNet model for image classification. A single 

neural network predicts bounding boxes and class probabilities 

directly from full images in one evaluation. Since the whole detection 

pipeline is a single network, it can be optimized end-to-end directly 

on detection performance. 

There has been little work discussing on the backbone feature 

extractor specifically designed for the object detection. More 

importantly, there are several differences between the tasks of image 

classification and object detection. (i) Recent object detectors like 

FPN and RetinaNet usually involve extra stages against the task of 

image classification to handle the objects with various scales. (ii) 

Object detection not only needs to recognize the category of the 

object instances but also spatially locate the position. Large down 

sampling factor brings large valid receptive field, which is good for 

image classification but compromises the object location ability. Due 

to the gap between the image classification and object detection, Li 

et al. [105] proposed a novel backbone network specifically designed 

for object detection. Moreover, the network includes the extra stages 

against traditional backbone network for image classification, while 

maintains high spatial resolution in deeper layers. 

Due to the advancement of deep learning, classification accuracy 

has improved greatly. However, conversely, the complexity of the 
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model has also increased accordingly. As a consequence, researches 

aiming to maintain accuracy as much as possible while reducing the 

number and size of parameters of the model are also presented. 

Towards different requirements about accuracy vs. efficiency, we 

can choose deeper and densely connected backbones. Xie et al. [95] 

proposed a simple, highly modularized network architecture which is 

constructed by repeating a building block that aggregates a set of 

transformations with the same topology. By repeatedly constructing 

the same block, image classification is possible with fewer 

parameters, and increasing the cardinality which is the size of the set 

of transformations rather than a deeper and wider dimension 

improves the accuracy of classification. G.Howard et al. [106] 

proposed a class of efficient models called MobileNets for mobile and 

embedded vision applications. MobileNets are based on a streamlined 

architecture that uses depthwise separable convolutions to build light 

weight deep neural networks. Depthwise separable convolution are 

made up of two layers: depthwise convolutions and pointwise 

convolutions. MobileNets use depthwise convolutions to apply a 

single filter per each input channel (input depth). Pointwise 

convolution, a simple 1×1 convolution, is then used to create a linear 

combination of the output of the depthwise layer. MobileNets use 

both batchnorm and ReLU nonlinearities for both layers. Depthwise 

convolution is extremely efficient relative to standard convolution. 

However, it only filters input channels, it does not combine them to 

create new features. So an additional layer that computes a linear 
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combination of the output of depthwise convolution via 1×1 

convolution is needed in order to generate these new features. 

Sandler et al. [107] introduces a new neural network architecture 

that is specifically tailored for mobile and resource constrained 

environments. The network pushes the state-of-the-art for mobile 

tailored computer vision models, by significantly decreasing the 

number of operations and memory needed while retaining the same 

accuracy. The network has a novel layer module: the inverted 

residual with linear bottleneck. This module takes as an input a low-

dimensional compressed representation which is first expanded to 

high dimension and filtered with a lightweight depthwise convolution. 

Features are subsequently projected back to a low-dimensional 

representation with a linear convolution. The inverted residual 

connections is a combination of depthwise separable convolution and 

linear bottleneck. 

In order to achieve better performance than MobileNets while 

reducing the amount of computation, Zhang et al. [108] proposed the 

new architecture that utilizes two new operations, pointwise group 

convolution and channel shuffle, to greatly reduce computation cost 

while maintaining accuracy. Grouped Convolution is a method of 

independently performing a convolution operation by dividing the 

channel of an input value into several groups. It is simple to 

implement and is advantageous for parallel processing. In order to 

reduce side effects due to group convolution, information can be 

exchanged for each channel through an operation called channel 
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shuffle. First of all, ShuffleNet basically uses the structure of 

MobileNets. The 1×1 convolution takes up almost all of the 

computation. It tries to further reduce the 1×1 convolution according 

to this amount of computation. It's a grouped convolution. In the 1×1 

convolution layer, not all channels are considered, but only some of 

the channels are considered and the channels are mixed in the middle 

to consider all channels. 

Furthermore, Iandola et al. [109] proposed a small CNN 

architecture called SqueezeNet which achieves AlexNet-level 

accuracy on ImageNet with 50x fewer parameters. SqueezeNet uses 

8 fire modules and 1 convolutional layer each at the I/O stage. At this 

time, the fully connected layer was not used at all, because the fully 

connected layer has a fairly large amount of parameters, and if you 

match this too large amount of parameters, the probability of 

overfitting is increased. Therefore, SqueezeNet can be free from the 

problem of overfitting by using Global Average Pooling instead of 

fully connected layer. In addition, to focus on speed, Chollet [110] 

proposed the Xception architecture inspired by Inception, where 

Inception modules have been replaced with depthwise separable 

convolution operation, which is a depthwise convolution followed by 

a pointwise convolution. 

In practice, network models used in the real-world require more 

lightweight since the device to be used is small and requires a short 

inference time. When applied to mobile devices, lightweight 

backbones can meet the requirements. Wang et al. [40] propose a 
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novel real-time object detection system by combining PeleeNet with 

SSD [31] and optimizing the architecture for fast processing speed. 

Furthermore, Wang et al. [111] propose Cross Stage Partial Network 

(CSPNet) to mitigate the problem that previous works require heavy 

inference computations from the network architecture perspective. 

CSPNet reduces the duplicate gradient information within network 

optimization to be light-weighted for mobile GPUs or CPUs. In order 

to meet the needs of high precision and more accurate applications, 

complex backbones are needed. On the other hand, real-time 

acquirements like video or webcam require not only high processing 

speed but high accuracy YOLO model [104], which need well 

designed backbone to adapt to the detection architecture and make a 

trade-off between speed and accuracy. To explore more competitive 

detecting accuracy, deeper and densely connected backbone is 

adopted to replace the shallower and sparse connected counterpart. 

He et al. [8] utilize ResNet [90] rather than VGG [93] to capture rich 

features which is adopted in Faster R-CNN [7] for further accuracy 

gain because of its high capacity. The newly high performance 

classification networks can improve precision and reduce the 

complexity of object detection task. This is an effective way to 

further improve network performance because the backbone network 

acts as a feature extractor. As is well known to all, the quality of 

features determines the upper bound of network performance, thus 

it is an important step that needs further exploration. Likewise, our 

goal is to design a simple yet resource efficient network structure 
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with keeping high detection accuracy for image segmentation to be 

applied in semiconductor photolithography inspection systems. 

 

 

 

2.4. Enhanced Feature Map 

 

The discriminative feature is very important factor in image 

classification problem, and the smaller the variance within the same 

class and the larger the variance between different classes, the 

easier it is to solve the classification problem in general. 

The improved network structure for enhanced feature map is 

shown in Figure 2.7. The nozzle image is input into the network, and 

then different feature maps are output by means of a series of 

convolution and pooling in feature pyramid networks (FPN). After 

that, different feature maps are delivered into the region proposal 

networks (RPN) so as to extract the region of interest (ROI). Then 

the ROI is input to the ROI align to perform pixel correction on the 

feature map for subsequent target classification and bounding box 

regression. In the mask branch, the original images are cropped using 

the corrected bounding box, and then the images in ROI are 

performed by mask prediction. 
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Figure 2.7 The improved network structure for enhanced feature map.  

Pre-processing. Various researchers have shown the importance 

of network architecture in achieving better performances by making 

changes in different layers of the network. Kuntal Kumar Pal et al. 

[112] have shown the importance of pre-processing techniques for 
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image classification using the CIFAR10 dataset and three variations 

of the Convolutional Neural Network. Jonghwa Yim et al. [113] 

propose a generalized architecture of a dual channel model to treat 

quality degraded input images. The dual-channel architecture with 

two inputs has the original model using unprocessed image and the 

augmented model using de-noised image by means of pre-

processing. It is necessary to use image enhancement technology to 

enhance the contrast of input images and to highlight the features in 

the image. In order to better deal with local features, Jiangping Qin 

at el. [114] uses the contrast limited adaptive histogram equalization 

(CLAHE) algorithm to pre-process images [115]. Most of the 

contrast enhancement techniques are based on histogram 

modifications, which can be performed globally or locally. 

As illustrated in Figure 2.8, the contrast limited adaptive 

histogram equalization (CLAHE) is a method which can overcome the 

limitations of global approaches by performing local contrast 

enhancement. However, this method relies on two essential hyper 

parameters: the number of tiles and the clip limit. An improper hyper 

parameter selection may heavily decrease the image quality toward 

its degradation. Campos et al. [115] proposed the LB-CLAHE: a 

learning based hyper parameter selection method for CLAHE using 

image features. 

From this study, we conclude that pre-processing raw image 

data achieves the best performance for convolutional neural network 

and the performance increases even more with the increase in 
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convolutional layers in the architecture. If we use well-known image 

processing algorithm as a pre-processing module to emphasize the 

outlines and edges and as a method to reinforce the specific features 

or we design a customized preprocessing module, better results are 

expected on performance. 

 

 

Figure 2.8 Overview of CLAHE. Example with Number of Tiles(NT) = [5,5] 

and Clip Limit(CL) = 2.0. 
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Backbone Network. A lot of deep convolutional neural networks 

(CNN) [92] originally designed for classification tasks have been 

adopted for the detection task as well. And a lot of modifications have 

been done on them to adapt for the additional difficulties encountered. 

Object detection is a natural extension of the classification problem. 

The constant challenge is to correctly detect the presence and 

accurately locate the object instance in the image. It is a supervised 

learning problem in which, given a set of training images, one has to 

design an algorithm which can accurately locate and correctly 

classify as many object instances as possible in a rectangle box while 

avoiding false detections of background or multiple detections of the 

same instance. The process of detecting instance segmentation can 

be spilt into three parts: extracting feature-maps, proposing regions, 

classifying and regressing binary mask. As aforementioned, among 

them, the backbone network that extracts feature-maps is crucial to 

a major role in instance segmentation detection models. Huang et al. 

[116] partially confirmed the common observation that, as the 

classification performance of the backbone increases on ImageNet 

[23] classification task, so does the performance of object detectors 

based on those backbones. It is the case at least for popular object 

detectors like Fast R-CNN [6], Faster R-CNN [7], Mask R-CNN 

[8] and R-FCN [30] although for SSD [31] the object detection 

performance remains around the same. Since there are significant 

efforts that have been devoted to design network architectures for 

image classification, many diverse and powerful networks are 
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emerged, such as VGGNet [93], GoogLeNet [94] , ResNet [117], 

DenseNet [91], DPN [99] etc. In practice, most of the detection 

methods [5],[6],[7], [8],[31] directly utilize these structures pre-

trained on ImageNet [13] as the backbone network for detection task. 

Some other works try to design specific backbone network structures 

for object detection, but still require to pre-train on ImageNet [23] 

classification dataset in advance. Kim et al. [118] proposes PVANet 

for fast object detection, which consists of the simplified “Inception” 

block from GoogLeNet [94]. Huang et al. [116] investigated various 

combination of network structures and detection frameworks, and 

found that Faster R-CNN [7] with Inception-ResNet-v2 [97] 

achieved very promising accurate performance. Nakazawa et al. [119] 

proposed the CNN architecture for wafer map pattern generation in 

the semiconductor manufacturing. 

Therefore, we present a suitable backbone structure for 

extracting the enhanced feature-map to detect image segmentation 

in industrial domain, which is the proposed image segmentation 

detector (ISD) instead of ResNet [117]  that is the backbone 

network of state-of-the-art Mask R-CNN framework. 

Feature Pyramid Network. Extracting effective features from 

input images is a vital prerequisite for further accurate classification 

and localization steps. To fully utilize the output feature maps of 

consecutive backbone layers, Lin et al. [56] presented feature 

pyramid network (FPN) which is a multi-scale feature fusion 

network structure to extract richer features by dividing them into 
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different levels to detect objects of different sizes. As illustrated in 

Figure 2.9, FPN is different from the traditional image pyramid 

structure. It is divided into three parts: bottom-up, top-down, and 

horizontal-connection. The bottom-up pathway is the feedforward 

computation of the backbone ConvNet, which computes a feature 

hierarchy consisting of feature maps at several scales with a scaling 

step of 2. The top-down pathway hallucinates higher resolution 

features by up sampling spatially coarser, but semantically stronger, 

feature maps from higher pyramid levels. 

 

Figure 2.9 A feature pyramid with predictions made independently at all 

levels. A building block illustrating the lateral connection and the top-down 

pathway, merged by addition. 
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These features are then enhanced with features from the bottom-up 

pathway via lateral connections. Each lateral connection merges 

feature maps of the same spatial size from the bottom-up pathway 

and the top-down pathway. The bottom-up feature map is of lower-

level semantics, but its activations are more accurately localized as 

it was subsampled fewer times.  

 

 

Figure 2.10 Region Proposal Network (RPN). The RPN module serves as the 

“attention” of single unified network. In other words, The RPN module tells the 

network module where to look. 
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In order to extract more contextual semantic information of small 

objects, Liu et al. [120] propose Multi-branch Parallel Feature 

Pyramid Networks (MPFPN), which aims to extract more abundant 

feature information of the objects with a small size. The parallel 

branch is designed to recover the features that missed in the deeper 

layers. Furthermore, to tackle multiscale objects detection problem, 

Li and Zhou [121] proposed Feature Fusion SSD (FSSD) by adding 

a lightweight and efficient feature fusion module to the conventional 

SSD. In the feature fusion module, features from different layers with 

different scales are concatenated together, followed by some down-

sampling blocks to generate new feature pyramid, which will be fed 

to multi-box detectors to predict the final detection results. 

Region Proposal Network. A Region Proposal Network (RPN) 

takes an image of any size as input and outputs a set of rectangular 

object proposals, each with an objectness score by the team of 

Shaoqing Ren [7]. The RPN shares full-image convolutional features 

with the detection network, thus enabling nearly cost-free region 

proposals. As illustrated in Figure 2.10, The RPN is a fully 

convolutional network that simultaneously predicts object bounds and 

objectness scores at each position. At each sliding-window location, 

the RPN simultaneously predict multiple region proposals, where the 

number of maximum possible proposals for each location is denoted 

as k. The k proposals are parameterized relative to k reference boxes, 

which is called as anchors. An anchor is centered at the sliding 

window.  
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Figure 2.11 ROI align structure. ROI pooling was a model for object detection. 

It wasn't important to have accurate location information. If the ROI has floating 

point coordinates, the floating point is rounded and then pooling is done. This 

distorts the location information of the input image, causing segmentation 

problems. Therefore, ROI alignment using positional information is used using 

bilinear interpolation. 

So the a regression layer has 4k outputs encoding the coordinates of 

k boxes, and the classification layer outputs 2k scores that estimate 

probability of object or not object for each proposal. 

Region of Interest Align. The ROI align method was proposed in 

Mask R-CNN. Because it does not perform the quantization and 

rounding of coordinates of the ROI area, the problem of misalignment 

between the feature-map and the original image in ROI pooling was 

solved by ROI align. The structure of ROI align is shown in Figure 
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2.11. The region with dotted line represents the generated feature-

maps, and the rectangle region surrounded by a solid line represents 

the ROI that has been adjusted. The ROI is divided into 4×4 cells. If 

the number of samples in each cell is 4, each cell will be averaged 

divided into four bins, and the center of each bin is the sampling point. 

Since the coordinates of the ROI are floating-point numbers, the 

coordinates of the sampling points are usually also floating-point 

numbers. Therefore, bilinear interpolation is adopt for each sampling 

point pixel. This operation can be used to obtain the pixel value of 

the sampling point, and then four sampling points are performed max 

pooling on each cell. Finally, the ROI align output are obtained 

The feature-map of CNN to detect nozzle type is clearly 

distinguished between the nozzle types. However, since the 

inspection in semiconductor photolithography is performed in the 

same nozzle type, it is difficult to extract the discriminative CNN 

feature-map. It is hard to extract the discriminative feature from the 

proposed regions of the Region Proposal Network (RPN) using FPN 

feature-map of the same nozzle type. As illustrated in Figure 2.5, 

the mask area cannot be achieved without the discriminative CNN 

feature-map in the proposed regions.  

The reason for not being able to extract the discriminative 

feature in the proposed regions is that it is not enough to extract the 

discriminative feature by means of only original pixel information in 

the corresponding area as a gray scale image. In order to enhance a 

feature-map of CNN with only the original pixel information of the 
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image, it may be possible to extract the discriminative feature by 

performing a lot of deep learning by increasing the network layer of 

CNN with a large number of various training images. Deep 

convolutional neural networks require a large corpus of training data 

in order to avoid over-fitting. Over-fitting refers to the phenomenon 

when a network learns a function with very high variance such as to 

perfectly model the training data. Unfortunately, many application 

domains do not have access to big data, such as industrial image 

analysis and medical image analysis, and collection of such training 

data is often expensive and laborious. 

Data augmentation overcomes this issue by artificially inflating 

the training set with label preserving transformations. Recently there 

has been extensive use of generic data augmentation to improve CNN 

task performance. Data augmentation encompasses a suite of 

techniques that enhance the size and quality of training datasets such 

that better deep learning models can be built using them. Data 

augmentations based on basic image manipulations are geometric 

transformation, flipping, color space, cropping, rotation, translation, 

noise injection, color space transformations, geometric versus 

photometric transformations, kernel filters, mixing images, random 

erasing, feature space augmentation, adversarial training, generative 

adversarial networks, neural style transfer, and meta-learning 

[122-127]. However, we propose the pre-processing method that 

reduces the amount of training images and decreases the number of 

network layer in CNN rather than data augmentation. The specialized 
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image filter for the semiconductor photolithography inspection is 

applied to the pre-processing method in order to enhance the 

feature-map of CNN. 

 

 

 

2.5. Detection Performance Evaluation 

 

There are two important evaluation indicators for the performance of 

the classification problem. One is precision, which is used to evaluate 

how many objects are correctly identified in the result of 

classification. The other is Recall, which is used to evaluate how 

many positive examples are predicted correctly in the total positive 

samples. The calculation formulas for Precision P and Recall R are 

(1) and (2), respectively. 

 

 
𝑃 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑇𝑃

𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 (1) 

 
𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ𝑠
 (2) 

 

Where, True Positive (TP) means that the positive class is predicted 

to be positive, which is a correct detection of a ground-truth 

bounding box; False Positive (FP) means that the negative class is 

predicted to be positive, which is An incorrect detection of a 

nonexistent object or a misplaced detection of an existing object; 
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Figure 2.12 The definition of intersection over union (IoU). 

False Negative (FN) means that the positive class is predicted to be 

negative, which is an undetected ground-truth bounding box. 

For the target detection network, there is a very important 

concept, Intersection over Union (IoU). As illustrated in Figure 2.12, 

the degree of overlap of two regions is expressed by IoU. When it is 

adopted to test the accuracy of the network prediction, IoU 

expresses the overlap between the prediction box and the labeled 

box. The calculation formula is as follows: 

 

 
IoU =

𝐴 ∩ 𝐵

𝐴 ∪ 𝐵′
 (3) 

 

In most competitions, the Average Precision (AP) and its 
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derivations are the metrics adopted to assess the detections and thus 

rank the teams. The PASCAL VOC dataset [128] and challenge [129] 

provide their own source code to measure the AP and the mean AP 

(mAP) over all object classes. The AP is evaluated with different 

IoUs. It can be calculated for 10 IoUs varying in a range of 50% to 

95% with steps of 5%, usually reported as AP@50:5:95. It also can 

be evaluated with single values of IoU, where the most common 

values are 50% and 75%, reported as AP50 and AP75 respectively. 

The mean AP (mAP) is a metric used to measure the accuracy of 

object detectors over all classes in a specific database. The mAP is 

simply the average AP over all classes [7], [31], that is 

 

 
mAP =

1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

 (4) 

 

Where APi being the AP in the i th class and N is the total number of 

classes being evaluated. 

In this dissertation, since it has sufficient performance for 

inspection of semiconductor photolithography process, given that IoU 

is more than 50%, we adopt mAP which is evaluated with single 

values of IoU, where the most common values are 50% and 75%, 

notated as mAP@0.50 and mAP@0.75. Additionally, we adopt 

mAPTotal that is 
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mAP𝑇𝑜𝑡𝑎𝑙 =  

mAP@0.50 + mAP@0.75

2
 (5) 

 

 

 

2.6. Learning Network Model from Scratch 

 

There are many successful cases that fine-tuning using transfer 

learning works well and achieves consistent improvement, especially 

in object detection. So why do we still need to train our model from 

scratch? As stated previously, most pre-trained models are learned 

on large-scale RGB dataset like ImageNet. However, there is no 

large-scale dataset in semiconductor industry domain for transfer 

learning. Thus, the critical importance of training from scratch is lack 

of dataset in specific domain. 

There are no previous works that train deep CNN-based 

instance segmentation in industrial domain from scratch. In generic 

object detection, Shen et al. [130] proposed Deeply Supervised 

Object Detectors (DSOD) built upon SSD, an object detection 

framework that can be trained from scratch. In semantic 

segmentation, J égou et al. [131] demonstrated that a well-designed 

network structure can outperform state-of-the-art solutions 

without using the pre-trained models. It extends DenseNet [91] to 

fully convolutional networks by adding an up sampling path to recover 

the full input resolution.  
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Thus, our proposed approach has very appealing advantage in 

that it is learning network model from scratch without using the pre-

trained model on ImageNet [23] for instance segmentation. 
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Chapter 3. Proposed Method 

 

 

 

 

We first introduce the whole framework of our ISD architecture, 

following by pre-processing for extracting the enhanced feature-

map. Then we describe the training process and objective, 

configurations in detail. 

 

 

 

3.1. ISD Architecture 

 

The whole framework for semiconductor photolithography inspection 

is based on Mask R-CNN framework. There are two stages of Mask 

R-CNN framework. First, it generates proposals about the regions 

where there might be an object based on the input image. Second, it 

predicts the class of the object, refines the bonding box and 

generates a mask in pixel level of the object based on the first stage 
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proposal. Both stages are connected to the backbone network 

structure. 

 

Figure 3.1 The network structure by using ISD for image segmentation on 

Mask R-CNN framework. 



 

 ５４ 

Many approaches to instance segmentation are based on segment 

proposals. However, our approach is focus on the backbone network 

which extracts the enhanced feature-maps for the object mask. The 

state-of-the-art Mask R-CNN framework uses ResNet [117] and 

ResNetXt [95] as backbone network. However, as illustrated in 

Figure 3.1, our approach uses the compact ISD instead of ResNet 

[117] for addressing real-time problem and learning from scratch. 

ISD based on the state-of-the-art DenseNet [91] is motivated by 

combining the advantage of shortcut connection and concatenation of 

the feature-maps produced in layers with dynamic growth rate. In 

order to improve the performance of instance segmentation with 

better parameter efficiency, we investigated all the state-of-the-

art CNN based instance segmentation. The design principle of ISD is 

compact model, which is suitable for real-time embedded system 

such as computer vision system and make them easy to train under 

reducing over fitting on tasks with smaller training set sizes. 

ISD comprises layers, each of which implements a composite 

function of operations such as Batch Normalization (BN) [132], 

rectified linear units (ReLU) [133], Pooling [134], or Convolution 

(Conv). ISD has the concatenation of the feature-maps produced in 

layers in order to encourage strengthen feature propagation and 

feature reuse. Further, ISD has the shortcut connection for 

addressing vanishing and exploding gradients. ISD is composed of 

four dense blocks and four transition layers similar to DenseNet [91]; 

see Table 3.1. 
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Table 3.1 ISD Architecture. 

Layers 
Output Size 

(input 3×120×120) 
ISD-38 

Convolution 12×60×60 3×3 conv, stride 2 

Dense Block 

(1) 

24 ×30×30 1×1 conv, stride 2 

24×30×30 [
1×1 conv

3×3 conv
] × 2 

Transition Layer 

(1) 
24×30×30 1×1 conv, stride 1 

Dense Block 

(2) 

48×15×15 1×1 conv, stride 2 

48×15×15 [
1×1 conv

3×3 conv
] × 4 

Transition Layer 

(2) 
48×15×15 1×1 conv, stride 1 

Dense Block 

(3) 

72×8×8 1×1 conv, stride 2 

72×8×8 [
1×1 conv

3×3 conv
] × 4 

Transition Layer 

(3) 
72×8×8 1×1 conv, stride 1 

Dense Block 

(4) 

96×4×4 1×1 conv, stride 2 

96×4×4 [
1×1 conv

3×3 conv
] × 4 

Transition Layer 

(4) 
96×4×4 1×1 conv, stride 1 

Prediction - Pooling/Dense 
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Figure 3.2 Dense block network model with post-activation in ISD. 
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Figure 3.3 Comparison with pre-activation and post-activation. (a) Pre-

activation of BN-ReLU-Conv (b) Post-activation of Conv-BN-ReLU in ISD. 

However, crucially in contrast to DenseNet [91], ISD combine 

features through summation before they are passed into a dense 

block combined features by concatenating them with post-activation. 

Figure 3.2 illustrates this layout schematically. Santhanam et al. [135] 

presented the result that pre-activation ResNets consistently 

outperforms the original post-activation only at very high-network 

depths (≥ 152 depths). ISD has 38 or 42 depths at low-network 

depths and post-activation ISD outperformed pre-activation on the 

results of experiment. Figure 3.3 illustrates pre-activation and 

post-activation. Thus, in our approach, ISD has a structure with 

post-activation as shown in Figure 3.2.  

Moreover, as illustrated in Figure 3.4, there is dynamic growth 

rate unlike DenseNet [91], which applies different growth rate in 

each layer in order to optimize the model. The growth rate that 

regulates the amount of information on each layer determine the 
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Figure 3.4 A dense block with dynamic growth rate of k = 2, 5, 3 in each 

layer on ISD. 

number of feature-map. The dynamic growth rate substantially 

reduces the number of parameters, optimizing the model more 

compact and improving the performance. DenseNet has a structure 

that concatenates feature map according to the growth rate, thus the 

deeper layer is, the more multiple training parameters increase. 

In order to reduce a huge number of training parameters due to 

concatenate, ISD can apply three dynamic growth rate methods. The 

first method increase or decrease the growth rate sequentially. 

There are three options as shown in Figure 3.5. The second is a 

method of compressing the generated feature map according to the 

growth rate. As shown in Figure 3.6, we use the sum module or the 
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mean module to fix the growth rate at one. The third is a method 

designed to improve performance, by concatenating the compressed 

feature map and the feature map generated by growth rate. As shown 

in Figure 3.7, the growth rate is always one more due to the 

compressed feature map concatenation. Details for the performance 

of three approaches will be given in the experiment section. 

Consequently, we design the ISD that can apply various types of 

dynamic growth rates. 

Our architecture has the same concept of combining feature re-

usage ability of ResNet [90] and feature re-exploration ability of 

DenseNet [91] as in DPN [99] and MixNet [100], However, as 

aforementioned in previous section 2.3, not only the structure, but 

also the followings are different. ISD improves DenseNet [91] by 

applying a dynamic growth rate to reduce the number of parameters 

and by using shortcut connection with same size in each block which 

is a group of layers to alleviate the gradient vanishing problem and to 

achieve superior efficiency with compactness. Furthermore, ISD 

performs down-sampling in a dense block rather than a transition 

layer and changes pre-activation to post-activation. Additionally, 

ISD removes pooling of transition layer to transfer more information 

and reduces channels in bottleneck layers for more compactness. 

ISD has mainly two hyper-parameters: First, we refer to n as 

number of layers in each dense bock. Second, we refer to k as growth 

rate of the network. We optimized the hyper-parameters through 

experimental results. 
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Figure 3.5 ISD structure with dynamic growth rate applying different growth 

rates in each layer. The dynamic growth rate is applied after the second layer. 

we compare three cases: (a) uniform growth rates (k=6,k,∙∙∙,k) are used; (b) 

increasing growth rates (1,2,3,∙∙∙,k=6) are used; (c) decreasing growth rates 

(k=6,k-1,k-2,∙∙∙,2,1) are used. 
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Figure 3.6 ISD structure to reduce training parameters increasing with 

growth rate. Regardless growth rate, it always grows by one. (a) Reduced by 

sum module with uniform growth rate; (b) Reduced by mean module with 

uniform growth rate. 
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Figure 3.7 ISD structure in which the sum or mean module is added to the 

growth rate. (a) The sum module is added to uniform growth rate; (b) The sum 

module is added to uniform growth rate. 
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3.2. Pre-processing 

 

Notably, computer vision system used in semiconductor 

photolithography process uses infrared and ultra-high-speed 

cameras with special manufactured lenses to acquire precise images. 

Therefore, the image is high quality. However, due to external 

factors such as various types of wafers, photoresists, the number of 

rotations of the motor, and diffuse reflection of light, the 

characteristics of the image are greatly changed or distortion occurs. 

Thus, rather than considering inputs for various image qualities, it is 

necessary to apply an image enhancement technique that extracts 

features by emphasizing contrast or boundary features for image 

segmentation. 

Edge detection is one of the significant section of the image 

processing algorithms which have many applications like image 

morphing, pattern recognition, image segmentation and image 

extraction etc. As the edge is one of the major information 

contributors to any image, hence the edge detection is a very 

important step in many of the image processing algorithms. It 

represents the contour of the image which could be helpful to 

recognize the image as an object with its detected edges. Edge 

detection algorithms are fundamental importance for image 
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processing applications, because it’s simply can determine within a 

short time the boundaries of objects in the image. Edge detection 

process as simple as can be explained in the following way; the 

intensity values of pixels which are neighbor each other are 

compared. During this process, the remarkable changes of density is 

called edge regions.  

If image has noises, it should be well cleaned. Because noise 

affects the change of density in the image and it reduces the success 

rate for edge detection algorithms. To overcome noise problem, many 

studies were made for years and many different edge detection 

algorithms has emerged. With continuous development, edge 

detection algorithms have been used many areas thanks to the 

capability be able to simply use in short time and success rates 

increasing day to day.  

Commonly used edge detection algorithms are Sobel, Roberts, 

Prewitt, Canny and LoG (Laplacian of Gaussian) edge detection 

algorithms which are still maintains its popularity today. Kabade et al. 

[136] proposed block level Canny edge detection algorithm which is 

the special algorithm to carry out the edge detection of an image in 

order to reduce the time and memory consumption.  

In case of the suck-back state among the inspection types shown 

in Figure 1.4, it is hard to extract the feature from an image 

overlapped by nozzle image and photoresist image. In addition, the 

image of photoresist is varied by depending on the type of nozzle, 

and the image of nozzle is varied by depending on the kind of 
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photoresist. In practice, Ozturk et al. [137] compared  Canny edge 

detection algorithm for their glass defect detection performance. 

 

Figure 3.8 Convolution kernel for each operator. (a) Robert, (b) Sobel, (c) 

Scharr, (d) Prewitt, (e) LoG, (f) Sharpen. 
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If Canny edge detection algorithms applied to image with little noise 

or image that optimized image processing methods, they can get much 

better results. 

As stated previously, the popular edge detection algorithms, such 

as Roberts, Scharr, Prewitt, Sobel, LoG, Sharpen, is shown in Figure 

3.8. Robert edge detection operator has a fast and simple structure. 

It has 2×2 convolution kernels and these two convolution kernels is 

rotated 90° to each other. Sobel operator has two pieces and 3×3 

kernels. These kernel maps is rotated 90° each other and are applied 

image with the convolution. Sobel operator is gradient based edge 

detection algorithms. Therefore, it use maximum points during the 

edge detection process. Scharr operator is similar to the method used 

by the Sobel operator. It is also divided into the x-direction and the 

y-direction. The difference is that the Scharr operator has a 

relatively large kernel value, so that the surrounding pixels will have 

a larger influence on the edge, and the edge will be more. Prewitt 

operator shows many similarities with the property of Sobel operator. 

It has two pieces kernels and these size is 3×3. It is gradient based 

edge detection operator and it has gradient features. Compared to the 

success of edge detection in complex image, success of Prewitt 

operator is greater than Roberts operator. Laplacian of an image 

reveals that fast changing points of density in the image. Because of 

this property, it can used edge detection. LoG filter take second 

derivative in the image and try to find zero-crossing points. Since 

the second derivative of the image is used, this filter is very sensitive 



 

 ６７ 

to noise. To overcome this problem, firstly the noise should be 

reduced by applying Gaussian smooth filter. And then Laplacian filter 

must be implemented to image. Laplacian pixel density value is 

calculated as shown in Equation (6). 

 

 
L(x, y) =

𝜕2𝐼

𝜕𝑥2
+

𝜕2𝐼

𝜕𝑦2
 (6) 

 

Commonly used 3×3 kernels to the LoG filter which is very 

successful in image processing applications that has less noise level. 

Additionally, Sharpen filter in image processing improves spatial 

resolution by enhancing the edges of objects and adjust the contrast 

and the shade characteristics: i) Highlight fine detail. ii) Enhance 

detail that has been blurred. 

Figure 3.9 illustrates the improved image by implementing 

various edge detection algorithms. In order to inspect semiconductor 

photolithography process, the specific image filter modified by the 

sobel edge detector [138], which is composed of a pair of 3×3 

convolution masks, one estimating gradient in the horizontal x-

direction and the other estimating gradient in vertical y-direction, is 

adopt to identify points in an image at which the image brightness 

changes sharply or, more formally, has discontinuities. 

Pre-processing is performed by using convolution on the image 

by means of the specific image filter. The edge occurs where there 

is a discontinuity in the intensity function or a very steep intensity 
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Figure 3.9 Implementation of edge detection algorithm to image. (a) Image is 

filtered by horizontal kernel (b) Image is filtered by vertical kernel. 

gradient in the image. Thus, the edge could be located at which the 

derivative is maximum. The gradient is a vector, whose components 

measure how rapid pixel value are changing with distance in the x 
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and y direction. Thus, the components of the gradient may be found 

using the following approximation: 

 

 ∂f(x,y)

∂x
= ∆x =

f(x+dx,y) - f(x,y)

dx
 (7) 

 ∂f(x,y)

∂y
= ∆y =

f(x,y+dy) - f(x,y)

dy
 (8) 

 

Where dx and dy measure distance along the x and y directions 

respectively. In discrete images, one can consider dx and dy in terms 

of numbers of pixel between two points, dx = dy = 1 

 

 ∆x = f(x+1,y) - f(x,y) (9) 

 ∆y = f(x,y+1) - f(x,y) (10) 

 

The different operation in “(9)” and “(10)” correspond to convolving 

the image with the following image filter mask. 

 

 
∆x = [

-1 0 1
-g 0 g
-1 0 1

] (11) 

   

 

 
∆y = [

-1 -g -1
0 0 0
1 g 1

] (12) 

In “(11)” and “(12)”, g is adaptively applied according to the image 

intensity. The calculation formula is as follows: 
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g = 
1

Nx∙Ny
'

∑ ∑ Image(x, y)-Image(x, y+offset)

Ny
'

y=0

Nx

x=0

 (13) 

Where: 

Nx : the number of pixels in x coordinate 

Ny : the number of pixels in y coordinate 

Ny
'  : Ny-offset 

The image pre-processed by means of the specific image filter is 

shown in Figure 3.10. The pre-processed image that is used as the 

input of ISD has significance in extracting the enhanced feature-map 

for inspection. 

 

Figure 3.10 The image pre-processed by means of our filter of equation “(12)” 

(g = 4). 
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3.3. Model Training 

 

In our approach, we focus on the image segmentation task without 

using the pre-trained models. We train models on target dataset 

directly without using IamgeNet dataset as shown in Figure 3.11. 

Thus, our approach which is learning deep models from scratch has 

very appealing advantages over existing solutions. ISD is trained with 

various nozzle image as shown in Figure 3.11, to classify the nozzle 

type. Among ISD models trained up to 100 epochs, the weight of ISD 

model with the best performance is used for training Mask R-CNN 

for image segmentation. The image dataset used to train Mask R-

CNN is prepared by using image annotation tool (i.e. VGG image 

annotator) which manipulates the labeled segmentation of image. In 

addition, filtering the input dataset is performed for pre-processing 

of training model.  

Figure 3.12 illustrates the training process. Training performs in 

two stages. The first is training for classification and the second is 

training for image segmentation. The weights of model obtained from 

training for classification, are used in training for image segmentation. 

Training for image segmentation performs with labeled and pre-

processed images. After that, the weights of model obtained from 

training for image segmentation, are used in inference model. 
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Inference model for evaluation uses only original image without pre-

processing. 

 

Figure 3.11 Illustration of training model on target dataset directly. 
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Figure 3.12 Training process of image segmentation using ISD as the 

backbone network of Mask R-CNN framework. 

 

 

 

3.4. Training Objective 

 

The training objective is the losses being used to converge the huge 

number of weights and the hyper-parameters that must be conducive 
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to this convergence.  

In training model for classifying nozzle type, categorical cross 

entropy loss generally used to classify image is adopt to the loss of 

ISD (i.e. LISD). It is a softmax activation plus a cross entropy loss. 

 

 
LISD=-log (

esp

∑ esjC
j

) (14) 

 

Where:  

sp= the CNN score for the positive class 

C = the number of classes 

sj = the score inferred by the network for each class in C 

 

In training model for detecting nozzle state, the training loss is 

adopt from Faster R-CNN and Mask R-CNN, which is a weighted 

sum of the classification loss (cls), the localization loss (box) and 

segmentation mask loss (mask). Where Ltotal_cls and Ltotal_box are same 

as in Faster R-CNN [7] and Ltotal_mask is same as in Mask R-CNN [8]. 

 

 Ltotal = Ltotal_cls + Ltotal_box + Ltotal_mask (15) 

 
Ltotal_cls  = 

1

Ncls
∑ Lcls(pi,pi

*)

i

 (16) 

 Lcls(pi,pi
*)=-pi

* logpi-(1-pi
*) log (1-pi) (17) 

 

Where: 

pi = Predicted probability of anchor i being an object 
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pi
* = Ground truth label of whether anchor i is an object 

Ncls = Normalization term, set to be batch size 

 

 Ltotal_box=
α

Nbox
∑ pi

*

i

∙L1
smooth(ti-ti

*) (18) 

 

Where: 

ti = Predicted four parameterized coordinates 

ti
* = Ground truth coordinates 

Nbox = Normalization term, set to the number of anchor locations 

α = Balancing parameter 

 

 
Ltotal_mask= -

1

m2
∑ [yij log ŷij

k+(1-yij) log (1-ŷij
k)]

1≤i,j≤m

 (19) 

 

Where: 

yij= Label of cell(i,j) in the true mask for the region of size m×m 

ŷij 
k = Predicted value of the same cell for the ground truth class k 

 

 

 

3.5. Setting and Configurations 

 

We adopt L2 regularization technique [139] to prevent the 

emergence of network training time “over-fitting” and eliminate 

the need for dropout. Furthermore, we adopt real-time data 
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augmentation to prevent overfitting on training with limited data in 

training model for classifying nozzle type. In order to obtain the 

higher performance, we set compression factor(θ) in transition layer 

to 1. Compression factor θ = 1 means that there is no feature map 

reduction in the transition layer on dense blocks. Furthermore, we 

set the number of channels in bottleneck layer to 1∙k (growth rate). 

All conv-layers are initialized with the “Kaiming He Initialization” 

method [140]. We have our own learning rate scheduling and mini-

batch size settings. Details will be given in the experiment section. 

Configurations used in training model for detecting nozzle state, is 

illustrated in Table 3.2.  

 

Table 3.2 Configurations used in training model for image segmentation. 

Configuration Value 

The strides of each layer of the FPN Pyramid [4, 8, 16, 32, 64] 

Size of the fully-connected layers in the 

classification 
8 

Size of the top-down layers used to build the 

feature pyramid 
256 

Non-max suppression threshold to filter RPN 

proposals 
0.9 

How many anchors per image to use for RPN 

training 
512 

Mini-mask Shape (Height, Width) [28, 28] 

Input image resizing (Min, Max) [32, 128] 

Mean pixel [123.7, 116.8, 103.9] 

Number of ROIs per image to feed to 

classifier/mask heads 
128 
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Configuration Value 

Percent of positive ROIs used to train 

classifier/mask heads 
0.33 

Shape of output mask [28, 28] 

Maximum number of ground truth instances to 

use in one image 
100 

Minimum probability value to accept a detected 

instance 
0.9 

Non-maximum suppression threshold for 

detection 
0.7 

Learning Rate 0.01 

Learning Momentum 0.9 

Weight decay regularization 0.0001 
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Chapter 4. Experimental Evaluation 

 

 

 

 

We implement ISD based on the tensorflow platform [141]. The 

hardware platform is notebook with two GPUs as illustrated in Table 

4.1. All our models are trained from scratch on NVidia GeForce GTX 

GPU.  

Due to image related to semiconductor process is not available in 

open datasets for deep learning such as ImageNet, MS COCO, pascal 

VOC etc., the experimental dataset is acquired from computer vision 

system embedded in the currently operating semiconductor 

manufacturing equipment for photolithography inspection. 

Table 4.1 Hardware specification. 

Item Specification 

CPU Intel Core i7-8750H 2.2GHz 

Memory 16GB, 3200MHz DDR4 

GPU0 Intel UHD Graphics 630 

GPU1 NVIDIA GeForce GTX 1050 Ti 
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The size of image is 640×495 pixels and gray color. Intuitively, 

larger input images will bring better performance for image 

segmentation. However, an additional difficulty is that real world 

applications like computer vision system demand inspection to be 

solved in real-time. Fastest detectors are usually better than the 

best performing ones. Thus, we reduced the size of image used as 

the input of ISD to 120×120 pixels.  

As aforementioned in previous section 3.3, we perform training 

model in two stages. The first is to train model for classifying nozzle 

type. The second is to train model for image segmentation in each 

suck-back state and dispensing state. In order to classify nozzle type, 

18,304 images that have already been correctly classified into 8 

types of nozzle, were collected from currently operating 

semiconductor manufacturing equipment. Then, we reduce the size 

of 18,304 images from 640×495 pixels to 120×120 pixels. We split 

these images randomly into 13,728 training datasets and 4,576 

validation datasets at a ratio of 7:3. Then, we use these images to 

train model for classifying 8 nozzle types. In order to train model for 

image segmentation of suck-back state in one type of nozzle, we use 

a total of 410 images of one type of nozzle with 120×120 pixels. We 

split these images randomly into 266 training datasets and 144 

validation datasets at a ratio of 6:4. Then, we use images manipulated 

with the labeled segmentation by using image annotation tool (i.e. 

VGG image annotator) to train model for image segmentation of 

suck-back state in specific nozzle type. In order to train model for 
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image segmentation of dispensing state in one type of nozzle, we use 

a total of 501 images of one type of nozzle with 120×120 pixels. We 

split these images randomly into 351 training datasets and 150 

validation datasets at a ratio of 7:3. Then, we use images manipulated 

with the labeled segmentation by using image annotation tool to train 

model for image segmentation of dispensing state in specific nozzle 

type. Notably, in image segmentation of suck-back state, where the 

image segmentation area is much small, we increase the dataset for 

validation to prevent overfitting. Furthermore, as illustrated in Figure 

4.1, we experimentally verify that our model is not overfitting. We 

evaluate performance with a new test dataset that has never been 

used for training, and compare results. We use new 194 images to 

verify overfitting in image segmentation of suck-back state. We use 

new 210 images to verify overfitting in image segmentation of 

dispensing state.  

 

 

Figure 4.1 The method for experimentally verifying that our model is not 

overfitting. 
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We evaluate ISD with different depth and growth rates for 

compactness. We verify the effectiveness of the method through the 

comparison experiment. A consistent setting is imposed on all the 

experiments, unless when some components or structures are 

examined. As stated previously, we adopt the standard mean Average 

Precision (mAP) to measure the image segmentation performance. 

 

 

 

4.1. Classification Results on ISD 

 

The initial learning rate is set to 0.1 until 50th epoch and then divided 

by 10 after every 25 epochs. Our model is trained up to 100 epochs. 

The number of training steps per epoch is 429. The classification 

training accuracy after only 12 epoch is 99.71% and the validation 

accuracy is 99.69% for classifying nozzle type. The classification 

training and validation accuracy in each epoch is illustrated in Figure 

4.2. The classification training and validation loss with shortcut 

connection on ISD model is illustrated in Figure 4.3, and The 

classification training and validation loss without shortcut connection 

on ISD model is illustrated in Figure 4.4. In addition to classification 

of nozzle type, we also test to detect image segmentation of nozzle 

type. We used 385 training dataset and 138 validation dataset for 

image segmentation. Figure 4.5 illustrates the result on detecting 

image segmentation in each nozzle type. 
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Figure 4.2 The classification training and validation accuracy in each epoch. 

ISD has 42 depths with shortcut connection. The uniform growth rate (k) is 6. 

 

Figure 4.3 The classification training and validation loss in each epoch. ISD 

has 42 depths with shortcut connection. The uniform growth rate (k) is 6. The 

average processing time for each epoch is 31 seconds. 
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Figure 4.4 The classification training and validation loss in each epoch. ISD 

has 42 depths without shortcut connection. The uniform growth rate (k) is 6. 

The average processing time for each epoch is 26 seconds. 

 

Figure 4.5 The experimental result of detecting image segmentation of 

nozzle type. 
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Figure 4.6 Visualization of class activation mapping, using ISD as backbone 

networks. 

As illustrated in Figure 4.6, we visualize the class activation 

mapping (CAM) using GradCAM [142], which is commonly used to 

localize the discriminative regions for image classification. To 

optimize the ISD for classifying nozzle types, we conduct with various 

depths and shortcut connections. As shown in Table 4.2, comparing 

the validation loss according to various depths and shortcut 

connection, we can observe that the loss tends to decrease as the 

depth increases, while the difference is little. Besides, while the loss 

is greater in the case of having shortcut connection, interestingly 

observing the results of the image segmentation, it can be seen that 

the case of having shortcut connection has better performance. 
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Table 4.2 Comparison of loss according to various depths and shortcut 

connection in nozzle type classification results. The loss represents the 

classification training and validation loss, when the lowest loss in validation is 

obtained during the training up to 100 epoch. The uniform growth rate (k) is 6. 

ISD Loss Time 

Depth Shortcut Parameters Training Validation Seconds 

24 
 15,038 0.0238 0.0211 19 

√ 26,666 0.0303 0.0281 22 

34 
 33,152 0.0211 0.0196 23 

√ 60,560 0.0258 0.0241 29 

46 

 57,272 0.0180 0.0163 28 

√ 105,632 0.0239 0.0222 33 

54 

 80,000 0.0165 0.0148 30 

√ 148,832 0.0229 0.0211 38 

62 

 106,472 0.0161 0.0145 35 

√ 199,376 0.0222 0.0205 45 

 

 

 

4.2. Comparison with Pre-processing 

 

Our model for image segmentation is trained on the basis of two 

separate data sets to detect suck-back state and dispensing state. 

Our model is trained up to 100 epochs. The number of training steps 

per epoch is 100. The performance is evaluated by the model weight 
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with the lowest loss obtained during the training up to 100 epochs. 

Comparison of suck-back state results. We set the learning rate 

to 0.01. The average processing time for each epoch is 209 seconds. 

The image segmentation training and validation loss in each epoch, is 

illustrated in Figure 4.7. We evaluate the performance of pre-

processing on image segmentation task in the standard mean average 

precision. In aspect of the mask, the mask of nozzle type was 

detected well even without pre-processing using image filter. 

 

 

 

 

Figure 4.7 The image segmentation training and validation loss in each epoch 

on suck-back state results. ISD has 38 depths with shortcut connection. The 

uniform growth rate (k) is 6. 
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However, the mask of suck-back state for inspection is not 

detected or incorrectly recognized when the pre-processing is not 

performed. Figure 4.8 illustrates comparison with pre-processing in 

aspect of mask. We can observe that the pre-processing using image 

filter can achieve higher accuracy, which is consistent to our 

conjecture that the enhanced feature-map is extracted by pre-

processing. In aspect of performance, comparison of pre-processing 

is illustrated in Table 4.3. We explore the effect of pre-processing. 

Our approach is simple and highly effective. mAP@0.50 in validation 

is improved by 4.27% when the pre-processing is performed. 

 

 

Figure 4.8 Image segmentation of suck-back state for inspection. In case of 

training ISD with pre-processing, the mask performance is better than without 

pre-processing. ISD has 38 depths with shortcut connection and the uniform 

growth rate (k) is 6. 
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Table 4.3 Comparison of performing pre-processing in suck-back state 

results. ISD has 38 depths with shortcut connection and the uniform growth 

rate (k) is 6. 

ISD 
Test (mAP, %) Train (mAP, %) 

IoU1:0.50 IoU1:0.75 IoU1:0.50 IoU1:0.75 

w/o pre-processing 90.97 38.95 87.97 43.87 

w/ pre-processing 95.24 57.14 95.42 68.67 

1 Intersection over Union. 

 

Table 4.4 Comparison of performance according to pre-processing 

algorithm in suck-back state results. ISD has 42 depths with shortcut 

connection and the uniform growth rate (k) is 6. 

Pre-processing 

Algorithm 

Test (mAP, %) Train (mAP, %) 

IoU1:0.50 IoU1:0.75 IoU1:0.50 IoU1:0.75 

Our Filter 95.49 59.42 97.74 65.21 

Robert 86.81 50.69 87.22 62.86 

Sobel 91.67 45.49 88.91 50.80 

Scharr 91.32 53.88 87.78 58.35 

Prewitt 89.58 47.51 92.29 55.91 

LoG 93.75 53.73 95.87 62.66 

Sharpen 92.01 52.26 94.17 57.96 

CLAHE 85.21 45.26 86.17 55.01 
1 Intersection over Union. 
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Figure 4.9 The chart shows performance in validation for comparison of 

various pre-processing algorithms in suck-back state results. ISD has 42 

depths with shortcut connection and the uniform growth rate (k) is 6 

Interestingly, mAP@0.75 in validation is improved with a large 

margin (18.19%) when the pre-processing is performed. We can 

observe that the greatest task performance improvement was yielded 
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by pre-processing. We was able to achieve remarkable improvement. 

Furthermore, comparison of performance according to various pre-

processing algorithm is illustrated in Table 4.4. We observe that 

using our filter is much better performance with a large margin 

(10.28%) than using CLAHE algorithm, at mAP@0.50 in validation. 

As illustrated in Figure 4.9, we empirically demonstrate that pre-

processing using our designed filter has better performance than 

other algorithms. 

Comparison of dispensing state results. We set the learning rate 

to 0.01. The average processing time for each epoch is 55 seconds. 

The image segmentation training and validation loss in each epoch, is 

illustrated in Figure 4.10.  

 

Figure 4.10 The image segmentation training and validation loss in each epoch, 

on dispensing state results. ISD has 38 depths with shortcut connection. The 

uniform growth rate (k) is 6. 
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Figure 4.11 Image segmentation of dispensing state for inspection. In case of 

training ISD with pre-processing, the mask performance is better than without 

pre-processing. ISD has 38 depths with shortcut connection and the uniform 

growth rate (k) is 6. 

We evaluate the performance of pre-processing on image 

segmentation task in the standard mean average precision as well as 

suck-back state results. As illustrated in Figure 4.11, the mask of 

dispensing state for inspection is detected as multiple images or 

incorrectly recognized when the pre-processing is not performed. 

We can observe that the pre-processing using our filter can achieve 

higher accuracy as well. 

In aspect of performance, comparison of pre-processing is 

illustrated in Table 4.5. mAP@0.50 in validation is improved by 2.33% 
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when the pre-processing is performed. Additionally, mAP@0.75 in 

validation is improved with more margin (5.5%) when the pre-

processing is performed. We can observe that the greatest task 

performance improvement was yielded by pre-processing even in 

dispensing state as in suck-back state. 

 

Table 4.5 Comparison of performing pre-processing in dispensing state 

results. ISD has 38 depths with shortcut connection and the uniform growth 

rate (k) is 6. 

ISD 
Test (mAP, %) Train (mAP, %) 

IoU1:0.50 IoU1:0.75 IoU1:0.50 IoU1:0.75 

w/o pre-processing 96.00 72.17 96.87 73.43 

w/ pre-processing 98.33 77.67 96.30 76.21 

1 Intersection over Union. 

 

 

Table 4.6 Comparison of performance according to pre-processing 

algorithm in dispensing state results. ISD has 38 depths with shortcut 

connection and the uniform growth rate (k) is 6. 

Pre-processing 

Algorithm 

Test (mAP, %) Train (mAP, %) 

IoU1:0.50 IoU1:0.75 IoU1:0.50 IoU1:0.75 

Our Filter 98.33 77.67 96.30 76.21 

Robert 84.33 72.33 90.74 69.59 

Sobel 95.33 72.39 96.30 76.45 

Scharr 97.00 78.39 97.15 78.63 
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Pre-processing 

Algorithm 

Test (mAP, %) Train (mAP, %) 

IoU1:0.50 IoU1:0.75 IoU1:0.50 IoU1:0.75 

Prewitt 96.36 74.19 95.51 78.97 

LoG 95.33 77.67 96.01 75.74 

Sharpen 96.00 69.89 96.01 76.64 

CLAHE 95.33 75.72 96.96 73.80 

1 Intersection over Union. 

 

Figure 4.12 The chart shows performance in validation for comparison of 

various pre-processing algorithms in dispensing state results. ISD has 38 

depths with shortcut connection and the uniform growth rate (k) is 6. 
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Furthermore, comparison of performance according to pre-

processing algorithm is illustrated in Table 4.6. We observe that 

using our filter is much better performance with a large margin (14%) 

than using Robert algorithm, at mAP@0.50 in validation. As 

illustrated in Figure 4.12, the experimental results show that pre-

processing using our designed filter has consistently better 

performance than other algorithm, as in suck-back state result. 

 

 

 

4.3. Image Segmentation Results on ISD 

 

Model optimization and performance are an important trade-off for 

the applications of deep neural networks in image segmentation tasks 

for real-time application. In order to optimize ISD, we conduct 

experiments with three cases which are the number of depth, 

shortcut connection and dynamic growth rate. Our experiments are 

conducted on object categories which are suck-back state and 

dispensing state respectively. 

 

 

 

4.3.1. Results on Suck-back State 
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Figure 4.13 An example of image segmentation results on suck-back state. 

In this section, in order to optimize our model with more compactness 

for detecting suck-back state, we justify the effectiveness of each 

design structure and parameters elaborated earlier. An example of 

image segmentation results on suck-back state is shown in Figure 

4.13. 

The number of depth. We have experimented with various depths 

on ISD for detecting suck-back state. The main results are 

summarized in Table 4.7. We conjecture that the deeper layer is the 

better performance, as is well known. However, as shown in Figure 

4.14, although ISD-42 is lower depth than ISD-62, we found that 

ISD-42 has the best performance in validation. ISD using 42 depths 

is sufficient to deliver good performance and it is better in aspect of 
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resource effectiveness. We can observe that our compactness model 

with only 85K parameters achieves performance to 95.49% at 

mAP@0.50 in validation, which shows great potential for applications 

on computer vision system in real-time. 

 

 

Table 4.7 Comparison with different depths and shortcut connection in 

suck-back state results. We experiment with model weights having the lowest 

validation loss obtained during the training up to 100 epochs. The uniform 

growth rate (k) is 6. 

ISD Test (mAP, %) Train (mAP, %) 

D1 SC2 Param3 IoU4:0.50 IoU4:0.75 IoU4:0.50 IoU4:0.75 

24 

 15,038 84.03 44.10 86.84 49.72 

√ 26,666 83.31 48.97 87.48 57.60 

38 

 38,288 94.79 55.00 96.30 59.90 

√ 69,776 95.24 57.14 95.42 68.67 

42 

 46,700 88.19 50.64 91.35 59.25 

√ 85,580 95.49 59.42 97.74 65.21 

54 

 80,000 89.58 52.78 85.90 53.73 

√ 148,832 93.40 50.12 94.17 58.55 

62 

 106,472 83.99 42.55 84.80 47.82 

√ 199,376 94.33 57.87 97.37 61.01 

1 Depth, 2 Shortcut, 3 Parameters (bytes), 4 Intersection over Union. 
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Figure 4.14 This chart shows performance in validation for comparison of 

different depths with shortcut connection in suck-back state results. We 

experiment with model weights having the lowest validation loss obtained 

during the training up to 100 epochs. The uniform growth rate (k) is 6. 

Shortcut connection. To address vanishing and exploding 

gradients, we propose our model with shortcut connection. Thus, we 

have experimented with and without shortcut connection for 

detecting suck-back state. The main results are summarized in Table 

4.7. We observe that ISD with 62 depths using shortcut connection 
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significantly improves the performance from 42.55% to 57.87%, with 

a large margin (15.32%) at mAP@0.75 in validation.  

 

 

 

 

Figure 4.15 This chart shows performance in validation for comparison with 

different depths and shortcut connection in suck-back state results. We 

experiment with model weights having the lowest validation loss obtained 

during the training up to 100 epochs. The uniform growth rate (k) is 6. 
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As illustrated in Figure 4.15, the experimental results show that ISD 

with shortcut connection has consistently better performance than 

ISD without shortcut connection. We empirically demonstrate that 

shortcut connection improves the performance by means of 

alleviating vanishing and exploding gradients, encouraging feature 

reuse. 

Growth rate. We refer to the hyper-parameter k as the growth 

rate of the network. We show in Table 4.8 that a relatively small 

growth rate is sufficient to achieve better performance at mAP@0.50 

in validation. However, as aforementioned, in order to reduce a huge 

number of training parameters increased by concatenation in dense 

block, ISD can apply three dynamic growth rate methods. 

Table 4.8 Comparison of growth rate (k) with shortcut connection in suck-

back state results. We experiment with model weights having the lowest 

validation loss obtained during the training up to 100 epochs. 

ISD Test (mAP, %) Train (mAP, %) 

D1 G2 Param3 IoU4:0.50 IoU4:0.75 IoU4:0.50 IoU4:0.75 

38 

6 69,776 95.24 57.14 95.42 68.67 

12 266,336 92.71 63.16 95.30 70.90 

42 

6 85,580 95.49 59.42 97.74 65.21 

12 281,672 95.14 53.10 95.52 61.52 

54 

6 148,832 93.40 50.12 94.17 58.55 

12 514,592 91.32 50.89 90.35 51.45 

1 Depth, 2 Growth rate (k), 3 Parameters (bytes), 4 Intersection over Union. 
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Table 4.9 Comparison of dynamic growth rate with shortcut connection in 

suck-back state results. We experiment with model weights having the lowest 

validation loss obtained during the training up to 100 epochs. The uniform 

growth rate (k) is 12. 

ISD Test (mAP, %) Train (mAP, %) 

D1 G2 Param3 IoU4:0.50 IoU4:0.75 IoU4:0.50 IoU4:0.75 

38 

12A 266,336 92.71 63.16 95.30 70.90 

12B 98,142 92.79 63.71 94.59 64.74 

12C 159,953 93.40 57.18 96.05 66.28 

42 

12A 281,672 95.14 53.10 95.52 61.52 

12B 104,553 91.20 44.12 87.97 45.03 

12C 179,968 95.66 55.85 96.81 65.30 

54 

12A 514,592 91.32 50.89 90.35 51.45 

12B 251,904 95.83 52.54 96.43 61.63 

12C 386,482 93.06 52.43 94.93 58.87 
1 Depth, 2 Growth rate (k), 3 Parameters (bytes), 4 Intersection over Union. 

 

The first method increase or decrease the growth rate 

sequentially. In Table 4.9, we compare three options: (A) uniform 

growth rates (k,k,∙∙∙,k) are used; (B) increasing growth rates 

(1,2,3,∙∙∙,k) are used; (C) decreasing growth rates (k,k-1,k-2,∙∙∙,2,1) 

are used. As illustrated in Table 4.9, we observe that ISD with 54 

depths using increasing growth rates improves the performance from 

91.32% to 95.83% at mAP@0.50 in validation, while requiring only 

1/2 parameters. 
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Figure 4.16 This chart shows performance in validation for comparison of 

various dynamic growth rate with shortcut connection in suck-back state 

results. We experiment with model weights having the lowest validation loss 

obtained during the training up to 100 epochs. The uniform growth rate (k) is 

12. 

As illustrated in Figure 4.16, we experimentally found that dynamic 
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growth rate improves the performance better than uniform growth 

rate, with more compactness. Note that it substantially reduces the 

number of training parameters. 

The second is a method of compressing the generated feature 

map according to the growth rate. In this case, the growth rate is 

always fixed to one by the sum module or the mean module. The main 

results are summarized in Table 4.10. We experimentally found that 

training parameters can be remarkable reduced. However, the 

performance is not improved. At low depth, the sum method performs 

better than the mean method. Interestingly, at high depth, the mean 

method is better than the sum method.  

 

Table 4.10 Comparison of sum and mean module in suck-back state results. 

We experiment with model weights having the lowest validation loss obtained 

during the training up to 100 epochs. 

ISD Test (mAP, %) Train (mAP, %) 

D1 M2 Param3 IoU4:0.50 IoU4:0.75 IoU4:0.50 IoU4:0.75 

42 

Mean 16,855 83.22 30.29 81.83 36.02 

Sum 16,855 88.16 34.79 87.06 40.85 

74 

Mean 34,140 85.76 32.78 84.10 38.87 

Sum 34,140 89.38 48.03 92.81 47.82 

154 

Mean 100,328 88.37 29.42 84.86 36.59 

Sum 100,328 73.60 20.39 73.37 29.26 

1 Depth, 2 Module, 3 Parameters (bytes), 4 Intersection over Union. 
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Table 4.11 Comparison of sum and mean module added to growth rate in 

suck-back state results. We experiment with model weights having the lowest 

validation loss obtained during the training up to 100 epochs. 

ISD Test (mAP, %) Train (mAP, %) 

D1 M2 Param3 IoU4:0.50 IoU4:0.75 IoU4:0.50 IoU4:0.75 

42 

Mean+ 107,263 89.90 36.89 90.82 50.59 

Sum+ 107,263 68.16 25.27 69.36 31.45 

None 85,580 95.49 59.42 97.74 65.21 

Mean 16,855 83.22 30.29 81.83 36.02 

Sum 16,855 88.16 34.79 87.06 40.85 

1 Depth, 2 Module, 3 Parameters (bytes), 4 Intersection over Union, +Add to growth rate 

 

The third is a method designed to improve performance, by 

concatenating the compressed feature map obtained by sum or mean 

module and the feature map generated by growth rate. In this case, 

the growth rate is always one more due to the compressed feature 

map concatenation. The main results are summarized in Table 4.11. 

We found that the performance is not improved even with increasing 

training parameters. 

Overfitting validation. In order to experimentally verify that our 

model is not overfitting, we evaluate performance with a new test 

dataset that has never been used for training, and compare results. 

We use new 194 images to verify overfitting in image segmentation 

of suck-back state.  
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Table 4.12 Comparison of results with different datasets in image 

segmentation of suck-back state. ISD has 42 depths with shortcut connection 

and the uniform growth rate (k) is 6. 

Dataset 
Test (mAP, %) 

IoU1:0.50 IoU1:0.75 

Existing dataset 95.49 59.42 

New dataset 94.85 50.57 

1 Intersection over Union. 

 

The main results are summarized in Table 4.12. Even if we evaluate 

performance with a new dataset that is completely different from the 

existing dataset, the performance at mAP@0.50 validation is almost 

the same. Therefore, we experimentally verified that our model is 

not overfitting in image segmentation of suck-back state. 

 

 

 

4.3.2. Results on Dispensing State 

 

In this section, in order to optimize our model with more compactness 

for detecting dispensing state, we justify the effectiveness of each 

design structure and parameters elaborated earlier. An example of 

image segmentation results on dispensing state is shown in Figure 

4.17. 
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Figure 4.17 An example of image segmentation results on dispensing state. 

The number of depth. We have experimented with various depths 

on ISD for detecting dispensing state. The main results are 

summarized in Table 4.13. We conjecture that the deeper layer is the 

better performance, as is well known. However, as shown in Figure 

4.18, although ISD-38 is lower depth than ISD-62, we found that 

ISD-38 has the best performance in validation. ISD using 38 depths 

is sufficient to deliver good performance and it is better in aspect of 

resource effectiveness. We can observe that our compactness model 

with only 69K parameters achieves performance to 98.33% at 

mAP@0.50 in validation, which shows great potential for applications 

on computer vision system in real-time. Likewise results on suck-

back state, we experimentally demonstrate that lower depth is 
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sufficient to good performance, even in case of dispensing state. 

Table 4.13 Comparison with different depths and shortcut connection in 

dispensing state results. We experiment with model weights having the lowest 

validation loss obtained during the training up to 100 epochs. The uniform 

growth rate (k) is 6. 

ISD Test (mAP, %) Train (mAP, %) 

D1 SC2 Param3 IoU4:0.50 IoU4:0.75 IoU4:0.50 IoU4:0.75 

24 

 15,038 93.56 63.81 95.54 69.43 

√ 26,666 94.00 69.10 95.18 77.14 

30 

 23,048 94.22 71.10 92.78 65.57 

√ 41,264 90.67 75.00 91.83 77.07 

34 

 33,152 94.89 74.00 94.16 68.50 

√ 60,560 95.67 73.67 96.87 77.50 

38 

 38,288 95.33 66.67 93.45 70.61 

√ 69,776 98.33 77.67 96.30 76.21 

42 

 46,700 96.33 76.28 97.29 72.34 

√ 85,580 97.56 76.33 97.01 80.68 

44 

 51,146 92.33 76.67 93.59 75.38 

√ 93,926 96.00 75.00 96.15 75.36 

46 

 57,272 82.67 71.00 85.90 61.97 

√ 105,632 95.83 64.22 95.16 62.96 

50 

 72,560 92.00 64.33 92.12 62.82 

√ 135,152 96.00 64.33 97.15 72.79 

54 

 80,000 93.33 67.33 95.87 72.89 

√ 148,832 96.00 70.00 96.15 69.18 
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ISD Test (mAP, %) Train (mAP, %) 

D1 SC2 Param3 IoU4:0.50 IoU4:0.75 IoU4:0.50 IoU4:0.75 

62 

 106,472 94.33 65.89 95.44 70.61 

√ 199,376 94.67 77.00 97.67 75.38 

1 Depth, 2 Shortcut, 3 Parameters (bytes), 4 Intersection over Union. 

 

Figure 4.18 This chart shows performance in validation for comparison of 

different depths with shortcut connection in dispensing state results. We 

experiment with model weights having the lowest validation loss obtained 

during the training up to 100 epochs. The uniform growth rate (k) is 6. 
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Figure 4.19 This chart shows performance in validation for comparison with 

different depths and shortcut connection in dispensing state results. We 

experiment with model weights having the lowest validation loss obtained 

during the training up to 100 epochs. The uniform growth rate (k) is 6. 

Shortcut connection. To address vanishing and exploding 

gradients, we propose our model with shortcut connection. Thus, we 

have experimented with and without shortcut connection for 

detecting dispensing state. The main results are summarized in Table 

4.13. We observe that ISD with 62 depths using shortcut connection 
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significantly improves the performance from 65.89% to 77.00%, with 

a large margin (11.11%) at mAP@0.75 in validation. Furthermore, 

we also observe that ISD with 42 depths using shortcut connection 

significantly improves the performance from 82.67% to 95.83%, with 

a large margin (13.16%) at mAP@0.50 in validation. As illustrated in 

Figure 4.19, the experimental results show that ISD with shortcut 

connection has consistently better performance than ISD without 

shortcut connection, as the same case of detecting suck-back state. 

As stated previously, it is especially notable that shortcut connection 

improves the performance by means of alleviating vanishing and 

exploding gradients, encouraging feature reuse. 

Growth rate. We show in Table 4.14 that a relatively small growth 

rate is sufficient to achieve better performance in validation, even in 

results on dispensing state. 

 

Table 4.14 Comparison of growth rate (k) with shortcut connection in 

dispensing state results. We experiment with model weights having the lowest 

validation loss obtained during the training up to 100 epochs. 

ISD Test (mAP, %) Train (mAP, %) 

D1 G2 Param3 IoU4:0.50 IoU4:0.75 IoU4:0.50 IoU4:0.75 

38 

6 69,776 98.33 77.67 96.30 76.21 

12 266,336 95.33 74.33 94.73 73.22 

42 

6 85,580 97.56 76.33 97.01 80.68 

12 281,672 94.00 70.56 93.88 63.32 

1 Depth, 2 Growth rate (k), 3 Parameters (bytes), 4 Intersection over Union. 
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As aforementioned, ISD use dynamic growth rate that applies 

different growth rates in each layer. In Table 4.15, we compare three 

options: (A) uniform growth rates (k,k,∙∙∙,k) are used; (B) increasing 

growth rates (1,2,3,∙∙∙,k) are used; (C) decreasing growth rates (k,k-

1,k-2,∙∙∙,2,1) are used; The main results are summarized in Table 

4.15. We observe that ISD with 42 depths using decreasing growth 

rates improves the performance from 94.00% to 97.22% at 

mAP@0.50 in validation, while requiring only 3/5 parameters.  

 

Table 4.15 Comparison of dynamic growth rate with shortcut connection in 

dispensing state results. We experiment with model weights having the lowest 

validation loss obtained during the training up to 100 epochs. The uniform 

growth rate (k) is 12. 

ISD Test (mAP, %) Train (mAP, %) 

D1 G2 Param3 IoU4:0.50 IoU4:0.75 IoU4:0.50 IoU4:0.75 

38 

12A 266,336 95.33 74.33 94.73 73.22 

12B 98,142 97.33 74.00 96.82 69.73 

12C 159,953 97.47 71.52 96.72 72.57 

42 

12A 281,672 94.00 70.56 93.88 63.32 

12B 104,553 86.22 67.89 87.32 57.67 

12C 179,968 97.22 61.50 96.58 61.36 

54 

12A 514,592 96.33 72.67 96.11 72.37 

12B 251,904 95.67 71.28 93.88 69.47 

12C 386,482 97.67 72.33 98.29 80.91 
1 Depth, 2 Growth rate (k), 3 Parameters (bytes), 4 Intersection over Union. 
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Figure 4.20 This chart shows performance in validation for comparison of 

various dynamic growth rate with shortcut connection in dispensing state 

results. We experiment with model weights having the lowest validation loss 

obtained during the training up to 100 epochs. The uniform growth rate (k) is 

12. 

As illustrated in Figure 4.20, likewise results on suck-back state 
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even in dispensing state, we experimentally demonstrate that 

dynamic growth rate consistently improves the performance better 

than uniform growth rate, with more compactness. Note that it 

substantially reduces the number of training parameters. 

Overfitting validation. In order to experimentally verify that our 

model is not overfitting, we evaluate performance with a new test 

dataset that has never been used for training and compare results. 

We use new 210 images to verify overfitting in image segmentation 

of dispensing state. The main results are summarized in Table 4.16. 

Even if we evaluate performance with a new dataset that is 

completely different from the existing dataset, the performance at 

mAP@0.50 validation is almost the same. Therefore, we 

experimentally verified that our model is not overfitting in image 

segmentation of dispensing state. 

 

Table 4.16 Comparison of results with different datasets in image 

segmentation of dispensing state. ISD has 38 depths with shortcut connection 

and the uniform growth rate (k) is 6 

Dataset 
Test (mAP, %) 

IoU1:0.50 IoU1:0.75 

Existing dataset 98.33 77.67 

New dataset 98.10 91.59 

1 Intersection over Union. 
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4.4. Comparison with State-of-the-art Methods 

 

In this section, we compare our model with state-of-the-art 

backbone networks of Mask R-CNN framework. Thus, we 

empirically demonstrate the compactness and performance of our 

model. Our experiments are conducted on object categories which 

are suck-back state and dispensing state respectively. 

Results on suck-back state. The main results are summarized in 

Table 4.17. ISD achieves consistently better results than stat-of-

the-art methods with much more compactness structure. Especially, 

our ISD-38 achieves 95.24% at mAP@0.50 in validation, which 

outperforms the baseline DenseNet-38 with a large margin 

(16.97%), while requiring only 1/4 parameters. We also observe that 

ISD-38 can achieve comparable better results at mAP@0.75 than 

ResNet-38 requiring a huge memory space to store the massive 

parameters, with only much smaller 1/268 parameters, which shows 

great potential for application on resource bounded devices.  

As the size of the network increases, the inference and the 

training become slower and require more data. There is generally a 

trade-off between performance and speed. When one needs real-

time detectors, like for computer vision, one loses some precision. In 

Table 4.17, the highest result of 96.59% at mAP@0.50 in validation 
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are obtained with ResNet-38. Our ISD-42 achieves 95.49% at 

mAP@0.50 in validation, 1.1% lower. However, as shown in Table 

4.18, the number of parameters is improved significantly by 217 

times. The running time is also improved by 7 times. Furthermore 

interestingly, our ISD-42 is 3.45% higher than ResNet-38 at 

mAP@0.75 in validation. As illustrated in Figure 4.21, the 

experimental results show that our model achieves compactness and 

performance balance for embedded real-time application. 

 
Table 4.17 Comparison with state-of-the-art backbone networks in suck-

back state results. We experiment with model weights having the lowest 

validation loss obtained during the training up to 100 epochs. The growth rate 

of DenseNet is 12. The uniform growth rate of ISD is 6. 

BN1 Param2 
Test (mAP, %) Train (mAP, %) 

IoU3:0.50 IoU3:0.75 IoU3:0.50 IoU3:0.75 

ResNet-26 14,008K 94.82 61.37 98.76 75.47 

ResNet-38 18,496K 96.59 55.97 96.93 78.57 

ResNet-50 23,604K 93.36 50.58 95.49 67.45 

ResNet-101 42,674K 94.85 51.58 97.60 65.14 

DenseNet-24 98K 78.77 36.04 84.33 48.81 

DenseNet-38 253K 78.27 35.20 82.01 42.98 

DenseNet-42 308K 85.76 40.74 86.28 42.70 

DenseNet-54 516K 84.72 35.71 82.90 40.53 

DenseNet-62 681K 85.59 37.57 85.43 46.35 

ISD-24 26K 83.31 48.97 87.48 57.60 

ISD-38 69K 95.24 57.14 95.42 68.67 
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BN1 Param2 
Test (mAP, %) Train (mAP, %) 

IoU3:0.50 IoU3:0.75 IoU3:0.50 IoU3:0.75 

ISD-42 85K 95.49 59.42 97.74 65.21 

ISD-54 148K 93.40 50.12 94.17 58.55 

ISD-62 199K 94.33 57.87 97.37 61.01 

1 Backbone Network, 2 Parameters (kilobyte), 3 Intersection over Union. 

 
Table 4.18 Comparison of state-of-the-art backbone networks with FLOPs 

and running time in suck-back state. The growth rate of DenseNet is 12. The 

uniform growth rate of ISD is 6. Input size of backbone network is 120×120. 

The running time is the processing time of CPU per image. 

BN1 Param2 
MFLOPs 

Time4 
Performance 

Mul3 Add Total mAP@0.50/0.75 

ResNet-26 14,008K 83.87 55.87 209.81 110.68 94.82/61.37 

ResNet-38 18,496K 110.72 73.75 276.99 148.67 96.59/55.97 

ResNet-50 23,604K 141.31 94.12 353.50 193.09 93.36/50.58 

ResNet-101 42,674K 255.42 170.12 639.01 358.52 94.85/51.58 

DenseNet-24 98K 0.96 0.19 1.65 23.68 78.77/36.04 

DenseNet-38 253K 2.49 0.50 4.26 37.63 78.27/35.20 

DenseNet-42 308K 3.04 0.60 5.19 42.69 85.76/40.74 

DenseNet-54 516K 5.10 1.02 8.70 55.13 84.72/35.71 

DenseNet-62 681K 6.74 1.34 11.48 65.31 85.59/37.57 

ISD-24 26K 0.23 0.05 0.40 13.50 83.31/48.97 

ISD-38 69K 0.67 0.13 1.15 18.38 95.24/57.14 

ISD-42 85K 0.77 0.16 1.33 21.38 95.49/59.42 

ISD-54 148K 1.36 0.29 2.34 27.77 93.40/50.12 

ISD-62 199K 1.83 0.39 3.15 31.09 94.33/57.87 

1 Backbone Network, 2 Parameters (kilobyte), 3 Multiply, 4 Running Time (millisecond). 
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Figure 4.21 This shows performance in validation for comparison with various 

state-of-the-art backbone networks in suck-back state results. We 

experiment with model weights having the lowest validation loss obtained 

during the training up to 100 epochs. The growth rate of DenseNet is 12. The 

uniform growth rate of ISD is 6. 
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Results on dispensing state. The main results are summarized in 

Table 4.19. Likewise results on suck-back state, on aspect of 

performance versus memory, ISD achieves consistently better 

results than stat-of-the-art methods with much more compactness 

structure, even in dispensing state. 

 

Table 4.19 Comparison with state-of-the-art backbone networks in 

dispensing state results. We experiment with model weights having the lowest 

validation loss obtained during the training up to 100 epochs. The growth rate 

of DenseNet is 12. The uniform growth rate of ISD is 6. 

BN1 Param2 
Test (mAP, %) Train (mAP, %) 

IoU3:0.50 IoU3:0.75 IoU3:0.50 IoU3:0.75 

ResNet-26 14,008K 98.67 85.06 99.15 84.76 

ResNet-101 42,674K 99.67 77.13 99.86 79.87 

DenseNet-24 98K 84.00 58.00 76.88 50.00 

DenseNet-38 253K 81.39 62.67 85.04 58.55 

DenseNet-42 308K 88.00 60.00 83.71 56.13 

DenseNet-54 516K 78.67 58.00 78.35 55.27 

DenseNet-62 681K 85.33 63.67 86.18 62.77 

ISD-24 26K 94.00 69.10 95.18 77.14 

ISD-38 69K 98.33 77.67 96.30 76.21 

ISD-42 85K 94.00 69.10 95.18 77.14 

ISD-54 148K 96.00 70.00 96.15 69.18 

ISD-62 199K 94.67 77.00 97.67 75.38 

1 Backbone Network, 2 Parameters (kilobyte), 3 Intersection over Union. 
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Table 4.20 Comparison of state-of-the-art backbone networks with FLOPs 

and running time in dispensing state. The growth rate of DenseNet is 12. The 

uniform growth rate of ISD is 6. Input size of backbone network is 120×120. 

The running time is the processing time of CPU per image. 

BN1 Param2 
MFLOPs 

Time4 
Performance 

Mul3 Add Total mAP@0.50/0.75 

ResNet-26 14,008K 83.87 55.87 209.81 110.68 98.67/85.06 

ResNet-101 42,674K 255.42 170.12 639.01 358.52 99.67/77.13 

DenseNet-24 98K 0.96 0.19 1.65 23.68 84.00/58.00 

DenseNet-38 253K 2.49 0.50 4.26 37.63 81.39/62.67 

DenseNet-42 308K 3.04 0.60 5.19 42.69 88.00/60.00 

DenseNet-54 516K 5.10 1.02 8.70 55.13 78.67/58.00 

DenseNet-62 681K 6.74 1.34 11.48 65.31 85.33/63.67 

ISD-24 26K 0.23 0.05 0.40 13.50 94.00/69.10 

ISD-38 69K 0.67 0.13 1.15 18.38 98.33/77.67 

ISD-42 85K 0.77 0.16 1.33 21.38 94.00/69.10 

ISD-54 148K 1.36 0.29 2.34 27.77 96.00/70.00 

ISD-62 199K 1.83 0.39 3.15 31.09 94.67/77.00 

1 Backbone Network, 2 Parameters (kilobyte), 3 Multiply, 4 Running Time (millisecond). 

Particularly, our ISD-38 achieves 98.33% at mAP@0.50 in validation, 

which outperforms the baseline DenseNet-38 with a large margin 

(16.94%), while requiring only 1/4 parameters. We also observe that 

ISD-38 can achieve comparable better results at mAP@0.75 than 

ResNet-101 requiring a huge memory space to store the massive 

parameters, with only much smaller 1/625 parameters, which shows 

great potential for application on resource bounded devices. In Table 
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4.19, the highest result of 99.67% at mAP@0.50 in validation are 

obtained with ResNet-101. In the meanwhile, our ISD-38 achieves 

98.33% at mAP@0.50 in validation, 1.34% lower. However, as shown 

in Table 4.20, the number of parameters is improved significantly by 

625 times. The running time is also improved by 20 times. 

Furthermore interestingly, our ISD-38 is 0.54% higher than 

ResNet-101 at mAP@0.75 in validation. As illustrated in Figure 4.22, 

ResNet-26 is 7.73% higher than ISD-38 at total performance in 

validation. However, ISD-38 is approximately 200 times more 

compact than ResNet-26 at parameters. The speed is also 6 times 

faster. Additionally, there is a little difference (0.34%) between ISD-

38 and ResNet-26 in performance mAP@0.50 validation. Thus, the 

experimental results show that our model consistently achieves 

compactness and performance balance for embedded real-time 

application, as the same results on suck-back state. Model 

compactness in terms of the number of parameters, and performance 

is an important trade-off for various applications of deep neural 

networks in detection. ResNet which is the most common backbone 

network of Mask R-CNN framework, require a huge memory space 

to store the massive parameters. 

Therefore the models are usually unsuitable for low-end devices 

like embedded computer vision system in industry. Thanks to the 

parameter-efficient dense block with shortcut connection, our model 

significantly is much smaller with high performance than most 

competitive methods. 
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Figure 4.22 This shows performance in validation for comparison with various 

state-of-the-art backbone networks in dispensing state results. Additionally, 

the training process failed to converge for ResNet-50. We experiment with 

model weights having the lowest validation loss obtained during the training up 

to 100 epochs. The growth rate of DenseNet is 12. The uniform growth rate of 

ISD is 6.  
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Chapter 5. Conclusion 

 

 

 

 

This dissertation aimed to improve defect detection in semiconductor 

photolithography inspection systems. We investigated three 

questions. First, is it possible to train image segmentation networks 

from scratch directly with only smaller dataset without the pre-

trained models? Second, are there any principles to design a resource 

efficient network structure for image segmentation, meanwhile 

keeping high detection accuracy? Third, is there any methodology to 

improve inspection performance other than network design? To 

achieve our main goal, we proposed a novel deep architecture that 

can be used as a backbone network of the image segmentation, and 

applied image filtering method as pre-processing to training for 

improving performance. 

In general, since most of computer vision operated in 

semiconductor photolithography inspection systems use image 

processing algorithm, inspection faults easily occur even with small 
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changes in the external environment. On the other hand, deep 

learning has a strong characteristic of classifying images even with 

these external changes. However, since the features extracted from 

image for inspection in semiconductor photolithography are limited to 

a specific area of image, there is a limit to extracting them with only 

the feature map of the CNN. No matter how much model is trained 

with a lot of various images for image segmentation, fault still occurs 

in detecting the mask region. Therefore, we combined the advantages 

of image processing algorithm and the advantages of deep learning, 

in order to achieve remarkable performance. 

We performed this study with step by step. We applied the 

existing Mask R-CNN framework to photolithography inspection 

systems without modification of backbone network. Next, we 

changed ResNet, which is used as backbone network in Mask R-CNN 

framework, to DenseNet. The reason is that DenseNet is more 

efficient and compressed model than ResNet. Then, we designed a 

novel deep architecture based on DenseNet, designed image filter for 

pre-processing to improve performance, and experimentally 

demonstrated the performance of our model. In detail, we performed 

this study as follows. 

Firstly, we have analyzed the inspection method of computer 

vision used in currently operating semiconductor photolithography 

process for defect detection. Then, we have studied various the 

state-of-the-art deep learning based instance segmentation, 

backbone structure, and the improved network structure for 
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extracting enhanced feature map. 

Secondly, we designed a novel deep architecture called as ISD 

(Image Segmentation Detector) to meet our goal based on related 

studies. Our architecture has the same concept of combining feature 

re-usage ability of ResNet and feature re-exploration ability of 

DenseNet as in DPN and MixNet, However, the structure is 

significantly different from other networks. Notably, in order to 

achieve superior efficiency with compactness, we combined feature 

re-usage with same size in each block which is a group of layers and 

feature re-exploration with dynamic growth rate in each layer. In 

other words, ISD improves DenseNet by applying a dynamic growth 

rate to reduce the number of parameters, and by using shortcut 

connection in each block to alleviate the gradient vanishing problem 

and to achieve superior efficiency with compactness. Furthermore, 

ISD performs down-sampling in a dense block rather than a 

transition layer, and changes pre-activation to post-activation. 

Additionally, ISD removes pooling of transition layer to transfer more 

information, and reduces the bottleneck width for more compactness. 

Thirdly, in order to improve performance of image segmentation 

in semiconductor photolithography inspection systems, we designed 

image filter which is composed of a pair of 3×3 convolution masks 

for extracting features by emphasizing boundary. From this study, 

we concluded that our image filter, which is used for pre-processing 

in training, play an important role in extracting the enhanced feature-

map for image segmentation. 
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Lastly, model optimization and performance are an important 

trade-off for the applications of deep neural networks in image 

segmentation tasks for real-time application. Thus, in order to 

optimize ISD, we conducted various experiments with three cases 

which are the number of depth, shortcut connection, and dynamic 

growth rate. Our experiments was conducted on object categories 

which are suck-back state and dispensing state respectively. Then, 

we compared our model with state-of-the-art backbone networks 

of Mask R-CNN framework. In image segmentation of suck-back 

state, we experimentally demonstrated that our ISD-42 significantly 

outperforms state-of-the-art DenseNet-42 in terms of both 

accuracy (9.73% more accurate) and parameters (3 times less) at 

mAP@0.50 in validation. Furthermore, our ISD-42 improves 217 

times smaller in the number of parameters, and 3.45% higher 

accurate than state-of-the-art ResNet-38 at mAP@0.75 in 

validation. Furthermore, the running speed is also improved by 7 

times. In image segmentation of dispensing state, we experimentally 

demonstrated that our ISD-38 achieves 98.33% at mAP@0.50 in 

validation, which outperforms the baseline DenseNet-38 with a large 

margin (16.94%), while requiring only 1/4 parameters. We also 

observed that ISD-38 can achieve comparable better results at 

mAP@0.75 than ResNet-101 requiring a huge memory space to 

store the massive parameters, with only much smaller 1/625 

parameters, which shows great potential for application on resource 

bounded devices. Furthermore, the running speed is also improved 
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by 20 times. Therefore, we experimentally demonstrated that ISD 

can be applicable to many image segmentation architecture to 

achieves the right speed (parameters) and accuracy balance for a 

given application and platform. 

This dissertation presents a novel deep architecture (backbone 

network), the ISD, to tackle the problem that training dataset limited 

in specific industry domain such as semiconductor photolithography 

might cause overfitting at training and quality mismatch at inference. 

Particularly, our model which acts as the main feature extractor, is 

more compact with higher performance than most competitive models. 

Furthermore, compactness of our model is suitable for application on 

resource bounded devices due to addressing real-time problem. Our 

model is simple to construct and can be trained directly on full images. 

Our proposed approach, which is learning deep models from scratch, 

has very appealing advantages over existing solutions. Especially, 

our approach is suitable for image segmentation of industry domain 

which does not have large-scale image dataset like ImageNet for 

transfer learning. According to our method including pre-processing, 

enhanced feature-maps can be obtained for image segmentation. 

In conclusion, the most important contribution of this work is 

probably the first application of deep learning (image segmentation) 

technology to semiconductor photolithography inspection systems. 

Furthermore, we proposed an efficient novel deep architecture 

(backbone network) that can be used learning from scratch in specific 

domains where the acquisition of training images is limited, such as 
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semiconductor photolithography. Thus, we believe that it can be 

useful to many future image segmentation research efforts in diverse 

industry domain which is requiring real-time and good performance 

with only smaller training dataset. 
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초록 

 

 

반도체 제조에서 결함 검출은 높은 수율을 유지하는데 중요합니다. 

전형적으로, 반도체 웨이퍼의 결함은 제조 공정에서 발생하고 있습니다. 

반도체 포토리소그래피 공정 검사에 사용되는 대부분의 컴퓨터 비전 

시스템들은 여전히 외부 환경 변화에 민감한 이미지 처리 알고리즘을 

사용하고 있어서 검사 오류가 자주 발생하고 있습니다. 따라서, 이미지 

처리 알고리즘의 장점과 딥 러닝의 장점을 융합하여 이 문제를 

해결하려고 합니다.  

이 논문에서 우리는 반도체 포토리소그래피 검사와 같이 훈련 

데이터 세트가 제한된 상황에서 향상된 기능 맵을 추출하기 위해 이미지 

분할 검출기(Image Segmentation Detector, 이하 ISD)를 제안합니다. 

ISD는 이미지 분할을 위한 최신 Mask R-CNN 프레임 워크의 새로운 

백본 네트워크로 사용합니다. ISD는 4 개의 조밀한 블록과 4 개의 전환 

레이어로 구성합니다. 특히, ISD의 각 조밀한 블록은 보다 컴팩트함을 

위해 단축 연결 및 동적 성장률을 가지고 레이어에서 생성된 피쳐 맵을 

결합하고 있습니다. ISD는 최근 적용하고 있는 전이 학습 방법을 

사용하지 않고 처음부터 훈련합니다. 또한, ISD는 합성곱 

신경망(Convolutional Neural Network, 이하 CNN)의 향상된 기능 

맵을 추출하기 위해 우리가 설계한 이미지 필터를 통해 사전 처리된 

이미지 데이터 세트로 훈련을 합니다. ISD의 설계 핵심 원칙 중 하나는 
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소형화로 실시간 문제를 해결하고 리소스에 제한이 있는 장치에 

적용하는데 중요한 역할을 하게 합니다.  

모델을 실증적으로 입증하기 위해 이 논문에서는 현재 운영 중인 

반도체 제조 장비에 내장된 컴퓨터 비전 시스템에서 획득한 실제 

이미지를 사용합니다. ISD는 가장 일반적인 성능 측정 지표인 평균 

정밀도에서 최첨단 백본 네트워크 보다 일관되게 더 나은 성능을 

얻습니다. 특히, ISD는 베이스 라인으로 삼은 DenseNet 보다 

파라미터들이 4배 더 적지만, 성능이 우수 합니다. 우리는 또한 ISD가 

Mask R-CNN 백본 네트워크로 주로 사용하는 ResNet 보다 268배 

훨씬 더 적은 파라미터들을 가지고, 추가 데이터 또는 사전 훈련된 

모델을 사용하지 않고, 성능에서 비슷하거나 더 나은 결과를 얻을 수 

있음을 관찰합니다. 우리의 실험 결과들은 ISD가 제한된 훈련 데이터 

세트만으로 실시간 및 우수한 성능을 요구하는 반도체 산업의 다양한 

분야들에서 많은 미래의 이미지 분할 연구 노력에 유용할 수 있음을 

보여줍니다. 
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