

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. Dissertation of Engineering

A novel deep architecture for image

segmentation in photolithography

inspection systems

포토리소그래피 검사 시스템의 이미지 분할을

위한 새로운 깊은 아키텍처

August 2021

Graduate School of

Convergence Science and Technology

Seoul National University

 Program in Intelligent Systems

Junghee Han

 i

Abstract

In semiconductor manufacturing, defect detection is critical to

maintain high yield. Typically, the defects of semiconductor wafer

may be generated from the manufacturing process. Most computer

vision systems used in semiconductor photolithography process

inspection still have adopt to image processing algorithm, which often

occur inspection faults due to sensitivity to external environment

changes. Therefore, we intend to tackle this problem by means of

converging the advantages of image processing algorithm and deep

learning.

In this dissertation, we propose Image Segmentation Detector

(ISD) to extract the enhanced feature-maps under the situations

where training dataset is limited in the specific industry domain, such

as semiconductor photolithography inspection. ISD is used as a novel

backbone network of state-of-the-art Mask R-CNN framework for

image segmentation. ISD consists of four dense blocks and four

transition layers. Especially, each dense block in ISD has the shortcut

connection and the concatenation of the feature-maps produced in

layer with dynamic growth rate for more compactness. ISD is trained

from scratch without using recently approached transfer learning

method. Additionally, ISD is trained with image dataset pre-

 ii

processed by means of our designed image filter to extract the better

enhanced feature map of Convolutional Neural Network (CNN). In

ISD, one of the key design principles is the compactness, plays a

critical role for addressing real-time problem and for application on

resource bounded devices.

To empirically demonstrate the model, this dissertation uses the

existing image obtained from the computer vision system embedded

in the currently operating semiconductor manufacturing equipment.

ISD achieves consistently better results than state-of-the-art

methods at the standard mean average precision which is the most

common metric used to measure the accuracy of the instance

detection. Significantly, our ISD outperforms baseline method

DenseNet, while requiring only 1/4 parameters. We also observe that

ISD can achieve comparable better results in performance than

ResNet, with only much smaller 1/268 parameters, using no extra

data or pre-trained models. Our experimental results show that ISD

can be useful to many future image segmentation research efforts in

diverse fields of semiconductor industry which is requiring real-time

and good performance with only limited training dataset.

Keyword : Photolithography inspection, backbone network, image

segmentation, deep learning, convolutional neural networks,

computer vision.

Student Number : 2010-22695

 iii

Contents

Abstract .. i

Chapter 1. Introduction ... １

1.1. Background and Motivation .. ４

Chapter 2. Related Work ... １２

2.1. Inspection Method ... １２

2.2. Instance Segmentation .. １６

2.3. Backbone Structure ... ２４

2.4. Enhanced Feature Map .. ３５

2.5. Detection Performance Evaluation ４７

2.6. Learning Network Model from Scratch ５０

Chapter 3. Proposed Method ... ５２

3.1. ISD Architecture .. ５２

3.2. Pre-processing ... ６３

3.3. Model Training ... ７１

 iv

3.4. Training Objective ... ７３

3.5. Setting and Configurations .. ７５

Chapter 4. Experimental Evaluation ７８

4.1. Classification Results on ISD .. ８１

4.2. Comparison with Pre-processing ８５

4.3. Image Segmentation Results on ISD ９４

4.3.1. Results on Suck-back State .. ９４

4.3.2. Results on Dispensing State １０４

4.4. Comparison with State-of-the-art Methods １１３

Chapter 5. Conclusion .. １２１

Bibliography ... １２７

초록 .. １４６

 v

List of Figures

Figure 1.1 Semiconductor photolithography process. ５

Figure 1.2 The computer vision system embedded in the

currently operating semiconductor manufacturing

equipment for photolithography inspection. (a) The

semiconductor equipment with embedded computer

vision system, providing sophisticated process

control and techniques in the photomask

manufacturing process. (b) An example of suck-

back state monitoring in computer vision system. (c)

An example of dispensing state monitoring in

computer vision system. .. ６

Figure 1.3 An example of image distorted by external

environment factors: (a) Normal image; (b)

Distorted image. ... ７

Figure 1.4 Three inspection type for detecting defects in the

spin coating process of semiconductor

photolithography: (a) Suck-back state; (b)

 vi

Contamination state; (c) Dispensing state. ８

Figure 2.1 Relationship between Computer Vision and Various

Other Fields. .. １３

Figure 2.2 An example of detecting the contamination state of

nozzle by means of the specialized digital image

processing: (a) Original image; (b) Pre-processed

Image; (c) Image where contamination is detected. ... １４

Figure 2.3 An example of detecting the suck-back state of

nozzle by means of the specialized signal processing:

(a) The suck-back line is detected by means of

filtering image within processing area; (b) The

suck-back line is detected by means of signal

processing which is adopting adaptive threshold and

sum of pixels in x direction. １５

Figure 2.4 An example of various types of nozzle for spraying

photoresist. .. １５

Figure 2.5 The structure of four architectures. The vertically

aligned features are merged by element-wise

addition, and the horizontally aligned features are

merged by concatenation. (a), (b) and (c) are the

three derivative architectures with various

representative settings of (d). ２６

Figure 2.6 The structure of our architecture. The vertically

aligned features are merged by element-wise

addition, and the horizontally aligned features are

merged by concatenation. The k1 is the same size

as the output of the block. The k2 is dynamic growth

 vii

rate which is different in each layer. ２７

Figure 2.7 The improved network structure for enhanced

feature map. .. ３６

Figure 2.8 Overview of CLAHE. Example with Number of

Tiles(NT) = [5,5] and Clip Limit(CL) = 2.0. ３８

Figure 2.9 A feature pyramid with predictions made

independently at all levels. A building block

illustrating the lateral connection and the top-down

pathway, merged by addition. ４１

Figure 2.10 Region Proposal Network (RPN). The RPN module

serves as the “attention” of single unified network.

In other words, The RPN module tells the network

module where to look. ... ４２

Figure 2.11 ROI align structure. ROI pooling was a model for

object detection. It wasn't important to have

accurate location information. If the ROI has floating

point coordinates, the floating point is rounded and

then pooling is done. This distorts the location

information of the input image, causing

segmentation problems. Therefore, ROI alignment

using positional information is used using bilinear

interpolation. ... ４４

Figure 2.12 The definition of intersection over union (IoU). ４８

Figure 3.1 The network structure by using ISD for image

segmentation on Mask R-CNN framework. ５３

Figure 3.2 Dense block network model with post-activation in

ISD. .. ５６

 viii

Figure 3.3 Comparison with pre-activation and post-activation.

(a) Pre-activation of BN-ReLU-Conv (b) Post-

activation of Conv-BN-ReLU in ISD. ５７

Figure 3.4 A dense block with dynamic growth rate of k = 2, 5,

3 in each layer on ISD. .. ５８

Figure 3.5 ISD structure with dynamic growth rate applying

different growth rates in each layer. The dynamic

growth rate is applied after the second layer. we

compare three cases: (a) uniform growth rates

(k=6,k,∙∙∙,k) are used; (b) increasing growth rates

(1,2,3,∙∙∙,k=6) are used; (c) decreasing growth rates

(k=6,k-1,k-2,∙∙∙,2,1) are used. ６０

Figure 3.6 ISD structure to reduce training parameters

increasing with growth rate. Regardless growth rate,

it always grows by one. (a) Reduced by sum module

with uniform growth rate; (b) Reduced by mean

module with uniform growth rate................................ ６１

Figure 3.7 ISD structure in which the sum or mean module is

added to the growth rate. (a) The sum module is

added to uniform growth rate; (b) The sum module

is added to uniform growth rate. ６２

Figure 3.8 Convolution kernel for each operator. (a) Robert, (b)

Sobel, (c) Scharr, (d) Prewitt, (e) LoG, (f) Sharpen. .. ６５

Figure 3.9 Implementation of edge detection algorithm to

image. (a) Image is filtered by horizontal kernel (b)

Image is filtered by vertical kernel. ６８

Figure 3.10 The image pre-processed by means of our filter of

 ix

equation “(12)” (g = 4). ... ７０

Figure 3.11 Illustration of training model on target dataset

directly. ... ７２

Figure 3.12 Training process of image segmentation using ISD

as the backbone network of Mask R-CNN

framework. .. ７３

Figure 4.1 The method for experimentally verifying that our

model is not overfitting. .. ８０

Figure 4.2 The classification training and validation accuracy

in each epoch. ISD has 42 depths with shortcut

connection. The uniform growth rate (k) is 6. ８２

Figure 4.3 The classification training and validation loss in

each epoch. ISD has 42 depths with shortcut

connection. The uniform growth rate (k) is 6. The

average processing time for each epoch is 31

seconds. ... ８２

Figure 4.4 The classification training and validation loss in

each epoch. ISD has 42 depths without shortcut

connection. The uniform growth rate (k) is 6. The

average processing time for each epoch is 26

seconds. ... ８３

Figure 4.5 The experimental result of detecting image

segmentation of nozzle type. ８３

Figure 4.6 Visualization of class activation mapping, using ISD

as backbone networks. .. ８４

Figure 4.7 The image segmentation training and validation loss

 x

in each epoch on suck-back state results. ISD has

38 depths with shortcut connection. The uniform

growth rate (k) is 6. .. ８６

Figure 4.8 Image segmentation of suck-back state for

inspection. In case of training ISD with pre-

processing, the mask performance is better than

without pre-processing. ISD has 38 depths with

shortcut connection and the uniform growth rate (k)

is 6. .. ８７

Figure 4.9 The chart shows performance in validation for

comparison of various pre-processing algorithms in

suck-back state results. ISD has 42 depths with

shortcut connection and the uniform growth rate (k)

is 6 ... ８９

Figure 4.10 The image segmentation training and validation loss

in each epoch, on dispensing state results. ISD has

38 depths with shortcut connection. The uniform

growth rate (k) is 6. .. ９０

Figure 4.11 Image segmentation of dispensing state for

inspection. In case of training ISD with pre-

processing, the mask performance is better than

without pre-processing. ISD has 38 depths with

shortcut connection and the uniform growth rate (k)

is 6. .. ９１

Figure 4.12 The chart shows performance in validation for

comparison of various pre-processing algorithms in

dispensing state results. ISD has 38 depths with

shortcut connection and the uniform growth rate (k)

 xi

is 6. .. ９３

Figure 4.13 An example of image segmentation results on suck-

back state. ... ９５

Figure 4.14 This chart shows performance in validation for

comparison of different depths with shortcut

connection in suck-back state results. We

experiment with model weights having the lowest

validation loss obtained during the training up to 100

epochs. The uniform growth rate (k) is 6. ９７

Figure 4.15 This chart shows performance in validation for

comparison with different depths and shortcut

connection in suck-back state results. We

experiment with model weights having the lowest

validation loss obtained during the training up to 100

epochs. The uniform growth rate (k) is 6. ９８

Figure 4.16 This chart shows performance in validation for

comparison of various dynamic growth rate with

shortcut connection in suck-back state results. We

experiment with model weights having the lowest

validation loss obtained during the training up to 100

epochs. The uniform growth rate (k) is 12............. １０１

Figure 4.17 An example of image segmentation results on

dispensing state. .. １０５

Figure 4.18 This chart shows performance in validation for

comparison of different depths with shortcut

connection in dispensing state results. We

experiment with model weights having the lowest

 xii

validation loss obtained during the training up to 100

epochs. The uniform growth rate (k) is 6. １０７

Figure 4.19 This chart shows performance in validation for

comparison with different depths and shortcut

connection in dispensing state results. We

experiment with model weights having the lowest

validation loss obtained during the training up to 100

epochs. The uniform growth rate (k) is 6. １０８

Figure 4.20 This chart shows performance in validation for

comparison of various dynamic growth rate with

shortcut connection in dispensing state results. We

experiment with model weights having the lowest

validation loss obtained during the training up to 100

epochs. The uniform growth rate (k) is 12............. １１１

Figure 4.21 This shows performance in validation for

comparison with various state-of-the-art backbone

networks in suck-back state results. We experiment

with model weights having the lowest validation loss

obtained during the training up to 100 epochs. The

growth rate of DenseNet is 12. The uniform growth

rate of ISD is 6. ... １１６

Figure 4.22 This shows performance in validation for

comparison with various state-of-the-art backbone

networks in dispensing state results. Additionally,

the training process failed to converge for ResNet-

50. We experiment with model weights having the

lowest validation loss obtained during the training

up to 100 epochs. The growth rate of DenseNet is

 xiii

12. The uniform growth rate of ISD is 6. １２０

 xiv

List of Tables

Table 3.1 ISD Architecture. ... ５５

Table 3.2 Configurations used in training model for image

segmentation. .. ７６

Table 4.1 Hardware specification. .. ７８

Table 4.2 Comparison of loss according to various depths and

shortcut connection in nozzle type classification

results. The loss represents the classification

training and validation loss, when the lowest loss in

validation is obtained during the training up to 100

epoch. The uniform growth rate (k) is 6. ８５

Table 4.3 Comparison of performing pre-processing in suck-

back state results. ISD has 38 depths with shortcut

connection and the uniform growth rate (k) is 6. ８８

Table 4.4 Comparison of performance according to pre-

processing algorithm in suck-back state results. ISD

has 42 depths with shortcut connection and the

 xv

uniform growth rate (k) is 6. ８８

Table 4.5 Comparison of performing pre-processing in

dispensing state results. ISD has 38 depths with

shortcut connection and the uniform growth rate (k)

is 6. .. ９２

Table 4.6 Comparison of performance according to pre-

processing algorithm in dispensing state results. ISD

has 38 depths with shortcut connection and the

uniform growth rate (k) is 6. ９２

Table 4.7 Comparison with different depths and shortcut

connection in suck-back state results. We

experiment with model weights having the lowest

validation loss obtained during the training up to 100

epochs. The uniform growth rate (k) is 6. ９６

Table 4.8 Comparison of growth rate (k) with shortcut

connection in suck-back state results. We

experiment with model weights having the lowest

validation loss obtained during the training up to 100

epochs. .. ９９

Table 4.9 Comparison of dynamic growth rate with shortcut

connection in suck-back state results. We

experiment with model weights having the lowest

validation loss obtained during the training up to 100

epochs. The uniform growth rate (k) is 12............. １００

Table 4.10 Comparison of sum and mean module in suck-back

state results. We experiment with model weights

having the lowest validation loss obtained during the

 xvi

training up to 100 epochs. １０２

Table 4.11 Comparison of sum and mean module added to

growth rate in suck-back state results. We

experiment with model weights having the lowest

validation loss obtained during the training up to 100

epochs. .. １０３

Table 4.12 Comparison of results with different datasets in

image segmentation of suck-back state. ISD has 42

depths with shortcut connection and the uniform

growth rate (k) is 6. .. １０４

Table 4.13 Comparison with different depths and shortcut

connection in dispensing state results. We

experiment with model weights having the lowest

validation loss obtained during the training up to 100

epochs. The uniform growth rate (k) is 6. １０６

Table 4.14 Comparison of growth rate (k) with shortcut

connection in dispensing state results. We

experiment with model weights having the lowest

validation loss obtained during the training up to 100

epochs. .. １０９

Table 4.15 Comparison of dynamic growth rate with shortcut

connection in dispensing state results. We

experiment with model weights having the lowest

validation loss obtained during the training up to 100

epochs. The uniform growth rate (k) is 12............. １１０

Table 4.16 Comparison of results with different datasets in

image segmentation of dispensing state. ISD has 38

 xvii

depths with shortcut connection and the uniform

growth rate (k) is 6 ... １１２

Table 4.17 Comparison with state-of-the-art backbone

networks in suck-back state results. We experiment

with model weights having the lowest validation loss

obtained during the training up to 100 epochs. The

growth rate of DenseNet is 12. The uniform growth

rate of ISD is 6. ... １１４

Table 4.18 Comparison of state-of-the-art backbone networks

with FLOPs and running time in suck-back state.

The growth rate of DenseNet is 12. The uniform

growth rate of ISD is 6. Input size of backbone

network is 120×120. The running time is the

processing time of CPU per image. １１５

Table 4.19 Comparison with state-of-the-art backbone

networks in dispensing state results. We experiment

with model weights having the lowest validation loss

obtained during the training up to 100 epochs. The

growth rate of DenseNet is 12. The uniform growth

rate of ISD is 6. ... １１７

Table 4.20 Comparison of state-of-the-art backbone networks

with FLOPs and running time in dispensing state.

The growth rate of DenseNet is 12. The uniform

growth rate of ISD is 6. Input size of backbone

network is 120×120. The running time is the

processing time of CPU per image. １１８

 １

Chapter 1. Introduction

Semiconductor manufacturing has emerged as one of the most

important world industries. In semiconductor manufacturing, defect

detection is critical to maintain high yield. Even with the highly

automated and precisely monitored facilities used to process the

complex manufacturing steps in a near particle free environment,

wafer defect still exist. The causes of defect may be generated from

equipment malfunctions in delicate and difficult processing steps. In

order to be competitive in the semiconductor manufacturing industry,

the detection of these problems becomes a critical issue. In this

dissertation, In order to identify and tackle the problems of computer

vision systems used to inspect the malfunction of equipment in the

semiconductor photolithography process, the-state-of-art

technologies are researched, converged and applied.

Object detection or localization is one of the most important and

challenging branches of computer vision, which has been widely

 ２

applied in people’s life, such as monitoring security, autonomous

driving and military field, transportation field, medical field, industry

field so on, with the purpose of locating instances of semantic objects

of a certain class. Detection or object localization is an incremental

step from coarse to fine inference, which provides not only classes

of the image objects but also gives the location of the classified image

objects in the form of bounding boxes or centroids.

Semantic segmentation [1, 2] gives fine inference by predicting

labels for every pixel in the input image. Each pixel is labelled

according to the object class within which it is enclosed. Furthering

this evolution, instance segmentation gives different labels for

separate instances of objects belonging to the same class. Hence,

instance segmentation may be defined as the technique of

simultaneously solving the problem of object detection as well as that

of semantic segmentation.

Instance segmentation methods that focus on detection bounding

box proposals, ignore the classes that are not well suited for

detection, e.g., background, scenery. On the other hand, semantic

segmentation does not provide instance boundaries for classes in a

given image. Furthermore, panoptic segmentation task, first coined

by Kirillov et al. [3] unifies these tasks and defines an ideal output

for thing classes as instance segmentations, as well as for stuff

classes as semantic segmentation.

These segmentation are developing a technique/algorithm that

performs well in the two domains of better segmentation accuracy

 ３

and better segmentation efficiency. Better segmentation accuracy

encompasses accurate localization and recognition of objects in

images/frames, with the result that the large variety of object related

categories in real scenario can be distinguished (i.e. better

distinctiveness), and that instances of objects belonging to same

class which are subject to intra-class appearance variation, may be

localized and recognized (i.e. better robustness). Better

segmentation efficiency refers to computational cost of the

segmentation algorithm. It refers efficient real-time computational

costs like acceptable memory/storage requirements, and lesser

burden on the processor(s). One of the important components in an

object detector for segmentation is good feature representation

which is of primary importance in object detection. Methods based on

deep learning [4] (like Deep CNNs) are able to learn powerful

representations of features with various abstraction levels from

images. Subsequently, the problem of feature representation has

been transferred to the development of better performing network

architectures and more optimized training procedures. Deep CNN

based detectors like RCNN [5], Fast RCNN [6], Faster RCNN [7],

Mask R-CNN [8] and YOLO [9], usually use the deep CNN

architectures and subsequently use features from the topmost CNN

layer for object representation. However, there are many issues e.g.,

various scale, geometric transformations, occlusions, image

degradations to be addressed. Therefore, in order to good feature

representation, the objective of this dissertation is to present a novel

 ４

deep architecture that convergences image processing technology

and deep learning image segmentation technology, which is strong

against image degradation among these problems and can be applied

with better efficiency to semiconductor photolithography inspection

systems.

As mentioned earlier, we introduced object detection, localization,

segmentation, issues of segmentation and the objective to be covered

in this dissertation.

1.1. Background and Motivation

Instance segmentation has come to be one of the relatively important,

complex and challenging areas in machine vision research. Aimed at

predicting the object class-label and the pixel-specific object

instance-mask, it localizes different classes of object instances

present in various images. Instance segmentation aims to help largely

robotics, autonomous driving, surveillance etc. Specifically, instance

segmentation is an important task for biomedical and biological image

analysis. Due to the complicated background components, the high

variability of object appearances, numerous overlapping objects, and

ambiguous object boundaries, this task still remains challenging.

Recently, Jiao et al [10] list the traditional and new applications of

deep learning based object detection (instance segmentation).

 ５

However, there is no application in semiconductor industry due to

specific process domain.

Figure 1.1 Semiconductor photolithography process.

 ６

As illustrated in Figure 1.1, the semiconductor photolithography

is a process of drawing semiconductor circuits on wafers, coating

them thinly with photosensitive polymer materials that respond to

light on wafers, then placing a mask on top of the desired pattern and

pecking the light to form the desired pattern.

Figure 1.2 The computer vision system embedded in the currently operating

semiconductor manufacturing equipment for photolithography inspection. (a)

The semiconductor equipment with embedded computer vision system,

providing sophisticated process control and techniques in the photomask

manufacturing process. (b) An example of suck-back state monitoring in

computer vision system. (c) An example of dispensing state monitoring in

computer vision system.

 ７

In this process, the photoresist spin coating is used to spread the

required thickness of the photoresist uniformly on the wafer.

Therefore, the spin coating is an important process. If inspection

faults occur in this process, a defective product is produced no matter

how well the subsequent process is performed. It is greatly affecting

the defect rate in wafer-based process. Thus, in this study, we focus

on photoresist spin coating process of semiconductor

photolithography. As illustrated in Figure 1.2, the computer vision

system is used to prevent defects in semiconductor products by

monitoring these processes and predicting defects in the photo

process in advance. Generally, the computer vision system uses the

digital image processing [11-20] to try and perform emulation of

vision at human scale. The computer vision system used in the

process of spin coating also finds defects through digital image

processing algorithm.

(a)

 (b)

Figure 1.3 An example of image distorted by external environment factors:

(a) Normal image; (b) Distorted image.

 ８

However, many detection errors occur due to external

environmental factors such as various types of wafers and

photoresist, motor rotation speed, and diffuse reflection of light.

Figure 1.3 illustrates an example of image distorted by external

environment factors. Digital image processing algorithm has high

performance in case of images with little influence on the external

environment. However, performance is extremely degraded when

image distortion occurs due to the external environment. Therefore,

in the computer vision system, if the characteristics of the image is

changed or distorted, there is a disadvantage in that a new or modified

technique of digital image processing algorithm and the specialized

signal processing method should be applied to overcome it. To

overcome the influence of various image distortion, we adopt deep

learning image segmentation technology that is robust even in the

external environment.

(a)

(b)

(c)

Figure 1.4 Three inspection type for detecting defects in the spin coating

process of semiconductor photolithography: (a) Suck-back state; (b)

Contamination state; (c) Dispensing state.

 ９

As illustrated in Figure 1.4, there are three inspection type for

detecting defects in the spin coating process of semiconductor

photolithography: First is the suck-back state of the nozzle that

sprays the photoresist, Second is the contamination state of the

nozzle, and Third is the dispensing state to measure the time to spray

the photoresist. However, among these, we do not include inspecting

contamination state shown in Figure 1.4 (b) in this study, because

sufficient images cannot be obtained to perform this study. We leave

it for future work. In this dissertation, we propose a method for

detecting defects by monitoring the suck-back state and the

dispensing state. Therefore, in order to this, it is necessary to find a

specific area in an image and extract features within the area to

determine whether the defect is defective. Deep learning techniques

[21] that can detect specific areas in an image have object detection,

semantic segmentation, and instance segmentation. Among them, the

instance segmentation technique can be applied to image

segmentation for inspecting not only the suck-back state but also the

dispensing state.

Image segmentation is a computer vision process designed to

simplify image analysis by splitting input into segments that

represent objects or parts of objects and form a collection of pixels.

Instance segmentation is a subtype of image segmentation which

identifies each instance of each object within the image at the pixel

level. Instance segmentation can also be thought as object detection

where the output is a mask instead of just a bounding box. Agarwal

 １０

et al. [22] presented recent advances in object detection in the age

of deep convolutional neural networks. The objective of instance

segmentation is to detect specific objects in an image and create a

mask around the object of interest. Thus, in this work, instance

segmentation is used to image segmentation required for

semiconductor photolithography inspection.

In computer vision, transfer learning is usually expressed

through the use of pre-trained models. To achieve desired

performance, the common practice in advanced instance

segmentation systems is to fine-tune models pre-trained on

ImageNet [23]. This fine-tuning process can be viewed as transfer

learning [24-29]. Researchers usually train CNN models on large

scale classification datasets like ImageNet [23] first, then fine-tune

the models on target tasks, such as object detection [5-7, 9, 30-

40], image segmentation [41-44], etc. However, we directly train

model without involving any other additional data or extra fine-tuning

process. There are numerous state-of-the-art pre-trained CNN

models available. Fine-tuning on pre-trained models can quickly

convergence to a final state and requires less instance-level

annotated training data than basic classification task. As is well-

known, fine-tuning can mitigate the gap between different target

category distributions. However, it is still a severe problem when the

source domain (e.g., ImageNet) has a huge mismatch to the target

domain such as industrial images, medical images, etc. As illustrated

in Figure 1.4, the image used for inspection is completely different

 １１

from the image on source domain (e.g., ImageNet). Without having

enough number of dataset, deep artificial neural networks cannot be

trained well and it is difficult to collect enough image data in the

specific industry domain.

In this work, we investigate three questions. First, is it possible

to train image segmentation networks from scratch directly with only

smaller dataset without the pre-trained models? Second, are there

any principles to design a resource efficient network structure for

image segmentation, meanwhile keeping high detection accuracy?

Third, is there any methodology to improve inspection performance

other than network design? To meet this goal, we propose image

segmentation detector (ISD) and pre-processing that is performed

by using image filter before training.

 １２

Chapter 2. Related Work

In this section, we first summarize current inspection method of

computer vision system used in currently operating semiconductor

photolithography process for defect detection. We also review the

state-of-the-art deep learning based instance segmentation and

backbone structure. Then, we review the development of improved

network structure for extracting enhanced feature map. Finally, we

briefly introduce the metrics adopted to assess the detections in most

competitions, and the method for learning from scratch.

2.1. Inspection Method

Efficacious recognition and consistent identification of visual features

is an important problem in applications, such as Pattern Recognition,

 １３

Structure from motion, Image Registration and Visual Localization.

The input data takings, numerous arrangements such as audiovisual

arrangements, interpretations from manifold cameras or

multidimensional statistics from a scanner. Concurrent performance

is a perilous demand to utmost of these applications, which

necessitate the finding and corresponding of the visual features in

real-time. Although feature recognition and empathy approaches

have been deliberate in the work due to their computational intricacy

therefore pure software execution by unique hardware is far suitable

in their performance for real-time applications. As illustrated in

Figure 2.1, Computer vision is related to various other fields,

however it is closely linked to the field of image processing.

Computer vision systems [45-51] are widely used for on-line

inspection and quality control to improve the finished product quality

and lower the costs in various industries.

Figure 2.1 Relationship between Computer Vision and Various Other Fields.

 １４

The computer vision system used in existing semiconductor

photolithography process, performs the specialized digital image

processing and signal processing to extract features necessary for

defect detection, and determines the defect by means of a neural

network as a classifier. The specialized digital image processing

removes noise from the input image of specific domain, improves

brightness or contrast, emphasizes edges, and makes the image more

clearly to extract features. Feature extraction is obtained by the

signal processing method that calculates the sum of the vertical

component pixels and the horizontal components of the pre-

processed image by means of digital image processing, and applies

an adaptive threshold. Recognizing the extracted features and

determining whether there are defects is composed of a neural

network. Figure 2.2 (c) illustrates an example of automatically

detecting the contamination state of nozzle by means of digital image

processing.

(a)

(b)

(c)

Figure 2.2 An example of detecting the contamination state of nozzle by

means of the specialized digital image processing: (a) Original image; (b) Pre-

processed Image; (c) Image where contamination is detected.

 １５

(a)

(b)

Figure 2.3 An example of detecting the suck-back state of nozzle by means

of the specialized signal processing: (a) The suck-back line is detected by

means of filtering image within processing area; (b) The suck-back line is

detected by means of signal processing which is adopting adaptive threshold

and sum of pixels in x direction.

Figure 2.4 An example of various types of nozzle for spraying photoresist.

Figure 2.3 also illustrates an example of automatically detecting the

suck-back state of nozzle by means of signal processing during the

 １６

spin coating process of semiconductor photolithography. In the spin

coating process of semiconductor photolithography, various types of

nozzle for spraying photoresist are used depending on the kind of

photoresist and the characteristic of wafer. Figure 2.4 illustrates an

example of various types of nozzle. Therefore, digital image

processing and signal processing method used in the computer vision

system should be applied to the specialized technique depending on

external environment such as various types of nozzle, wafer

characteristics and diffuse reflection of light etc. If a new nozzle or a

new wafer is used, the defect detection accuracy of the computer

vision system is inevitably reduced.

Considering these problems, we propose image segmentation

method based on generalized deep learning in order to be more robust

to the external environment and further improve performance instead

of the specialized digital image processing and signal processing

method used for semiconductor photolithography inspection.

2.2. Instance Segmentation

Object recognition contains detection and classification, which is the

basis of video-based ITS [52]. Classical video based vehicle

detection methods mainly include frame difference, optical flow,

background subtraction based on Gaussian mixture model (GMM)

 １７

[52]. And the methods for vehicle classification usually use global or

local features such as scale-invariant feature transform (SIFT),

pyramid histogram of oriented gradients (PHOG), Gabor features,

Harris corner [53]. In recent years, a series of famous region-based

convolutional neural networks (CNNs) are proposed for

simultaneously detection and classification, which have higher

precision compared with the traditional methods. Girshick et al. [5]

combine region proposals with CNNs to generate regions with CNN

features (R-CNN). In R-CNN, candidate regions are produced

through selective search [54]. Nevertheless, the inference of R-

CNN is time-consuming because the CNNs is repeatedly applied for

about 2000 regions per image. For improving the performance,

Spatial Pyramid Pooling Network (SPP-net) is introduced by He et

al. [55]. In SPP-net, the feature maps of an input image are

computed only once. In order to further increase training and

inference speed and improve detection precision, Fast R-CNN is

developed [6]. However, Fast R-CNN still adopts the method like

selective search in the step of generating the proposal regions, which

is time-consuming. Ren et al. [7] propose a region proposal network

(RPN) to efficiently generate proposal regions that are classified and

regressed by Fast R-CNN, and the entire network composed of RPN

and Fast R-CNN is called Faster R-CNN. By adding a branch for

segmentation in Faster R-CNN and enhancing the features of input

image through FPN [56], Mask R-CNN is proposed [8], which is

used to recognize the objects.

 １８

There are two types of typical frameworks for instance

segmentation principally: the proposal-based method and the

proposal-free method. The former detects bounding boxes first and

then refines the instances to pixel-wise masks, while the latter

directly generates instance masks with no need for proposals.

Currently, most of popular and advanced methods for instance

segmentation use proposals, which usually include multiple stages

[57-59].

Proposal-free methods belong to another stream for instance

segmentation [60, 61]. Proposal free network (PFN) [62] tends to

predict instance numbers and location vectors, and then clusters

pixels into instances. InstanceCut [63] feeds both semantic

segmentation scores and instance boundary scores into an image

partition module for mask prediction. Deep Watershed Transform [64]

performs an energy map learning, which is followed by a cutting

operation based on a single energy level, to yield instances from

related components. Sequential grouping networks (SGN) [65]

employs a sequence of networks to gradually compose objects from

pixels to lines and eventually to instances. Arnab et al. [66] design a

dynamically instantiated conditional random field (CRF) network to

predict instances mask, where they also utilize box information. Liu

et al. [67] present an instance segmentation scheme via affinity

derivation and graph merge, where the former estimates pixel-wise

similarity and the latter merges instances with a constructed affinity

graph. Single-shot instance segmentation with affinity pyramid

 １９

(SSAP) [68] also learns pixel affinity but produces affinity pyramid

instead, then performs the cascade graph partition to merge instances.

SSAP achieves state-of-the-art performance of proposal-free

methods on Cityscapes [69]. Very recently, YOLACT [70] devotes

to a real-time instance algorithm implementation, which is based on

an object detection framework with lighter box prediction heads and

a mask coefficient prediction head. Xu et al. [71] propose another

method, i.e., explicit shape encoding for real-time instance

segmentation (ESE-Seg), toward real-time instance segmentation,

which predicts the boundary of instances by shape encoding directly.

With Chebyshev polynomials, ESE-Seg approximates the shape

coefficients of the instance inside the bounding box, thus greatly

reduces the computational consumption. PolarMask [72] formulates

the instance segmentation problem as instance center classification

and dense distance regression in a polar coordinate, extending a

similar scheme with fully convolutional one-stage object detection

(FCOS) [73]. The novel polar loU loss benefits dense distance

regression of instances. Proposal-free is another important method

for instance segmentation, which also has succeeded in instance

segmentation [65], [67], [68], [74], [75], [76]. Proposal-free does

not need a proposal box prepared in advance, so it won’t be

influenced by bounding boxes or region proposals’accuracy. Instead,

proposal-free usually exploits the spatial or semantic relation

between pixel and pixel, or pixel and instance to find instance and

segment instance. Besides, due to the lack of a one-stage or two-

 ２０

stage object detection process, proposal-free methods are usually

faster but fail on the performance compared with a proposal-based

method. Neven et al. [75] proposes the loss function to pull the

spatial embedding of pixels together, which belong to the same

instance. This method of clustering is representative of proposal-

free. To cluster pixels into instances, Liu et al. [67] proposes a graph

merge algorithm that regards pixels as the vertexes and affinities as

edges. By jointly learning the affinity pyramid and the semantic class

labeling to compute the probability that two pixels belong to the same

instance in a hierarchical manner, the performance of SSAP [68] can

complete with proposal-free methods. Without instance wise labeling,

Inter-pixel Relation Network (IRNet) [74] aims to learn and predict

semantic affinities between pixels with image-level supervision

through class boundary detection to achieve instance segmentation.

These proposal-free methods achieve remarkable performance in

instance segmentation. However, because of lacking a localization

step compared with proposal-based methods, there is still a

performance gap between proposal-free and proposal-based

methods.

Proposal-based is the most dominant method of instance

segmentation and achieves outstanding performance. It usually gets

bounding boxes by object detector and segments these bounding

boxes to get instance masks. If the object detector cannot predict an

accurate bounding box, the part of instance beyond the bounding

boxes cannot be segmented. Currently, the most dominant methods

 ２１

[8], [77], [78], [79] for instance segmentation are proposal-based,

which need to get bounding boxes or region proposals first, then

segment the instance within the bounding box. Mask R-CNN [8] is

the most representative work, which extends Faster R-CNN [7] by

adding a fully convolutional network for instance segmentation, in

parallel with the existing branch for object detection. With the

instance-first strategy, the forward stream of the most

representative proposal-based instance segmentation framework,

Mask R-CNN [8], is: (i) region proposal network (RPN) [7] is

employed to propose possible object regions; (ii) after that, the

proposals are fed into the subsequent detection head to classify the

category and regress accurate position coordinate offsets; (iii) at last,

fully convolutional networks (FCN) [41] is utilized on the feature

maps inside the bounding boxes to label the pixel-wise instance

masks. Because of its great success, many other state-of-the-art

methods adopt a similar framework. For instance, PANet [77] is built

on Mask R-CNN, which improves information paths and aggregates

features to achieve enhanced performance. DetNet [80] is an

effective backbone network designed for object detection, which also

benefits instance segmentation task. MaskLab [81] shows

comparable performance with other state-of-the-art methods with

the help of fused features from two extra outputs, namely, semantic

segmentation and instance center direction. Furthermore, based on

Mask R-CNN [8], Mask Scoring R-CNN [78] adds a Mask IOU head

to predict a quality score for instance mask to take the place of

 ２２

confidence score and achieves competitive performance. Compared

with the top-down path in FPN [56], PANet [77] creates a bottom-

up path augmentation to enhance the feature pyramid and shorten the

information path, which improves the instance segmentation

performance based on Mask R-CNN [8]. Extending on Cascade R-

CNN [82], HTC [79] successes in instance segmentation by adding

a semantic segmentation branch to enrich spatial context information

while enhancing the information flow between each mask branch in

different stages. YOLACT [70] and CenterMask [83] are

respectively developed an instance segmentation sub-network on

RetinaNet [32] and FCOS [73]. These methods extend on a one-

stage object detector, achieve fast instance segmentation, and

succeed in performance. However, these successful instance

segmentation methods rely on the accuracy of object detection

incredibly. If the object detector cannot predict an accurate bounding

box, instance segmentation’s performance will degenerate. Instance

segmentation requires both pixel-level classification accuracy and

high-level semantic features at the target instance level, which is

very challenging, and the cascade structure can effectively improve

both of these problems. To make full use of the relationship between

detection and segmentation, Wen et al. [84] proposed a joint multi-

tasking cascade structure, which is not simply to cascade the two

tasks of detection and segmentation, but to unitedly put them into

multi-stage processing, and especially to integrate the information

at different stages of the mask branch. In addition, the feature fusion

 ２３

process is introduced in the full convolution networks (FCN) branch,

and the high-level and low-level features are effectively fused to

enhance the contextual information of the picture semantic features.

In order to create a more accurate instance segmentation, various

improved and extended methods based on mask R-CNN have been

presented. Zhang et al. [85] designed the segmenting beyond the

bounding box (S3B-Net) extended on Mask R-CNN to help instance

segmentation methods based on object detection to segment the part

of an instance beyond the bounding box. Specifically, the sub-

network first predicts a two-dimensional pixel embedding for each

pixel. Then, the Gaussian function is employed to calculate a pixel’s

probability belongs to a corresponding instance according to the

two-dimensional pixel embedding. Finally, the output of the sub-

network combines with the output of instance segmentation based on

object detection to generate a more precise instance mask. Wen et

al. [86] proposed an automatic building extraction method based on

improved mask region convolutional neural network method that can

detect the rotated bounding boxes of buildings and segment them

from very complex backgrounds, simultaneously. In order to tackle

the ambiguity in the acquired outdoor depth map, Xu et al. [87]

proposed a residual regretting mechanism, incorporated into current

flexible, general and solid instance segmentation framework Mask R-

CNN in an end-to-end manner. Specifically, regretting cascade is

designed to gradually refine and fully unearth useful information in

depth maps, acting in a filtering and backup way. Additionally,

 ２４

embedded by a novel residual connection structure, the regretting

module combines RGB and depth branches with pixel-level mask

robustly.

Instance segmentation based on Mask R-CNN has a wide range

of application scenarios. Zhang et al. [88] presented that a traffic

surveillance system for obtaining comprehensive vehicle information,

including type, speed, length, current driving lane, and traffic volume,

is proposed based on instance segmentation which is realized by

Mask R-CNN. Chen et al. [89] presented a novel method based on

Mask R-CNN to estimate building areas in property assessment.

This method is to fine-tune an initial model obtained from transfer

learning with a small number of drone aerial images. Our approach

also is to use proposal-based Mask R-CNN framework for

inspection of semiconductor photolithography process.

2.3. Backbone Structure

Recent years have witnessed numerous backbone networks [90],

[91], [92], [93], [94], [95], [96], achieving state-of-the-art

performance in various vision tasks with stronger multiscale

representations. As designed, CNNs are equipped with basic multi-

scale feature representation ability since the input information

follows a fine-to-coarse fashion. The AlexNet [92] stacks filters

 ２５

sequentially and achieves significant performance gain over

traditional methods for visual recognition. However, due to the

limited network depth and kernel size of filters, the AlexNet [92] has

only a relatively small receptive field. The VGGNet [93] increases

the network depth and uses filters with smaller kernel size. A deeper

structure can expand the receptive fields, which is useful for

extracting features from a larger scale. It is more efficient to enlarge

the receptive field by stacking more layers than using large kernels.

As such, the VGGNet [93] provides a stronger multi-scale

representation model than AlexNet [92], with fewer parameters.

However, both AlexNet [92] and VGGNet [93] stack filters directly,

which means each feature layer has a relatively fixed receptive field.

Network in Network (NIN) inserts multi-layer perceptron as micro-

networks into the large network to enhance model discriminability for

local patches within the receptive field. The 1×1 convolution

introduced in NIN has been a popular module to fuse features. The

GoogLeNet [94] utilizes parallel filters with different kernel sizes to

enhance the multi-scale representation capability. However, such

capability is often limited by the computational constraints due to its

limited parameter efficiency. The Inception Nets [97], [98] stack

more filters in each path of the parallel paths in the GoogLeNet [94]

to further expand the receptive field. On the other hand, the ResNet

[90] introduces shortcut connections to neural networks, thereby

alleviating the gradient vanishing problem while obtaining much

deeper network structures. During the feature extraction procedure,

 ２６

Figure 2.5 The structure of four architectures. The vertically aligned

features are merged by element-wise addition, and the horizontally aligned

features are merged by concatenation. (a), (b) and (c) are the three derivative

architectures with various representative settings of (d).

 ２７

Figure 2.6 The structure of our architecture. The vertically aligned features

are merged by element-wise addition, and the horizontally aligned features are

merged by concatenation. The k1 is the same size as the output of the block.

The k2 is dynamic growth rate which is different in each layer.

shortcut connections allow different combinations of convolutional

operators, resulting in a large number of equivalent feature scales.

Shortcut connection is a connection that skips one or more layers. In

case of ResNet, as shown in Figure 2.5 (a), the shortcut connections

simply perform identity mapping, and their outputs are added to the

outputs of the stacked layers. Similarly, densely connected layers in

the DenseNet [91] enable the network to process objects in a very

 ２８

wide range of scales. DPN [99] combines the ResNet with DenseNet

to enable feature re-usage ability of ResNet and the feature

exploration ability of DenseNet. Furthermore, Wang et al. [100]

presents Mixed Link Network (MixNet) which is a more generalized

form than other existing modern networks (ResNet, DenseNet and

DPN). It can be seen from Figure 2.5 that the mixed link architecture

(Figure 2.5 (d)) with different parametric configurations can reach

three representative architectures (Figure 2.5 (a) (b) (c)). Our

architecture has the same concept of combining feature re-usage

ability of ResNet and feature re-exploration ability of DenseNet as

in DPN and MixNet. However the structure is significantly different

as shown in Figure 2.6. Notably, in order to achieve superior

efficiency with compactness, we combine feature re-usage with

same size in unit of block which is a group of layers and feature re-

exploration with dynamic growth rate in unit of layer. Additionally,

the recently proposed DLA [96] method combines layers in a tree

structure. The hierarchical tree structure enables the network to

obtain even stronger layer-wise multi-scale representation

capability.

In object detection, the backbone acts as the main feature

extractor, which takes images or videos as input and yields

corresponding feature maps [10]. According to the specific needs of

detection accuracy and efficiency, different backbones can be

developed for a model after modification or tuning. For high accuracy,

a deep and densely connected backbone, such as the ResNet and

 ２９

DenseNet, can be employed in the model. Considering the speed and

efficiency, lightweight backbones, such as the MobileNets and

EfficientNet, would be preferred.

In practice application, to accurately identify multiple railroad

track components, Guo et al. [101] proposed and evaluated

YOLACT-Res2Net-50 and YOLACT-Res2Net-101, which adapt a

new backbone architecture compared to the original models.

ResNet-50 and ResNet-101 backbone [90] are adopted in the

original YOLACT models. As the name indicates, ResNet-50 and

ResNet-101 include 50 layers and 101 layers, respectively. To

reduce the inference computations, the bottleneck structure is

introduced in the ResNet. With the bottleneck design for ResNet-50

and ResNet-101, the first 1×1 convolution reduces a 256 dimension

channel to a 64-dimension channel, and it is recovered by a 1×1

convolution at the end. Res2Net [102] is a new backbone

architecture which can improve the multi-scale representation

capability at a granular level. The architecture of the Res2Net

bottleneck plays an important role in the new backbone. In this

bottleneck structure, the original 3×3 filter of n channels is replaced

with a set of smaller filter groups.

Backbone network is acting as the basic feature extractor for

object detection task which takes images as input and outputs feature

maps of the corresponding input image. Most of backbone networks

for detection are the network for classification task taking out the

last fully connected layers. The improved version of basic

 ３０

classification network is also available. For instance, Lin et al. [103]

add or subtract layers or replace some layers with special designed

layers. Redmon et al. [104] proposed extremely fast network which

is inspired by the GoogLeNet model for image classification. A single

neural network predicts bounding boxes and class probabilities

directly from full images in one evaluation. Since the whole detection

pipeline is a single network, it can be optimized end-to-end directly

on detection performance.

There has been little work discussing on the backbone feature

extractor specifically designed for the object detection. More

importantly, there are several differences between the tasks of image

classification and object detection. (i) Recent object detectors like

FPN and RetinaNet usually involve extra stages against the task of

image classification to handle the objects with various scales. (ii)

Object detection not only needs to recognize the category of the

object instances but also spatially locate the position. Large down

sampling factor brings large valid receptive field, which is good for

image classification but compromises the object location ability. Due

to the gap between the image classification and object detection, Li

et al. [105] proposed a novel backbone network specifically designed

for object detection. Moreover, the network includes the extra stages

against traditional backbone network for image classification, while

maintains high spatial resolution in deeper layers.

Due to the advancement of deep learning, classification accuracy

has improved greatly. However, conversely, the complexity of the

 ３１

model has also increased accordingly. As a consequence, researches

aiming to maintain accuracy as much as possible while reducing the

number and size of parameters of the model are also presented.

Towards different requirements about accuracy vs. efficiency, we

can choose deeper and densely connected backbones. Xie et al. [95]

proposed a simple, highly modularized network architecture which is

constructed by repeating a building block that aggregates a set of

transformations with the same topology. By repeatedly constructing

the same block, image classification is possible with fewer

parameters, and increasing the cardinality which is the size of the set

of transformations rather than a deeper and wider dimension

improves the accuracy of classification. G.Howard et al. [106]

proposed a class of efficient models called MobileNets for mobile and

embedded vision applications. MobileNets are based on a streamlined

architecture that uses depthwise separable convolutions to build light

weight deep neural networks. Depthwise separable convolution are

made up of two layers: depthwise convolutions and pointwise

convolutions. MobileNets use depthwise convolutions to apply a

single filter per each input channel (input depth). Pointwise

convolution, a simple 1×1 convolution, is then used to create a linear

combination of the output of the depthwise layer. MobileNets use

both batchnorm and ReLU nonlinearities for both layers. Depthwise

convolution is extremely efficient relative to standard convolution.

However, it only filters input channels, it does not combine them to

create new features. So an additional layer that computes a linear

 ３２

combination of the output of depthwise convolution via 1×1

convolution is needed in order to generate these new features.

Sandler et al. [107] introduces a new neural network architecture

that is specifically tailored for mobile and resource constrained

environments. The network pushes the state-of-the-art for mobile

tailored computer vision models, by significantly decreasing the

number of operations and memory needed while retaining the same

accuracy. The network has a novel layer module: the inverted

residual with linear bottleneck. This module takes as an input a low-

dimensional compressed representation which is first expanded to

high dimension and filtered with a lightweight depthwise convolution.

Features are subsequently projected back to a low-dimensional

representation with a linear convolution. The inverted residual

connections is a combination of depthwise separable convolution and

linear bottleneck.

In order to achieve better performance than MobileNets while

reducing the amount of computation, Zhang et al. [108] proposed the

new architecture that utilizes two new operations, pointwise group

convolution and channel shuffle, to greatly reduce computation cost

while maintaining accuracy. Grouped Convolution is a method of

independently performing a convolution operation by dividing the

channel of an input value into several groups. It is simple to

implement and is advantageous for parallel processing. In order to

reduce side effects due to group convolution, information can be

exchanged for each channel through an operation called channel

 ３３

shuffle. First of all, ShuffleNet basically uses the structure of

MobileNets. The 1×1 convolution takes up almost all of the

computation. It tries to further reduce the 1×1 convolution according

to this amount of computation. It's a grouped convolution. In the 1×1

convolution layer, not all channels are considered, but only some of

the channels are considered and the channels are mixed in the middle

to consider all channels.

Furthermore, Iandola et al. [109] proposed a small CNN

architecture called SqueezeNet which achieves AlexNet-level

accuracy on ImageNet with 50x fewer parameters. SqueezeNet uses

8 fire modules and 1 convolutional layer each at the I/O stage. At this

time, the fully connected layer was not used at all, because the fully

connected layer has a fairly large amount of parameters, and if you

match this too large amount of parameters, the probability of

overfitting is increased. Therefore, SqueezeNet can be free from the

problem of overfitting by using Global Average Pooling instead of

fully connected layer. In addition, to focus on speed, Chollet [110]

proposed the Xception architecture inspired by Inception, where

Inception modules have been replaced with depthwise separable

convolution operation, which is a depthwise convolution followed by

a pointwise convolution.

In practice, network models used in the real-world require more

lightweight since the device to be used is small and requires a short

inference time. When applied to mobile devices, lightweight

backbones can meet the requirements. Wang et al. [40] propose a

 ３４

novel real-time object detection system by combining PeleeNet with

SSD [31] and optimizing the architecture for fast processing speed.

Furthermore, Wang et al. [111] propose Cross Stage Partial Network

(CSPNet) to mitigate the problem that previous works require heavy

inference computations from the network architecture perspective.

CSPNet reduces the duplicate gradient information within network

optimization to be light-weighted for mobile GPUs or CPUs. In order

to meet the needs of high precision and more accurate applications,

complex backbones are needed. On the other hand, real-time

acquirements like video or webcam require not only high processing

speed but high accuracy YOLO model [104], which need well

designed backbone to adapt to the detection architecture and make a

trade-off between speed and accuracy. To explore more competitive

detecting accuracy, deeper and densely connected backbone is

adopted to replace the shallower and sparse connected counterpart.

He et al. [8] utilize ResNet [90] rather than VGG [93] to capture rich

features which is adopted in Faster R-CNN [7] for further accuracy

gain because of its high capacity. The newly high performance

classification networks can improve precision and reduce the

complexity of object detection task. This is an effective way to

further improve network performance because the backbone network

acts as a feature extractor. As is well known to all, the quality of

features determines the upper bound of network performance, thus

it is an important step that needs further exploration. Likewise, our

goal is to design a simple yet resource efficient network structure

 ３５

with keeping high detection accuracy for image segmentation to be

applied in semiconductor photolithography inspection systems.

2.4. Enhanced Feature Map

The discriminative feature is very important factor in image

classification problem, and the smaller the variance within the same

class and the larger the variance between different classes, the

easier it is to solve the classification problem in general.

The improved network structure for enhanced feature map is

shown in Figure 2.7. The nozzle image is input into the network, and

then different feature maps are output by means of a series of

convolution and pooling in feature pyramid networks (FPN). After

that, different feature maps are delivered into the region proposal

networks (RPN) so as to extract the region of interest (ROI). Then

the ROI is input to the ROI align to perform pixel correction on the

feature map for subsequent target classification and bounding box

regression. In the mask branch, the original images are cropped using

the corrected bounding box, and then the images in ROI are

performed by mask prediction.

 ３６

Figure 2.7 The improved network structure for enhanced feature map.

Pre-processing. Various researchers have shown the importance

of network architecture in achieving better performances by making

changes in different layers of the network. Kuntal Kumar Pal et al.

[112] have shown the importance of pre-processing techniques for

 ３７

image classification using the CIFAR10 dataset and three variations

of the Convolutional Neural Network. Jonghwa Yim et al. [113]

propose a generalized architecture of a dual channel model to treat

quality degraded input images. The dual-channel architecture with

two inputs has the original model using unprocessed image and the

augmented model using de-noised image by means of pre-

processing. It is necessary to use image enhancement technology to

enhance the contrast of input images and to highlight the features in

the image. In order to better deal with local features, Jiangping Qin

at el. [114] uses the contrast limited adaptive histogram equalization

(CLAHE) algorithm to pre-process images [115]. Most of the

contrast enhancement techniques are based on histogram

modifications, which can be performed globally or locally.

As illustrated in Figure 2.8, the contrast limited adaptive

histogram equalization (CLAHE) is a method which can overcome the

limitations of global approaches by performing local contrast

enhancement. However, this method relies on two essential hyper

parameters: the number of tiles and the clip limit. An improper hyper

parameter selection may heavily decrease the image quality toward

its degradation. Campos et al. [115] proposed the LB-CLAHE: a

learning based hyper parameter selection method for CLAHE using

image features.

From this study, we conclude that pre-processing raw image

data achieves the best performance for convolutional neural network

and the performance increases even more with the increase in

 ３８

convolutional layers in the architecture. If we use well-known image

processing algorithm as a pre-processing module to emphasize the

outlines and edges and as a method to reinforce the specific features

or we design a customized preprocessing module, better results are

expected on performance.

Figure 2.8 Overview of CLAHE. Example with Number of Tiles(NT) = [5,5]

and Clip Limit(CL) = 2.0.

 ３９

Backbone Network. A lot of deep convolutional neural networks

(CNN) [92] originally designed for classification tasks have been

adopted for the detection task as well. And a lot of modifications have

been done on them to adapt for the additional difficulties encountered.

Object detection is a natural extension of the classification problem.

The constant challenge is to correctly detect the presence and

accurately locate the object instance in the image. It is a supervised

learning problem in which, given a set of training images, one has to

design an algorithm which can accurately locate and correctly

classify as many object instances as possible in a rectangle box while

avoiding false detections of background or multiple detections of the

same instance. The process of detecting instance segmentation can

be spilt into three parts: extracting feature-maps, proposing regions,

classifying and regressing binary mask. As aforementioned, among

them, the backbone network that extracts feature-maps is crucial to

a major role in instance segmentation detection models. Huang et al.

[116] partially confirmed the common observation that, as the

classification performance of the backbone increases on ImageNet

[23] classification task, so does the performance of object detectors

based on those backbones. It is the case at least for popular object

detectors like Fast R-CNN [6], Faster R-CNN [7], Mask R-CNN

[8] and R-FCN [30] although for SSD [31] the object detection

performance remains around the same. Since there are significant

efforts that have been devoted to design network architectures for

image classification, many diverse and powerful networks are

 ４０

emerged, such as VGGNet [93], GoogLeNet [94] , ResNet [117],

DenseNet [91], DPN [99] etc. In practice, most of the detection

methods [5],[6],[7], [8],[31] directly utilize these structures pre-

trained on ImageNet [13] as the backbone network for detection task.

Some other works try to design specific backbone network structures

for object detection, but still require to pre-train on ImageNet [23]

classification dataset in advance. Kim et al. [118] proposes PVANet

for fast object detection, which consists of the simplified “Inception”

block from GoogLeNet [94]. Huang et al. [116] investigated various

combination of network structures and detection frameworks, and

found that Faster R-CNN [7] with Inception-ResNet-v2 [97]

achieved very promising accurate performance. Nakazawa et al. [119]

proposed the CNN architecture for wafer map pattern generation in

the semiconductor manufacturing.

Therefore, we present a suitable backbone structure for

extracting the enhanced feature-map to detect image segmentation

in industrial domain, which is the proposed image segmentation

detector (ISD) instead of ResNet [117] that is the backbone

network of state-of-the-art Mask R-CNN framework.

Feature Pyramid Network. Extracting effective features from

input images is a vital prerequisite for further accurate classification

and localization steps. To fully utilize the output feature maps of

consecutive backbone layers, Lin et al. [56] presented feature

pyramid network (FPN) which is a multi-scale feature fusion

network structure to extract richer features by dividing them into

 ４１

different levels to detect objects of different sizes. As illustrated in

Figure 2.9, FPN is different from the traditional image pyramid

structure. It is divided into three parts: bottom-up, top-down, and

horizontal-connection. The bottom-up pathway is the feedforward

computation of the backbone ConvNet, which computes a feature

hierarchy consisting of feature maps at several scales with a scaling

step of 2. The top-down pathway hallucinates higher resolution

features by up sampling spatially coarser, but semantically stronger,

feature maps from higher pyramid levels.

Figure 2.9 A feature pyramid with predictions made independently at all

levels. A building block illustrating the lateral connection and the top-down

pathway, merged by addition.

 ４２

These features are then enhanced with features from the bottom-up

pathway via lateral connections. Each lateral connection merges

feature maps of the same spatial size from the bottom-up pathway

and the top-down pathway. The bottom-up feature map is of lower-

level semantics, but its activations are more accurately localized as

it was subsampled fewer times.

Figure 2.10 Region Proposal Network (RPN). The RPN module serves as the

“attention” of single unified network. In other words, The RPN module tells the

network module where to look.

 ４３

In order to extract more contextual semantic information of small

objects, Liu et al. [120] propose Multi-branch Parallel Feature

Pyramid Networks (MPFPN), which aims to extract more abundant

feature information of the objects with a small size. The parallel

branch is designed to recover the features that missed in the deeper

layers. Furthermore, to tackle multiscale objects detection problem,

Li and Zhou [121] proposed Feature Fusion SSD (FSSD) by adding

a lightweight and efficient feature fusion module to the conventional

SSD. In the feature fusion module, features from different layers with

different scales are concatenated together, followed by some down-

sampling blocks to generate new feature pyramid, which will be fed

to multi-box detectors to predict the final detection results.

Region Proposal Network. A Region Proposal Network (RPN)

takes an image of any size as input and outputs a set of rectangular

object proposals, each with an objectness score by the team of

Shaoqing Ren [7]. The RPN shares full-image convolutional features

with the detection network, thus enabling nearly cost-free region

proposals. As illustrated in Figure 2.10, The RPN is a fully

convolutional network that simultaneously predicts object bounds and

objectness scores at each position. At each sliding-window location,

the RPN simultaneously predict multiple region proposals, where the

number of maximum possible proposals for each location is denoted

as k. The k proposals are parameterized relative to k reference boxes,

which is called as anchors. An anchor is centered at the sliding

window.

 ４４

Figure 2.11 ROI align structure. ROI pooling was a model for object detection.

It wasn't important to have accurate location information. If the ROI has floating

point coordinates, the floating point is rounded and then pooling is done. This

distorts the location information of the input image, causing segmentation

problems. Therefore, ROI alignment using positional information is used using

bilinear interpolation.

So the a regression layer has 4k outputs encoding the coordinates of

k boxes, and the classification layer outputs 2k scores that estimate

probability of object or not object for each proposal.

Region of Interest Align. The ROI align method was proposed in

Mask R-CNN. Because it does not perform the quantization and

rounding of coordinates of the ROI area, the problem of misalignment

between the feature-map and the original image in ROI pooling was

solved by ROI align. The structure of ROI align is shown in Figure

 ４５

2.11. The region with dotted line represents the generated feature-

maps, and the rectangle region surrounded by a solid line represents

the ROI that has been adjusted. The ROI is divided into 4×4 cells. If

the number of samples in each cell is 4, each cell will be averaged

divided into four bins, and the center of each bin is the sampling point.

Since the coordinates of the ROI are floating-point numbers, the

coordinates of the sampling points are usually also floating-point

numbers. Therefore, bilinear interpolation is adopt for each sampling

point pixel. This operation can be used to obtain the pixel value of

the sampling point, and then four sampling points are performed max

pooling on each cell. Finally, the ROI align output are obtained

The feature-map of CNN to detect nozzle type is clearly

distinguished between the nozzle types. However, since the

inspection in semiconductor photolithography is performed in the

same nozzle type, it is difficult to extract the discriminative CNN

feature-map. It is hard to extract the discriminative feature from the

proposed regions of the Region Proposal Network (RPN) using FPN

feature-map of the same nozzle type. As illustrated in Figure 2.5,

the mask area cannot be achieved without the discriminative CNN

feature-map in the proposed regions.

The reason for not being able to extract the discriminative

feature in the proposed regions is that it is not enough to extract the

discriminative feature by means of only original pixel information in

the corresponding area as a gray scale image. In order to enhance a

feature-map of CNN with only the original pixel information of the

 ４６

image, it may be possible to extract the discriminative feature by

performing a lot of deep learning by increasing the network layer of

CNN with a large number of various training images. Deep

convolutional neural networks require a large corpus of training data

in order to avoid over-fitting. Over-fitting refers to the phenomenon

when a network learns a function with very high variance such as to

perfectly model the training data. Unfortunately, many application

domains do not have access to big data, such as industrial image

analysis and medical image analysis, and collection of such training

data is often expensive and laborious.

Data augmentation overcomes this issue by artificially inflating

the training set with label preserving transformations. Recently there

has been extensive use of generic data augmentation to improve CNN

task performance. Data augmentation encompasses a suite of

techniques that enhance the size and quality of training datasets such

that better deep learning models can be built using them. Data

augmentations based on basic image manipulations are geometric

transformation, flipping, color space, cropping, rotation, translation,

noise injection, color space transformations, geometric versus

photometric transformations, kernel filters, mixing images, random

erasing, feature space augmentation, adversarial training, generative

adversarial networks, neural style transfer, and meta-learning

[122-127]. However, we propose the pre-processing method that

reduces the amount of training images and decreases the number of

network layer in CNN rather than data augmentation. The specialized

 ４７

image filter for the semiconductor photolithography inspection is

applied to the pre-processing method in order to enhance the

feature-map of CNN.

2.5. Detection Performance Evaluation

There are two important evaluation indicators for the performance of

the classification problem. One is precision, which is used to evaluate

how many objects are correctly identified in the result of

classification. The other is Recall, which is used to evaluate how

many positive examples are predicted correctly in the total positive

samples. The calculation formulas for Precision P and Recall R are

(1) and (2), respectively.

𝑃 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑇𝑃

𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 (1)

𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ𝑠
 (2)

Where, True Positive (TP) means that the positive class is predicted

to be positive, which is a correct detection of a ground-truth

bounding box; False Positive (FP) means that the negative class is

predicted to be positive, which is An incorrect detection of a

nonexistent object or a misplaced detection of an existing object;

 ４８

Figure 2.12 The definition of intersection over union (IoU).

False Negative (FN) means that the positive class is predicted to be

negative, which is an undetected ground-truth bounding box.

For the target detection network, there is a very important

concept, Intersection over Union (IoU). As illustrated in Figure 2.12,

the degree of overlap of two regions is expressed by IoU. When it is

adopted to test the accuracy of the network prediction, IoU

expresses the overlap between the prediction box and the labeled

box. The calculation formula is as follows:

IoU =

𝐴 ∩ 𝐵

𝐴 ∪ 𝐵′
 (3)

In most competitions, the Average Precision (AP) and its

 ４９

derivations are the metrics adopted to assess the detections and thus

rank the teams. The PASCAL VOC dataset [128] and challenge [129]

provide their own source code to measure the AP and the mean AP

(mAP) over all object classes. The AP is evaluated with different

IoUs. It can be calculated for 10 IoUs varying in a range of 50% to

95% with steps of 5%, usually reported as AP@50:5:95. It also can

be evaluated with single values of IoU, where the most common

values are 50% and 75%, reported as AP50 and AP75 respectively.

The mean AP (mAP) is a metric used to measure the accuracy of

object detectors over all classes in a specific database. The mAP is

simply the average AP over all classes [7], [31], that is

mAP =

1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

 (4)

Where APi being the AP in the i th class and N is the total number of

classes being evaluated.

In this dissertation, since it has sufficient performance for

inspection of semiconductor photolithography process, given that IoU

is more than 50%, we adopt mAP which is evaluated with single

values of IoU, where the most common values are 50% and 75%,

notated as mAP@0.50 and mAP@0.75. Additionally, we adopt

mAPTotal that is

 ５０

mAP𝑇𝑜𝑡𝑎𝑙 =

mAP@0.50 + mAP@0.75

2
 (5)

2.6. Learning Network Model from Scratch

There are many successful cases that fine-tuning using transfer

learning works well and achieves consistent improvement, especially

in object detection. So why do we still need to train our model from

scratch? As stated previously, most pre-trained models are learned

on large-scale RGB dataset like ImageNet. However, there is no

large-scale dataset in semiconductor industry domain for transfer

learning. Thus, the critical importance of training from scratch is lack

of dataset in specific domain.

There are no previous works that train deep CNN-based

instance segmentation in industrial domain from scratch. In generic

object detection, Shen et al. [130] proposed Deeply Supervised

Object Detectors (DSOD) built upon SSD, an object detection

framework that can be trained from scratch. In semantic

segmentation, J égou et al. [131] demonstrated that a well-designed

network structure can outperform state-of-the-art solutions

without using the pre-trained models. It extends DenseNet [91] to

fully convolutional networks by adding an up sampling path to recover

the full input resolution.

 ５１

Thus, our proposed approach has very appealing advantage in

that it is learning network model from scratch without using the pre-

trained model on ImageNet [23] for instance segmentation.

 ５２

Chapter 3. Proposed Method

We first introduce the whole framework of our ISD architecture,

following by pre-processing for extracting the enhanced feature-

map. Then we describe the training process and objective,

configurations in detail.

3.1. ISD Architecture

The whole framework for semiconductor photolithography inspection

is based on Mask R-CNN framework. There are two stages of Mask

R-CNN framework. First, it generates proposals about the regions

where there might be an object based on the input image. Second, it

predicts the class of the object, refines the bonding box and

generates a mask in pixel level of the object based on the first stage

 ５３

proposal. Both stages are connected to the backbone network

structure.

Figure 3.1 The network structure by using ISD for image segmentation on

Mask R-CNN framework.

 ５４

Many approaches to instance segmentation are based on segment

proposals. However, our approach is focus on the backbone network

which extracts the enhanced feature-maps for the object mask. The

state-of-the-art Mask R-CNN framework uses ResNet [117] and

ResNetXt [95] as backbone network. However, as illustrated in

Figure 3.1, our approach uses the compact ISD instead of ResNet

[117] for addressing real-time problem and learning from scratch.

ISD based on the state-of-the-art DenseNet [91] is motivated by

combining the advantage of shortcut connection and concatenation of

the feature-maps produced in layers with dynamic growth rate. In

order to improve the performance of instance segmentation with

better parameter efficiency, we investigated all the state-of-the-

art CNN based instance segmentation. The design principle of ISD is

compact model, which is suitable for real-time embedded system

such as computer vision system and make them easy to train under

reducing over fitting on tasks with smaller training set sizes.

ISD comprises layers, each of which implements a composite

function of operations such as Batch Normalization (BN) [132],

rectified linear units (ReLU) [133], Pooling [134], or Convolution

(Conv). ISD has the concatenation of the feature-maps produced in

layers in order to encourage strengthen feature propagation and

feature reuse. Further, ISD has the shortcut connection for

addressing vanishing and exploding gradients. ISD is composed of

four dense blocks and four transition layers similar to DenseNet [91];

see Table 3.1.

 ５５

Table 3.1 ISD Architecture.

Layers
Output Size

(input 3×120×120)
ISD-38

Convolution 12×60×60 3×3 conv, stride 2

Dense Block

(1)

24 ×30×30 1×1 conv, stride 2

24×30×30 [
1×1 conv

3×3 conv
] × 2

Transition Layer

(1)
24×30×30 1×1 conv, stride 1

Dense Block

(2)

48×15×15 1×1 conv, stride 2

48×15×15 [
1×1 conv

3×3 conv
] × 4

Transition Layer

(2)
48×15×15 1×1 conv, stride 1

Dense Block

(3)

72×8×8 1×1 conv, stride 2

72×8×8 [
1×1 conv

3×3 conv
] × 4

Transition Layer

(3)
72×8×8 1×1 conv, stride 1

Dense Block

(4)

96×4×4 1×1 conv, stride 2

96×4×4 [
1×1 conv

3×3 conv
] × 4

Transition Layer

(4)
96×4×4 1×1 conv, stride 1

Prediction - Pooling/Dense

 ５６

Figure 3.2 Dense block network model with post-activation in ISD.

 ５７

Figure 3.3 Comparison with pre-activation and post-activation. (a) Pre-

activation of BN-ReLU-Conv (b) Post-activation of Conv-BN-ReLU in ISD.

However, crucially in contrast to DenseNet [91], ISD combine

features through summation before they are passed into a dense

block combined features by concatenating them with post-activation.

Figure 3.2 illustrates this layout schematically. Santhanam et al. [135]

presented the result that pre-activation ResNets consistently

outperforms the original post-activation only at very high-network

depths (≥ 152 depths). ISD has 38 or 42 depths at low-network

depths and post-activation ISD outperformed pre-activation on the

results of experiment. Figure 3.3 illustrates pre-activation and

post-activation. Thus, in our approach, ISD has a structure with

post-activation as shown in Figure 3.2.

Moreover, as illustrated in Figure 3.4, there is dynamic growth

rate unlike DenseNet [91], which applies different growth rate in

each layer in order to optimize the model. The growth rate that

regulates the amount of information on each layer determine the

 ５８

Figure 3.4 A dense block with dynamic growth rate of k = 2, 5, 3 in each

layer on ISD.

number of feature-map. The dynamic growth rate substantially

reduces the number of parameters, optimizing the model more

compact and improving the performance. DenseNet has a structure

that concatenates feature map according to the growth rate, thus the

deeper layer is, the more multiple training parameters increase.

In order to reduce a huge number of training parameters due to

concatenate, ISD can apply three dynamic growth rate methods. The

first method increase or decrease the growth rate sequentially.

There are three options as shown in Figure 3.5. The second is a

method of compressing the generated feature map according to the

growth rate. As shown in Figure 3.6, we use the sum module or the

 ５９

mean module to fix the growth rate at one. The third is a method

designed to improve performance, by concatenating the compressed

feature map and the feature map generated by growth rate. As shown

in Figure 3.7, the growth rate is always one more due to the

compressed feature map concatenation. Details for the performance

of three approaches will be given in the experiment section.

Consequently, we design the ISD that can apply various types of

dynamic growth rates.

Our architecture has the same concept of combining feature re-

usage ability of ResNet [90] and feature re-exploration ability of

DenseNet [91] as in DPN [99] and MixNet [100], However, as

aforementioned in previous section 2.3, not only the structure, but

also the followings are different. ISD improves DenseNet [91] by

applying a dynamic growth rate to reduce the number of parameters

and by using shortcut connection with same size in each block which

is a group of layers to alleviate the gradient vanishing problem and to

achieve superior efficiency with compactness. Furthermore, ISD

performs down-sampling in a dense block rather than a transition

layer and changes pre-activation to post-activation. Additionally,

ISD removes pooling of transition layer to transfer more information

and reduces channels in bottleneck layers for more compactness.

ISD has mainly two hyper-parameters: First, we refer to n as

number of layers in each dense bock. Second, we refer to k as growth

rate of the network. We optimized the hyper-parameters through

experimental results.

 ６０

Figure 3.5 ISD structure with dynamic growth rate applying different growth

rates in each layer. The dynamic growth rate is applied after the second layer.

we compare three cases: (a) uniform growth rates (k=6,k,∙∙∙,k) are used; (b)

increasing growth rates (1,2,3,∙∙∙,k=6) are used; (c) decreasing growth rates

(k=6,k-1,k-2,∙∙∙,2,1) are used.

 ６１

Figure 3.6 ISD structure to reduce training parameters increasing with

growth rate. Regardless growth rate, it always grows by one. (a) Reduced by

sum module with uniform growth rate; (b) Reduced by mean module with

uniform growth rate.

 ６２

Figure 3.7 ISD structure in which the sum or mean module is added to the

growth rate. (a) The sum module is added to uniform growth rate; (b) The sum

module is added to uniform growth rate.

 ６３

3.2. Pre-processing

Notably, computer vision system used in semiconductor

photolithography process uses infrared and ultra-high-speed

cameras with special manufactured lenses to acquire precise images.

Therefore, the image is high quality. However, due to external

factors such as various types of wafers, photoresists, the number of

rotations of the motor, and diffuse reflection of light, the

characteristics of the image are greatly changed or distortion occurs.

Thus, rather than considering inputs for various image qualities, it is

necessary to apply an image enhancement technique that extracts

features by emphasizing contrast or boundary features for image

segmentation.

Edge detection is one of the significant section of the image

processing algorithms which have many applications like image

morphing, pattern recognition, image segmentation and image

extraction etc. As the edge is one of the major information

contributors to any image, hence the edge detection is a very

important step in many of the image processing algorithms. It

represents the contour of the image which could be helpful to

recognize the image as an object with its detected edges. Edge

detection algorithms are fundamental importance for image

 ６４

processing applications, because it’s simply can determine within a

short time the boundaries of objects in the image. Edge detection

process as simple as can be explained in the following way; the

intensity values of pixels which are neighbor each other are

compared. During this process, the remarkable changes of density is

called edge regions.

If image has noises, it should be well cleaned. Because noise

affects the change of density in the image and it reduces the success

rate for edge detection algorithms. To overcome noise problem, many

studies were made for years and many different edge detection

algorithms has emerged. With continuous development, edge

detection algorithms have been used many areas thanks to the

capability be able to simply use in short time and success rates

increasing day to day.

Commonly used edge detection algorithms are Sobel, Roberts,

Prewitt, Canny and LoG (Laplacian of Gaussian) edge detection

algorithms which are still maintains its popularity today. Kabade et al.

[136] proposed block level Canny edge detection algorithm which is

the special algorithm to carry out the edge detection of an image in

order to reduce the time and memory consumption.

In case of the suck-back state among the inspection types shown

in Figure 1.4, it is hard to extract the feature from an image

overlapped by nozzle image and photoresist image. In addition, the

image of photoresist is varied by depending on the type of nozzle,

and the image of nozzle is varied by depending on the kind of

 ６５

photoresist. In practice, Ozturk et al. [137] compared Canny edge

detection algorithm for their glass defect detection performance.

Figure 3.8 Convolution kernel for each operator. (a) Robert, (b) Sobel, (c)

Scharr, (d) Prewitt, (e) LoG, (f) Sharpen.

 ６６

If Canny edge detection algorithms applied to image with little noise

or image that optimized image processing methods, they can get much

better results.

As stated previously, the popular edge detection algorithms, such

as Roberts, Scharr, Prewitt, Sobel, LoG, Sharpen, is shown in Figure

3.8. Robert edge detection operator has a fast and simple structure.

It has 2×2 convolution kernels and these two convolution kernels is

rotated 90° to each other. Sobel operator has two pieces and 3×3

kernels. These kernel maps is rotated 90° each other and are applied

image with the convolution. Sobel operator is gradient based edge

detection algorithms. Therefore, it use maximum points during the

edge detection process. Scharr operator is similar to the method used

by the Sobel operator. It is also divided into the x-direction and the

y-direction. The difference is that the Scharr operator has a

relatively large kernel value, so that the surrounding pixels will have

a larger influence on the edge, and the edge will be more. Prewitt

operator shows many similarities with the property of Sobel operator.

It has two pieces kernels and these size is 3×3. It is gradient based

edge detection operator and it has gradient features. Compared to the

success of edge detection in complex image, success of Prewitt

operator is greater than Roberts operator. Laplacian of an image

reveals that fast changing points of density in the image. Because of

this property, it can used edge detection. LoG filter take second

derivative in the image and try to find zero-crossing points. Since

the second derivative of the image is used, this filter is very sensitive

 ６７

to noise. To overcome this problem, firstly the noise should be

reduced by applying Gaussian smooth filter. And then Laplacian filter

must be implemented to image. Laplacian pixel density value is

calculated as shown in Equation (6).

L(x, y) =

𝜕2𝐼

𝜕𝑥2
+

𝜕2𝐼

𝜕𝑦2
 (6)

Commonly used 3×3 kernels to the LoG filter which is very

successful in image processing applications that has less noise level.

Additionally, Sharpen filter in image processing improves spatial

resolution by enhancing the edges of objects and adjust the contrast

and the shade characteristics: i) Highlight fine detail. ii) Enhance

detail that has been blurred.

Figure 3.9 illustrates the improved image by implementing

various edge detection algorithms. In order to inspect semiconductor

photolithography process, the specific image filter modified by the

sobel edge detector [138], which is composed of a pair of 3×3

convolution masks, one estimating gradient in the horizontal x-

direction and the other estimating gradient in vertical y-direction, is

adopt to identify points in an image at which the image brightness

changes sharply or, more formally, has discontinuities.

Pre-processing is performed by using convolution on the image

by means of the specific image filter. The edge occurs where there

is a discontinuity in the intensity function or a very steep intensity

 ６８

Figure 3.9 Implementation of edge detection algorithm to image. (a) Image is

filtered by horizontal kernel (b) Image is filtered by vertical kernel.

gradient in the image. Thus, the edge could be located at which the

derivative is maximum. The gradient is a vector, whose components

measure how rapid pixel value are changing with distance in the x

 ６９

and y direction. Thus, the components of the gradient may be found

using the following approximation:

 ∂f(x,y)

∂x
= ∆x =

f(x+dx,y) - f(x,y)

dx
 (7)

 ∂f(x,y)

∂y
= ∆y =

f(x,y+dy) - f(x,y)

dy
 (8)

Where dx and dy measure distance along the x and y directions

respectively. In discrete images, one can consider dx and dy in terms

of numbers of pixel between two points, dx = dy = 1

 ∆x = f(x+1,y) - f(x,y) (9)

 ∆y = f(x,y+1) - f(x,y) (10)

The different operation in “(9)” and “(10)” correspond to convolving

the image with the following image filter mask.

∆x = [

-1 0 1
-g 0 g
-1 0 1

] (11)

∆y = [

-1 -g -1
0 0 0
1 g 1

] (12)

In “(11)” and “(12)”, g is adaptively applied according to the image

intensity. The calculation formula is as follows:

 ７０

g =
1

Nx∙Ny
'

∑ ∑ Image(x, y)-Image(x, y+offset)

Ny
'

y=0

Nx

x=0

 (13)

Where:

Nx : the number of pixels in x coordinate

Ny : the number of pixels in y coordinate

Ny
' : Ny-offset

The image pre-processed by means of the specific image filter is

shown in Figure 3.10. The pre-processed image that is used as the

input of ISD has significance in extracting the enhanced feature-map

for inspection.

Figure 3.10 The image pre-processed by means of our filter of equation “(12)”

(g = 4).

 ７１

3.3. Model Training

In our approach, we focus on the image segmentation task without

using the pre-trained models. We train models on target dataset

directly without using IamgeNet dataset as shown in Figure 3.11.

Thus, our approach which is learning deep models from scratch has

very appealing advantages over existing solutions. ISD is trained with

various nozzle image as shown in Figure 3.11, to classify the nozzle

type. Among ISD models trained up to 100 epochs, the weight of ISD

model with the best performance is used for training Mask R-CNN

for image segmentation. The image dataset used to train Mask R-

CNN is prepared by using image annotation tool (i.e. VGG image

annotator) which manipulates the labeled segmentation of image. In

addition, filtering the input dataset is performed for pre-processing

of training model.

Figure 3.12 illustrates the training process. Training performs in

two stages. The first is training for classification and the second is

training for image segmentation. The weights of model obtained from

training for classification, are used in training for image segmentation.

Training for image segmentation performs with labeled and pre-

processed images. After that, the weights of model obtained from

training for image segmentation, are used in inference model.

 ７２

Inference model for evaluation uses only original image without pre-

processing.

Figure 3.11 Illustration of training model on target dataset directly.

 ７３

Figure 3.12 Training process of image segmentation using ISD as the

backbone network of Mask R-CNN framework.

3.4. Training Objective

The training objective is the losses being used to converge the huge

number of weights and the hyper-parameters that must be conducive

 ７４

to this convergence.

In training model for classifying nozzle type, categorical cross

entropy loss generally used to classify image is adopt to the loss of

ISD (i.e. LISD). It is a softmax activation plus a cross entropy loss.

LISD=-log (

esp

∑ esjC
j

) (14)

Where:

sp= the CNN score for the positive class

C = the number of classes

sj = the score inferred by the network for each class in C

In training model for detecting nozzle state, the training loss is

adopt from Faster R-CNN and Mask R-CNN, which is a weighted

sum of the classification loss (cls), the localization loss (box) and

segmentation mask loss (mask). Where Ltotal_cls and Ltotal_box are same

as in Faster R-CNN [7] and Ltotal_mask is same as in Mask R-CNN [8].

 Ltotal = Ltotal_cls + Ltotal_box + Ltotal_mask (15)

Ltotal_cls =

1

Ncls
∑ Lcls(pi,pi

*)

i

 (16)

 Lcls(pi,pi
*)=-pi

* logpi-(1-pi
*) log (1-pi) (17)

Where:

pi = Predicted probability of anchor i being an object

 ７５

pi
* = Ground truth label of whether anchor i is an object

Ncls = Normalization term, set to be batch size

 Ltotal_box=
α

Nbox
∑ pi

*

i

∙L1
smooth(ti-ti

*) (18)

Where:

ti = Predicted four parameterized coordinates

ti
* = Ground truth coordinates

Nbox = Normalization term, set to the number of anchor locations

α = Balancing parameter

Ltotal_mask= -

1

m2
∑ [yij log ŷij

k+(1-yij) log (1-ŷij
k)]

1≤i,j≤m

 (19)

Where:

yij= Label of cell(i,j) in the true mask for the region of size m×m

ŷij
k = Predicted value of the same cell for the ground truth class k

3.5. Setting and Configurations

We adopt L2 regularization technique [139] to prevent the

emergence of network training time “over-fitting” and eliminate

the need for dropout. Furthermore, we adopt real-time data

 ７６

augmentation to prevent overfitting on training with limited data in

training model for classifying nozzle type. In order to obtain the

higher performance, we set compression factor(θ) in transition layer

to 1. Compression factor θ = 1 means that there is no feature map

reduction in the transition layer on dense blocks. Furthermore, we

set the number of channels in bottleneck layer to 1∙k (growth rate).

All conv-layers are initialized with the “Kaiming He Initialization”

method [140]. We have our own learning rate scheduling and mini-

batch size settings. Details will be given in the experiment section.

Configurations used in training model for detecting nozzle state, is

illustrated in Table 3.2.

Table 3.2 Configurations used in training model for image segmentation.

Configuration Value

The strides of each layer of the FPN Pyramid [4, 8, 16, 32, 64]

Size of the fully-connected layers in the

classification
8

Size of the top-down layers used to build the

feature pyramid
256

Non-max suppression threshold to filter RPN

proposals
0.9

How many anchors per image to use for RPN

training
512

Mini-mask Shape (Height, Width) [28, 28]

Input image resizing (Min, Max) [32, 128]

Mean pixel [123.7, 116.8, 103.9]

Number of ROIs per image to feed to

classifier/mask heads
128

 ７７

Configuration Value

Percent of positive ROIs used to train

classifier/mask heads
0.33

Shape of output mask [28, 28]

Maximum number of ground truth instances to

use in one image
100

Minimum probability value to accept a detected

instance
0.9

Non-maximum suppression threshold for

detection
0.7

Learning Rate 0.01

Learning Momentum 0.9

Weight decay regularization 0.0001

 ７８

Chapter 4. Experimental Evaluation

We implement ISD based on the tensorflow platform [141]. The

hardware platform is notebook with two GPUs as illustrated in Table

4.1. All our models are trained from scratch on NVidia GeForce GTX

GPU.

Due to image related to semiconductor process is not available in

open datasets for deep learning such as ImageNet, MS COCO, pascal

VOC etc., the experimental dataset is acquired from computer vision

system embedded in the currently operating semiconductor

manufacturing equipment for photolithography inspection.

Table 4.1 Hardware specification.

Item Specification

CPU Intel Core i7-8750H 2.2GHz

Memory 16GB, 3200MHz DDR4

GPU0 Intel UHD Graphics 630

GPU1 NVIDIA GeForce GTX 1050 Ti

 ７９

The size of image is 640×495 pixels and gray color. Intuitively,

larger input images will bring better performance for image

segmentation. However, an additional difficulty is that real world

applications like computer vision system demand inspection to be

solved in real-time. Fastest detectors are usually better than the

best performing ones. Thus, we reduced the size of image used as

the input of ISD to 120×120 pixels.

As aforementioned in previous section 3.3, we perform training

model in two stages. The first is to train model for classifying nozzle

type. The second is to train model for image segmentation in each

suck-back state and dispensing state. In order to classify nozzle type,

18,304 images that have already been correctly classified into 8

types of nozzle, were collected from currently operating

semiconductor manufacturing equipment. Then, we reduce the size

of 18,304 images from 640×495 pixels to 120×120 pixels. We split

these images randomly into 13,728 training datasets and 4,576

validation datasets at a ratio of 7:3. Then, we use these images to

train model for classifying 8 nozzle types. In order to train model for

image segmentation of suck-back state in one type of nozzle, we use

a total of 410 images of one type of nozzle with 120×120 pixels. We

split these images randomly into 266 training datasets and 144

validation datasets at a ratio of 6:4. Then, we use images manipulated

with the labeled segmentation by using image annotation tool (i.e.

VGG image annotator) to train model for image segmentation of

suck-back state in specific nozzle type. In order to train model for

 ８０

image segmentation of dispensing state in one type of nozzle, we use

a total of 501 images of one type of nozzle with 120×120 pixels. We

split these images randomly into 351 training datasets and 150

validation datasets at a ratio of 7:3. Then, we use images manipulated

with the labeled segmentation by using image annotation tool to train

model for image segmentation of dispensing state in specific nozzle

type. Notably, in image segmentation of suck-back state, where the

image segmentation area is much small, we increase the dataset for

validation to prevent overfitting. Furthermore, as illustrated in Figure

4.1, we experimentally verify that our model is not overfitting. We

evaluate performance with a new test dataset that has never been

used for training, and compare results. We use new 194 images to

verify overfitting in image segmentation of suck-back state. We use

new 210 images to verify overfitting in image segmentation of

dispensing state.

Figure 4.1 The method for experimentally verifying that our model is not

overfitting.

 ８１

We evaluate ISD with different depth and growth rates for

compactness. We verify the effectiveness of the method through the

comparison experiment. A consistent setting is imposed on all the

experiments, unless when some components or structures are

examined. As stated previously, we adopt the standard mean Average

Precision (mAP) to measure the image segmentation performance.

4.1. Classification Results on ISD

The initial learning rate is set to 0.1 until 50th epoch and then divided

by 10 after every 25 epochs. Our model is trained up to 100 epochs.

The number of training steps per epoch is 429. The classification

training accuracy after only 12 epoch is 99.71% and the validation

accuracy is 99.69% for classifying nozzle type. The classification

training and validation accuracy in each epoch is illustrated in Figure

4.2. The classification training and validation loss with shortcut

connection on ISD model is illustrated in Figure 4.3, and The

classification training and validation loss without shortcut connection

on ISD model is illustrated in Figure 4.4. In addition to classification

of nozzle type, we also test to detect image segmentation of nozzle

type. We used 385 training dataset and 138 validation dataset for

image segmentation. Figure 4.5 illustrates the result on detecting

image segmentation in each nozzle type.

 ８２

Figure 4.2 The classification training and validation accuracy in each epoch.

ISD has 42 depths with shortcut connection. The uniform growth rate (k) is 6.

Figure 4.3 The classification training and validation loss in each epoch. ISD

has 42 depths with shortcut connection. The uniform growth rate (k) is 6. The

average processing time for each epoch is 31 seconds.

 ８３

Figure 4.4 The classification training and validation loss in each epoch. ISD

has 42 depths without shortcut connection. The uniform growth rate (k) is 6.

The average processing time for each epoch is 26 seconds.

Figure 4.5 The experimental result of detecting image segmentation of

nozzle type.

 ８４

Figure 4.6 Visualization of class activation mapping, using ISD as backbone

networks.

As illustrated in Figure 4.6, we visualize the class activation

mapping (CAM) using GradCAM [142], which is commonly used to

localize the discriminative regions for image classification. To

optimize the ISD for classifying nozzle types, we conduct with various

depths and shortcut connections. As shown in Table 4.2, comparing

the validation loss according to various depths and shortcut

connection, we can observe that the loss tends to decrease as the

depth increases, while the difference is little. Besides, while the loss

is greater in the case of having shortcut connection, interestingly

observing the results of the image segmentation, it can be seen that

the case of having shortcut connection has better performance.

 ８５

Table 4.2 Comparison of loss according to various depths and shortcut

connection in nozzle type classification results. The loss represents the

classification training and validation loss, when the lowest loss in validation is

obtained during the training up to 100 epoch. The uniform growth rate (k) is 6.

ISD Loss Time

Depth Shortcut Parameters Training Validation Seconds

24
 15,038 0.0238 0.0211 19

√ 26,666 0.0303 0.0281 22

34
 33,152 0.0211 0.0196 23

√ 60,560 0.0258 0.0241 29

46

 57,272 0.0180 0.0163 28

√ 105,632 0.0239 0.0222 33

54

 80,000 0.0165 0.0148 30

√ 148,832 0.0229 0.0211 38

62

 106,472 0.0161 0.0145 35

√ 199,376 0.0222 0.0205 45

4.2. Comparison with Pre-processing

Our model for image segmentation is trained on the basis of two

separate data sets to detect suck-back state and dispensing state.

Our model is trained up to 100 epochs. The number of training steps

per epoch is 100. The performance is evaluated by the model weight

 ８６

with the lowest loss obtained during the training up to 100 epochs.

Comparison of suck-back state results. We set the learning rate

to 0.01. The average processing time for each epoch is 209 seconds.

The image segmentation training and validation loss in each epoch, is

illustrated in Figure 4.7. We evaluate the performance of pre-

processing on image segmentation task in the standard mean average

precision. In aspect of the mask, the mask of nozzle type was

detected well even without pre-processing using image filter.

Figure 4.7 The image segmentation training and validation loss in each epoch

on suck-back state results. ISD has 38 depths with shortcut connection. The

uniform growth rate (k) is 6.

 ８７

However, the mask of suck-back state for inspection is not

detected or incorrectly recognized when the pre-processing is not

performed. Figure 4.8 illustrates comparison with pre-processing in

aspect of mask. We can observe that the pre-processing using image

filter can achieve higher accuracy, which is consistent to our

conjecture that the enhanced feature-map is extracted by pre-

processing. In aspect of performance, comparison of pre-processing

is illustrated in Table 4.3. We explore the effect of pre-processing.

Our approach is simple and highly effective. mAP@0.50 in validation

is improved by 4.27% when the pre-processing is performed.

Figure 4.8 Image segmentation of suck-back state for inspection. In case of

training ISD with pre-processing, the mask performance is better than without

pre-processing. ISD has 38 depths with shortcut connection and the uniform

growth rate (k) is 6.

 ８８

Table 4.3 Comparison of performing pre-processing in suck-back state

results. ISD has 38 depths with shortcut connection and the uniform growth

rate (k) is 6.

ISD
Test (mAP, %) Train (mAP, %)

IoU1:0.50 IoU1:0.75 IoU1:0.50 IoU1:0.75

w/o pre-processing 90.97 38.95 87.97 43.87

w/ pre-processing 95.24 57.14 95.42 68.67

1 Intersection over Union.

Table 4.4 Comparison of performance according to pre-processing

algorithm in suck-back state results. ISD has 42 depths with shortcut

connection and the uniform growth rate (k) is 6.

Pre-processing

Algorithm

Test (mAP, %) Train (mAP, %)

IoU1:0.50 IoU1:0.75 IoU1:0.50 IoU1:0.75

Our Filter 95.49 59.42 97.74 65.21

Robert 86.81 50.69 87.22 62.86

Sobel 91.67 45.49 88.91 50.80

Scharr 91.32 53.88 87.78 58.35

Prewitt 89.58 47.51 92.29 55.91

LoG 93.75 53.73 95.87 62.66

Sharpen 92.01 52.26 94.17 57.96

CLAHE 85.21 45.26 86.17 55.01
1 Intersection over Union.

 ８９

Figure 4.9 The chart shows performance in validation for comparison of

various pre-processing algorithms in suck-back state results. ISD has 42

depths with shortcut connection and the uniform growth rate (k) is 6

Interestingly, mAP@0.75 in validation is improved with a large

margin (18.19%) when the pre-processing is performed. We can

observe that the greatest task performance improvement was yielded

 ９０

by pre-processing. We was able to achieve remarkable improvement.

Furthermore, comparison of performance according to various pre-

processing algorithm is illustrated in Table 4.4. We observe that

using our filter is much better performance with a large margin

(10.28%) than using CLAHE algorithm, at mAP@0.50 in validation.

As illustrated in Figure 4.9, we empirically demonstrate that pre-

processing using our designed filter has better performance than

other algorithms.

Comparison of dispensing state results. We set the learning rate

to 0.01. The average processing time for each epoch is 55 seconds.

The image segmentation training and validation loss in each epoch, is

illustrated in Figure 4.10.

Figure 4.10 The image segmentation training and validation loss in each epoch,

on dispensing state results. ISD has 38 depths with shortcut connection. The

uniform growth rate (k) is 6.

 ９１

Figure 4.11 Image segmentation of dispensing state for inspection. In case of

training ISD with pre-processing, the mask performance is better than without

pre-processing. ISD has 38 depths with shortcut connection and the uniform

growth rate (k) is 6.

We evaluate the performance of pre-processing on image

segmentation task in the standard mean average precision as well as

suck-back state results. As illustrated in Figure 4.11, the mask of

dispensing state for inspection is detected as multiple images or

incorrectly recognized when the pre-processing is not performed.

We can observe that the pre-processing using our filter can achieve

higher accuracy as well.

In aspect of performance, comparison of pre-processing is

illustrated in Table 4.5. mAP@0.50 in validation is improved by 2.33%

 ９２

when the pre-processing is performed. Additionally, mAP@0.75 in

validation is improved with more margin (5.5%) when the pre-

processing is performed. We can observe that the greatest task

performance improvement was yielded by pre-processing even in

dispensing state as in suck-back state.

Table 4.5 Comparison of performing pre-processing in dispensing state

results. ISD has 38 depths with shortcut connection and the uniform growth

rate (k) is 6.

ISD
Test (mAP, %) Train (mAP, %)

IoU1:0.50 IoU1:0.75 IoU1:0.50 IoU1:0.75

w/o pre-processing 96.00 72.17 96.87 73.43

w/ pre-processing 98.33 77.67 96.30 76.21

1 Intersection over Union.

Table 4.6 Comparison of performance according to pre-processing

algorithm in dispensing state results. ISD has 38 depths with shortcut

connection and the uniform growth rate (k) is 6.

Pre-processing

Algorithm

Test (mAP, %) Train (mAP, %)

IoU1:0.50 IoU1:0.75 IoU1:0.50 IoU1:0.75

Our Filter 98.33 77.67 96.30 76.21

Robert 84.33 72.33 90.74 69.59

Sobel 95.33 72.39 96.30 76.45

Scharr 97.00 78.39 97.15 78.63

 ９３

Pre-processing

Algorithm

Test (mAP, %) Train (mAP, %)

IoU1:0.50 IoU1:0.75 IoU1:0.50 IoU1:0.75

Prewitt 96.36 74.19 95.51 78.97

LoG 95.33 77.67 96.01 75.74

Sharpen 96.00 69.89 96.01 76.64

CLAHE 95.33 75.72 96.96 73.80

1 Intersection over Union.

Figure 4.12 The chart shows performance in validation for comparison of

various pre-processing algorithms in dispensing state results. ISD has 38

depths with shortcut connection and the uniform growth rate (k) is 6.

 ９４

Furthermore, comparison of performance according to pre-

processing algorithm is illustrated in Table 4.6. We observe that

using our filter is much better performance with a large margin (14%)

than using Robert algorithm, at mAP@0.50 in validation. As

illustrated in Figure 4.12, the experimental results show that pre-

processing using our designed filter has consistently better

performance than other algorithm, as in suck-back state result.

4.3. Image Segmentation Results on ISD

Model optimization and performance are an important trade-off for

the applications of deep neural networks in image segmentation tasks

for real-time application. In order to optimize ISD, we conduct

experiments with three cases which are the number of depth,

shortcut connection and dynamic growth rate. Our experiments are

conducted on object categories which are suck-back state and

dispensing state respectively.

4.3.1. Results on Suck-back State

 ９５

Figure 4.13 An example of image segmentation results on suck-back state.

In this section, in order to optimize our model with more compactness

for detecting suck-back state, we justify the effectiveness of each

design structure and parameters elaborated earlier. An example of

image segmentation results on suck-back state is shown in Figure

4.13.

The number of depth. We have experimented with various depths

on ISD for detecting suck-back state. The main results are

summarized in Table 4.7. We conjecture that the deeper layer is the

better performance, as is well known. However, as shown in Figure

4.14, although ISD-42 is lower depth than ISD-62, we found that

ISD-42 has the best performance in validation. ISD using 42 depths

is sufficient to deliver good performance and it is better in aspect of

 ９６

resource effectiveness. We can observe that our compactness model

with only 85K parameters achieves performance to 95.49% at

mAP@0.50 in validation, which shows great potential for applications

on computer vision system in real-time.

Table 4.7 Comparison with different depths and shortcut connection in

suck-back state results. We experiment with model weights having the lowest

validation loss obtained during the training up to 100 epochs. The uniform

growth rate (k) is 6.

ISD Test (mAP, %) Train (mAP, %)

D1 SC2 Param3 IoU4:0.50 IoU4:0.75 IoU4:0.50 IoU4:0.75

24

 15,038 84.03 44.10 86.84 49.72

√ 26,666 83.31 48.97 87.48 57.60

38

 38,288 94.79 55.00 96.30 59.90

√ 69,776 95.24 57.14 95.42 68.67

42

 46,700 88.19 50.64 91.35 59.25

√ 85,580 95.49 59.42 97.74 65.21

54

 80,000 89.58 52.78 85.90 53.73

√ 148,832 93.40 50.12 94.17 58.55

62

 106,472 83.99 42.55 84.80 47.82

√ 199,376 94.33 57.87 97.37 61.01

1 Depth, 2 Shortcut, 3 Parameters (bytes), 4 Intersection over Union.

 ９７

Figure 4.14 This chart shows performance in validation for comparison of

different depths with shortcut connection in suck-back state results. We

experiment with model weights having the lowest validation loss obtained

during the training up to 100 epochs. The uniform growth rate (k) is 6.

Shortcut connection. To address vanishing and exploding

gradients, we propose our model with shortcut connection. Thus, we

have experimented with and without shortcut connection for

detecting suck-back state. The main results are summarized in Table

4.7. We observe that ISD with 62 depths using shortcut connection

 ９８

significantly improves the performance from 42.55% to 57.87%, with

a large margin (15.32%) at mAP@0.75 in validation.

Figure 4.15 This chart shows performance in validation for comparison with

different depths and shortcut connection in suck-back state results. We

experiment with model weights having the lowest validation loss obtained

during the training up to 100 epochs. The uniform growth rate (k) is 6.

 ９９

As illustrated in Figure 4.15, the experimental results show that ISD

with shortcut connection has consistently better performance than

ISD without shortcut connection. We empirically demonstrate that

shortcut connection improves the performance by means of

alleviating vanishing and exploding gradients, encouraging feature

reuse.

Growth rate. We refer to the hyper-parameter k as the growth

rate of the network. We show in Table 4.8 that a relatively small

growth rate is sufficient to achieve better performance at mAP@0.50

in validation. However, as aforementioned, in order to reduce a huge

number of training parameters increased by concatenation in dense

block, ISD can apply three dynamic growth rate methods.

Table 4.8 Comparison of growth rate (k) with shortcut connection in suck-

back state results. We experiment with model weights having the lowest

validation loss obtained during the training up to 100 epochs.

ISD Test (mAP, %) Train (mAP, %)

D1 G2 Param3 IoU4:0.50 IoU4:0.75 IoU4:0.50 IoU4:0.75

38

6 69,776 95.24 57.14 95.42 68.67

12 266,336 92.71 63.16 95.30 70.90

42

6 85,580 95.49 59.42 97.74 65.21

12 281,672 95.14 53.10 95.52 61.52

54

6 148,832 93.40 50.12 94.17 58.55

12 514,592 91.32 50.89 90.35 51.45

1 Depth, 2 Growth rate (k), 3 Parameters (bytes), 4 Intersection over Union.

 １００

Table 4.9 Comparison of dynamic growth rate with shortcut connection in

suck-back state results. We experiment with model weights having the lowest

validation loss obtained during the training up to 100 epochs. The uniform

growth rate (k) is 12.

ISD Test (mAP, %) Train (mAP, %)

D1 G2 Param3 IoU4:0.50 IoU4:0.75 IoU4:0.50 IoU4:0.75

38

12A 266,336 92.71 63.16 95.30 70.90

12B 98,142 92.79 63.71 94.59 64.74

12C 159,953 93.40 57.18 96.05 66.28

42

12A 281,672 95.14 53.10 95.52 61.52

12B 104,553 91.20 44.12 87.97 45.03

12C 179,968 95.66 55.85 96.81 65.30

54

12A 514,592 91.32 50.89 90.35 51.45

12B 251,904 95.83 52.54 96.43 61.63

12C 386,482 93.06 52.43 94.93 58.87
1 Depth, 2 Growth rate (k), 3 Parameters (bytes), 4 Intersection over Union.

The first method increase or decrease the growth rate

sequentially. In Table 4.9, we compare three options: (A) uniform

growth rates (k,k,∙∙∙,k) are used; (B) increasing growth rates

(1,2,3,∙∙∙,k) are used; (C) decreasing growth rates (k,k-1,k-2,∙∙∙,2,1)

are used. As illustrated in Table 4.9, we observe that ISD with 54

depths using increasing growth rates improves the performance from

91.32% to 95.83% at mAP@0.50 in validation, while requiring only

1/2 parameters.

 １０１

Figure 4.16 This chart shows performance in validation for comparison of

various dynamic growth rate with shortcut connection in suck-back state

results. We experiment with model weights having the lowest validation loss

obtained during the training up to 100 epochs. The uniform growth rate (k) is

12.

As illustrated in Figure 4.16, we experimentally found that dynamic

 １０２

growth rate improves the performance better than uniform growth

rate, with more compactness. Note that it substantially reduces the

number of training parameters.

The second is a method of compressing the generated feature

map according to the growth rate. In this case, the growth rate is

always fixed to one by the sum module or the mean module. The main

results are summarized in Table 4.10. We experimentally found that

training parameters can be remarkable reduced. However, the

performance is not improved. At low depth, the sum method performs

better than the mean method. Interestingly, at high depth, the mean

method is better than the sum method.

Table 4.10 Comparison of sum and mean module in suck-back state results.

We experiment with model weights having the lowest validation loss obtained

during the training up to 100 epochs.

ISD Test (mAP, %) Train (mAP, %)

D1 M2 Param3 IoU4:0.50 IoU4:0.75 IoU4:0.50 IoU4:0.75

42

Mean 16,855 83.22 30.29 81.83 36.02

Sum 16,855 88.16 34.79 87.06 40.85

74

Mean 34,140 85.76 32.78 84.10 38.87

Sum 34,140 89.38 48.03 92.81 47.82

154

Mean 100,328 88.37 29.42 84.86 36.59

Sum 100,328 73.60 20.39 73.37 29.26

1 Depth, 2 Module, 3 Parameters (bytes), 4 Intersection over Union.

 １０３

Table 4.11 Comparison of sum and mean module added to growth rate in

suck-back state results. We experiment with model weights having the lowest

validation loss obtained during the training up to 100 epochs.

ISD Test (mAP, %) Train (mAP, %)

D1 M2 Param3 IoU4:0.50 IoU4:0.75 IoU4:0.50 IoU4:0.75

42

Mean+ 107,263 89.90 36.89 90.82 50.59

Sum+ 107,263 68.16 25.27 69.36 31.45

None 85,580 95.49 59.42 97.74 65.21

Mean 16,855 83.22 30.29 81.83 36.02

Sum 16,855 88.16 34.79 87.06 40.85

1 Depth, 2 Module, 3 Parameters (bytes), 4 Intersection over Union, +Add to growth rate

The third is a method designed to improve performance, by

concatenating the compressed feature map obtained by sum or mean

module and the feature map generated by growth rate. In this case,

the growth rate is always one more due to the compressed feature

map concatenation. The main results are summarized in Table 4.11.

We found that the performance is not improved even with increasing

training parameters.

Overfitting validation. In order to experimentally verify that our

model is not overfitting, we evaluate performance with a new test

dataset that has never been used for training, and compare results.

We use new 194 images to verify overfitting in image segmentation

of suck-back state.

 １０４

Table 4.12 Comparison of results with different datasets in image

segmentation of suck-back state. ISD has 42 depths with shortcut connection

and the uniform growth rate (k) is 6.

Dataset
Test (mAP, %)

IoU1:0.50 IoU1:0.75

Existing dataset 95.49 59.42

New dataset 94.85 50.57

1 Intersection over Union.

The main results are summarized in Table 4.12. Even if we evaluate

performance with a new dataset that is completely different from the

existing dataset, the performance at mAP@0.50 validation is almost

the same. Therefore, we experimentally verified that our model is

not overfitting in image segmentation of suck-back state.

4.3.2. Results on Dispensing State

In this section, in order to optimize our model with more compactness

for detecting dispensing state, we justify the effectiveness of each

design structure and parameters elaborated earlier. An example of

image segmentation results on dispensing state is shown in Figure

4.17.

 １０５

Figure 4.17 An example of image segmentation results on dispensing state.

The number of depth. We have experimented with various depths

on ISD for detecting dispensing state. The main results are

summarized in Table 4.13. We conjecture that the deeper layer is the

better performance, as is well known. However, as shown in Figure

4.18, although ISD-38 is lower depth than ISD-62, we found that

ISD-38 has the best performance in validation. ISD using 38 depths

is sufficient to deliver good performance and it is better in aspect of

resource effectiveness. We can observe that our compactness model

with only 69K parameters achieves performance to 98.33% at

mAP@0.50 in validation, which shows great potential for applications

on computer vision system in real-time. Likewise results on suck-

back state, we experimentally demonstrate that lower depth is

 １０６

sufficient to good performance, even in case of dispensing state.

Table 4.13 Comparison with different depths and shortcut connection in

dispensing state results. We experiment with model weights having the lowest

validation loss obtained during the training up to 100 epochs. The uniform

growth rate (k) is 6.

ISD Test (mAP, %) Train (mAP, %)

D1 SC2 Param3 IoU4:0.50 IoU4:0.75 IoU4:0.50 IoU4:0.75

24

 15,038 93.56 63.81 95.54 69.43

√ 26,666 94.00 69.10 95.18 77.14

30

 23,048 94.22 71.10 92.78 65.57

√ 41,264 90.67 75.00 91.83 77.07

34

 33,152 94.89 74.00 94.16 68.50

√ 60,560 95.67 73.67 96.87 77.50

38

 38,288 95.33 66.67 93.45 70.61

√ 69,776 98.33 77.67 96.30 76.21

42

 46,700 96.33 76.28 97.29 72.34

√ 85,580 97.56 76.33 97.01 80.68

44

 51,146 92.33 76.67 93.59 75.38

√ 93,926 96.00 75.00 96.15 75.36

46

 57,272 82.67 71.00 85.90 61.97

√ 105,632 95.83 64.22 95.16 62.96

50

 72,560 92.00 64.33 92.12 62.82

√ 135,152 96.00 64.33 97.15 72.79

54

 80,000 93.33 67.33 95.87 72.89

√ 148,832 96.00 70.00 96.15 69.18

 １０７

ISD Test (mAP, %) Train (mAP, %)

D1 SC2 Param3 IoU4:0.50 IoU4:0.75 IoU4:0.50 IoU4:0.75

62

 106,472 94.33 65.89 95.44 70.61

√ 199,376 94.67 77.00 97.67 75.38

1 Depth, 2 Shortcut, 3 Parameters (bytes), 4 Intersection over Union.

Figure 4.18 This chart shows performance in validation for comparison of

different depths with shortcut connection in dispensing state results. We

experiment with model weights having the lowest validation loss obtained

during the training up to 100 epochs. The uniform growth rate (k) is 6.

 １０８

Figure 4.19 This chart shows performance in validation for comparison with

different depths and shortcut connection in dispensing state results. We

experiment with model weights having the lowest validation loss obtained

during the training up to 100 epochs. The uniform growth rate (k) is 6.

Shortcut connection. To address vanishing and exploding

gradients, we propose our model with shortcut connection. Thus, we

have experimented with and without shortcut connection for

detecting dispensing state. The main results are summarized in Table

4.13. We observe that ISD with 62 depths using shortcut connection

 １０９

significantly improves the performance from 65.89% to 77.00%, with

a large margin (11.11%) at mAP@0.75 in validation. Furthermore,

we also observe that ISD with 42 depths using shortcut connection

significantly improves the performance from 82.67% to 95.83%, with

a large margin (13.16%) at mAP@0.50 in validation. As illustrated in

Figure 4.19, the experimental results show that ISD with shortcut

connection has consistently better performance than ISD without

shortcut connection, as the same case of detecting suck-back state.

As stated previously, it is especially notable that shortcut connection

improves the performance by means of alleviating vanishing and

exploding gradients, encouraging feature reuse.

Growth rate. We show in Table 4.14 that a relatively small growth

rate is sufficient to achieve better performance in validation, even in

results on dispensing state.

Table 4.14 Comparison of growth rate (k) with shortcut connection in

dispensing state results. We experiment with model weights having the lowest

validation loss obtained during the training up to 100 epochs.

ISD Test (mAP, %) Train (mAP, %)

D1 G2 Param3 IoU4:0.50 IoU4:0.75 IoU4:0.50 IoU4:0.75

38

6 69,776 98.33 77.67 96.30 76.21

12 266,336 95.33 74.33 94.73 73.22

42

6 85,580 97.56 76.33 97.01 80.68

12 281,672 94.00 70.56 93.88 63.32

1 Depth, 2 Growth rate (k), 3 Parameters (bytes), 4 Intersection over Union.

 １１０

As aforementioned, ISD use dynamic growth rate that applies

different growth rates in each layer. In Table 4.15, we compare three

options: (A) uniform growth rates (k,k,∙∙∙,k) are used; (B) increasing

growth rates (1,2,3,∙∙∙,k) are used; (C) decreasing growth rates (k,k-

1,k-2,∙∙∙,2,1) are used; The main results are summarized in Table

4.15. We observe that ISD with 42 depths using decreasing growth

rates improves the performance from 94.00% to 97.22% at

mAP@0.50 in validation, while requiring only 3/5 parameters.

Table 4.15 Comparison of dynamic growth rate with shortcut connection in

dispensing state results. We experiment with model weights having the lowest

validation loss obtained during the training up to 100 epochs. The uniform

growth rate (k) is 12.

ISD Test (mAP, %) Train (mAP, %)

D1 G2 Param3 IoU4:0.50 IoU4:0.75 IoU4:0.50 IoU4:0.75

38

12A 266,336 95.33 74.33 94.73 73.22

12B 98,142 97.33 74.00 96.82 69.73

12C 159,953 97.47 71.52 96.72 72.57

42

12A 281,672 94.00 70.56 93.88 63.32

12B 104,553 86.22 67.89 87.32 57.67

12C 179,968 97.22 61.50 96.58 61.36

54

12A 514,592 96.33 72.67 96.11 72.37

12B 251,904 95.67 71.28 93.88 69.47

12C 386,482 97.67 72.33 98.29 80.91
1 Depth, 2 Growth rate (k), 3 Parameters (bytes), 4 Intersection over Union.

 １１１

Figure 4.20 This chart shows performance in validation for comparison of

various dynamic growth rate with shortcut connection in dispensing state

results. We experiment with model weights having the lowest validation loss

obtained during the training up to 100 epochs. The uniform growth rate (k) is

12.

As illustrated in Figure 4.20, likewise results on suck-back state

 １１２

even in dispensing state, we experimentally demonstrate that

dynamic growth rate consistently improves the performance better

than uniform growth rate, with more compactness. Note that it

substantially reduces the number of training parameters.

Overfitting validation. In order to experimentally verify that our

model is not overfitting, we evaluate performance with a new test

dataset that has never been used for training and compare results.

We use new 210 images to verify overfitting in image segmentation

of dispensing state. The main results are summarized in Table 4.16.

Even if we evaluate performance with a new dataset that is

completely different from the existing dataset, the performance at

mAP@0.50 validation is almost the same. Therefore, we

experimentally verified that our model is not overfitting in image

segmentation of dispensing state.

Table 4.16 Comparison of results with different datasets in image

segmentation of dispensing state. ISD has 38 depths with shortcut connection

and the uniform growth rate (k) is 6

Dataset
Test (mAP, %)

IoU1:0.50 IoU1:0.75

Existing dataset 98.33 77.67

New dataset 98.10 91.59

1 Intersection over Union.

 １１３

4.4. Comparison with State-of-the-art Methods

In this section, we compare our model with state-of-the-art

backbone networks of Mask R-CNN framework. Thus, we

empirically demonstrate the compactness and performance of our

model. Our experiments are conducted on object categories which

are suck-back state and dispensing state respectively.

Results on suck-back state. The main results are summarized in

Table 4.17. ISD achieves consistently better results than stat-of-

the-art methods with much more compactness structure. Especially,

our ISD-38 achieves 95.24% at mAP@0.50 in validation, which

outperforms the baseline DenseNet-38 with a large margin

(16.97%), while requiring only 1/4 parameters. We also observe that

ISD-38 can achieve comparable better results at mAP@0.75 than

ResNet-38 requiring a huge memory space to store the massive

parameters, with only much smaller 1/268 parameters, which shows

great potential for application on resource bounded devices.

As the size of the network increases, the inference and the

training become slower and require more data. There is generally a

trade-off between performance and speed. When one needs real-

time detectors, like for computer vision, one loses some precision. In

Table 4.17, the highest result of 96.59% at mAP@0.50 in validation

 １１４

are obtained with ResNet-38. Our ISD-42 achieves 95.49% at

mAP@0.50 in validation, 1.1% lower. However, as shown in Table

4.18, the number of parameters is improved significantly by 217

times. The running time is also improved by 7 times. Furthermore

interestingly, our ISD-42 is 3.45% higher than ResNet-38 at

mAP@0.75 in validation. As illustrated in Figure 4.21, the

experimental results show that our model achieves compactness and

performance balance for embedded real-time application.

Table 4.17 Comparison with state-of-the-art backbone networks in suck-

back state results. We experiment with model weights having the lowest

validation loss obtained during the training up to 100 epochs. The growth rate

of DenseNet is 12. The uniform growth rate of ISD is 6.

BN1 Param2
Test (mAP, %) Train (mAP, %)

IoU3:0.50 IoU3:0.75 IoU3:0.50 IoU3:0.75

ResNet-26 14,008K 94.82 61.37 98.76 75.47

ResNet-38 18,496K 96.59 55.97 96.93 78.57

ResNet-50 23,604K 93.36 50.58 95.49 67.45

ResNet-101 42,674K 94.85 51.58 97.60 65.14

DenseNet-24 98K 78.77 36.04 84.33 48.81

DenseNet-38 253K 78.27 35.20 82.01 42.98

DenseNet-42 308K 85.76 40.74 86.28 42.70

DenseNet-54 516K 84.72 35.71 82.90 40.53

DenseNet-62 681K 85.59 37.57 85.43 46.35

ISD-24 26K 83.31 48.97 87.48 57.60

ISD-38 69K 95.24 57.14 95.42 68.67

 １１５

BN1 Param2
Test (mAP, %) Train (mAP, %)

IoU3:0.50 IoU3:0.75 IoU3:0.50 IoU3:0.75

ISD-42 85K 95.49 59.42 97.74 65.21

ISD-54 148K 93.40 50.12 94.17 58.55

ISD-62 199K 94.33 57.87 97.37 61.01

1 Backbone Network, 2 Parameters (kilobyte), 3 Intersection over Union.

Table 4.18 Comparison of state-of-the-art backbone networks with FLOPs

and running time in suck-back state. The growth rate of DenseNet is 12. The

uniform growth rate of ISD is 6. Input size of backbone network is 120×120.

The running time is the processing time of CPU per image.

BN1 Param2
MFLOPs

Time4
Performance

Mul3 Add Total mAP@0.50/0.75

ResNet-26 14,008K 83.87 55.87 209.81 110.68 94.82/61.37

ResNet-38 18,496K 110.72 73.75 276.99 148.67 96.59/55.97

ResNet-50 23,604K 141.31 94.12 353.50 193.09 93.36/50.58

ResNet-101 42,674K 255.42 170.12 639.01 358.52 94.85/51.58

DenseNet-24 98K 0.96 0.19 1.65 23.68 78.77/36.04

DenseNet-38 253K 2.49 0.50 4.26 37.63 78.27/35.20

DenseNet-42 308K 3.04 0.60 5.19 42.69 85.76/40.74

DenseNet-54 516K 5.10 1.02 8.70 55.13 84.72/35.71

DenseNet-62 681K 6.74 1.34 11.48 65.31 85.59/37.57

ISD-24 26K 0.23 0.05 0.40 13.50 83.31/48.97

ISD-38 69K 0.67 0.13 1.15 18.38 95.24/57.14

ISD-42 85K 0.77 0.16 1.33 21.38 95.49/59.42

ISD-54 148K 1.36 0.29 2.34 27.77 93.40/50.12

ISD-62 199K 1.83 0.39 3.15 31.09 94.33/57.87

1 Backbone Network, 2 Parameters (kilobyte), 3 Multiply, 4 Running Time (millisecond).

 １１６

Figure 4.21 This shows performance in validation for comparison with various

state-of-the-art backbone networks in suck-back state results. We

experiment with model weights having the lowest validation loss obtained

during the training up to 100 epochs. The growth rate of DenseNet is 12. The

uniform growth rate of ISD is 6.

 １１７

Results on dispensing state. The main results are summarized in

Table 4.19. Likewise results on suck-back state, on aspect of

performance versus memory, ISD achieves consistently better

results than stat-of-the-art methods with much more compactness

structure, even in dispensing state.

Table 4.19 Comparison with state-of-the-art backbone networks in

dispensing state results. We experiment with model weights having the lowest

validation loss obtained during the training up to 100 epochs. The growth rate

of DenseNet is 12. The uniform growth rate of ISD is 6.

BN1 Param2
Test (mAP, %) Train (mAP, %)

IoU3:0.50 IoU3:0.75 IoU3:0.50 IoU3:0.75

ResNet-26 14,008K 98.67 85.06 99.15 84.76

ResNet-101 42,674K 99.67 77.13 99.86 79.87

DenseNet-24 98K 84.00 58.00 76.88 50.00

DenseNet-38 253K 81.39 62.67 85.04 58.55

DenseNet-42 308K 88.00 60.00 83.71 56.13

DenseNet-54 516K 78.67 58.00 78.35 55.27

DenseNet-62 681K 85.33 63.67 86.18 62.77

ISD-24 26K 94.00 69.10 95.18 77.14

ISD-38 69K 98.33 77.67 96.30 76.21

ISD-42 85K 94.00 69.10 95.18 77.14

ISD-54 148K 96.00 70.00 96.15 69.18

ISD-62 199K 94.67 77.00 97.67 75.38

1 Backbone Network, 2 Parameters (kilobyte), 3 Intersection over Union.

 １１８

Table 4.20 Comparison of state-of-the-art backbone networks with FLOPs

and running time in dispensing state. The growth rate of DenseNet is 12. The

uniform growth rate of ISD is 6. Input size of backbone network is 120×120.

The running time is the processing time of CPU per image.

BN1 Param2
MFLOPs

Time4
Performance

Mul3 Add Total mAP@0.50/0.75

ResNet-26 14,008K 83.87 55.87 209.81 110.68 98.67/85.06

ResNet-101 42,674K 255.42 170.12 639.01 358.52 99.67/77.13

DenseNet-24 98K 0.96 0.19 1.65 23.68 84.00/58.00

DenseNet-38 253K 2.49 0.50 4.26 37.63 81.39/62.67

DenseNet-42 308K 3.04 0.60 5.19 42.69 88.00/60.00

DenseNet-54 516K 5.10 1.02 8.70 55.13 78.67/58.00

DenseNet-62 681K 6.74 1.34 11.48 65.31 85.33/63.67

ISD-24 26K 0.23 0.05 0.40 13.50 94.00/69.10

ISD-38 69K 0.67 0.13 1.15 18.38 98.33/77.67

ISD-42 85K 0.77 0.16 1.33 21.38 94.00/69.10

ISD-54 148K 1.36 0.29 2.34 27.77 96.00/70.00

ISD-62 199K 1.83 0.39 3.15 31.09 94.67/77.00

1 Backbone Network, 2 Parameters (kilobyte), 3 Multiply, 4 Running Time (millisecond).

Particularly, our ISD-38 achieves 98.33% at mAP@0.50 in validation,

which outperforms the baseline DenseNet-38 with a large margin

(16.94%), while requiring only 1/4 parameters. We also observe that

ISD-38 can achieve comparable better results at mAP@0.75 than

ResNet-101 requiring a huge memory space to store the massive

parameters, with only much smaller 1/625 parameters, which shows

great potential for application on resource bounded devices. In Table

 １１９

4.19, the highest result of 99.67% at mAP@0.50 in validation are

obtained with ResNet-101. In the meanwhile, our ISD-38 achieves

98.33% at mAP@0.50 in validation, 1.34% lower. However, as shown

in Table 4.20, the number of parameters is improved significantly by

625 times. The running time is also improved by 20 times.

Furthermore interestingly, our ISD-38 is 0.54% higher than

ResNet-101 at mAP@0.75 in validation. As illustrated in Figure 4.22,

ResNet-26 is 7.73% higher than ISD-38 at total performance in

validation. However, ISD-38 is approximately 200 times more

compact than ResNet-26 at parameters. The speed is also 6 times

faster. Additionally, there is a little difference (0.34%) between ISD-

38 and ResNet-26 in performance mAP@0.50 validation. Thus, the

experimental results show that our model consistently achieves

compactness and performance balance for embedded real-time

application, as the same results on suck-back state. Model

compactness in terms of the number of parameters, and performance

is an important trade-off for various applications of deep neural

networks in detection. ResNet which is the most common backbone

network of Mask R-CNN framework, require a huge memory space

to store the massive parameters.

Therefore the models are usually unsuitable for low-end devices

like embedded computer vision system in industry. Thanks to the

parameter-efficient dense block with shortcut connection, our model

significantly is much smaller with high performance than most

competitive methods.

 １２０

Figure 4.22 This shows performance in validation for comparison with various

state-of-the-art backbone networks in dispensing state results. Additionally,

the training process failed to converge for ResNet-50. We experiment with

model weights having the lowest validation loss obtained during the training up

to 100 epochs. The growth rate of DenseNet is 12. The uniform growth rate of

ISD is 6.

 １２１

Chapter 5. Conclusion

This dissertation aimed to improve defect detection in semiconductor

photolithography inspection systems. We investigated three

questions. First, is it possible to train image segmentation networks

from scratch directly with only smaller dataset without the pre-

trained models? Second, are there any principles to design a resource

efficient network structure for image segmentation, meanwhile

keeping high detection accuracy? Third, is there any methodology to

improve inspection performance other than network design? To

achieve our main goal, we proposed a novel deep architecture that

can be used as a backbone network of the image segmentation, and

applied image filtering method as pre-processing to training for

improving performance.

In general, since most of computer vision operated in

semiconductor photolithography inspection systems use image

processing algorithm, inspection faults easily occur even with small

 １２２

changes in the external environment. On the other hand, deep

learning has a strong characteristic of classifying images even with

these external changes. However, since the features extracted from

image for inspection in semiconductor photolithography are limited to

a specific area of image, there is a limit to extracting them with only

the feature map of the CNN. No matter how much model is trained

with a lot of various images for image segmentation, fault still occurs

in detecting the mask region. Therefore, we combined the advantages

of image processing algorithm and the advantages of deep learning,

in order to achieve remarkable performance.

We performed this study with step by step. We applied the

existing Mask R-CNN framework to photolithography inspection

systems without modification of backbone network. Next, we

changed ResNet, which is used as backbone network in Mask R-CNN

framework, to DenseNet. The reason is that DenseNet is more

efficient and compressed model than ResNet. Then, we designed a

novel deep architecture based on DenseNet, designed image filter for

pre-processing to improve performance, and experimentally

demonstrated the performance of our model. In detail, we performed

this study as follows.

Firstly, we have analyzed the inspection method of computer

vision used in currently operating semiconductor photolithography

process for defect detection. Then, we have studied various the

state-of-the-art deep learning based instance segmentation,

backbone structure, and the improved network structure for

 １２３

extracting enhanced feature map.

Secondly, we designed a novel deep architecture called as ISD

(Image Segmentation Detector) to meet our goal based on related

studies. Our architecture has the same concept of combining feature

re-usage ability of ResNet and feature re-exploration ability of

DenseNet as in DPN and MixNet, However, the structure is

significantly different from other networks. Notably, in order to

achieve superior efficiency with compactness, we combined feature

re-usage with same size in each block which is a group of layers and

feature re-exploration with dynamic growth rate in each layer. In

other words, ISD improves DenseNet by applying a dynamic growth

rate to reduce the number of parameters, and by using shortcut

connection in each block to alleviate the gradient vanishing problem

and to achieve superior efficiency with compactness. Furthermore,

ISD performs down-sampling in a dense block rather than a

transition layer, and changes pre-activation to post-activation.

Additionally, ISD removes pooling of transition layer to transfer more

information, and reduces the bottleneck width for more compactness.

Thirdly, in order to improve performance of image segmentation

in semiconductor photolithography inspection systems, we designed

image filter which is composed of a pair of 3×3 convolution masks

for extracting features by emphasizing boundary. From this study,

we concluded that our image filter, which is used for pre-processing

in training, play an important role in extracting the enhanced feature-

map for image segmentation.

 １２４

Lastly, model optimization and performance are an important

trade-off for the applications of deep neural networks in image

segmentation tasks for real-time application. Thus, in order to

optimize ISD, we conducted various experiments with three cases

which are the number of depth, shortcut connection, and dynamic

growth rate. Our experiments was conducted on object categories

which are suck-back state and dispensing state respectively. Then,

we compared our model with state-of-the-art backbone networks

of Mask R-CNN framework. In image segmentation of suck-back

state, we experimentally demonstrated that our ISD-42 significantly

outperforms state-of-the-art DenseNet-42 in terms of both

accuracy (9.73% more accurate) and parameters (3 times less) at

mAP@0.50 in validation. Furthermore, our ISD-42 improves 217

times smaller in the number of parameters, and 3.45% higher

accurate than state-of-the-art ResNet-38 at mAP@0.75 in

validation. Furthermore, the running speed is also improved by 7

times. In image segmentation of dispensing state, we experimentally

demonstrated that our ISD-38 achieves 98.33% at mAP@0.50 in

validation, which outperforms the baseline DenseNet-38 with a large

margin (16.94%), while requiring only 1/4 parameters. We also

observed that ISD-38 can achieve comparable better results at

mAP@0.75 than ResNet-101 requiring a huge memory space to

store the massive parameters, with only much smaller 1/625

parameters, which shows great potential for application on resource

bounded devices. Furthermore, the running speed is also improved

 １２５

by 20 times. Therefore, we experimentally demonstrated that ISD

can be applicable to many image segmentation architecture to

achieves the right speed (parameters) and accuracy balance for a

given application and platform.

This dissertation presents a novel deep architecture (backbone

network), the ISD, to tackle the problem that training dataset limited

in specific industry domain such as semiconductor photolithography

might cause overfitting at training and quality mismatch at inference.

Particularly, our model which acts as the main feature extractor, is

more compact with higher performance than most competitive models.

Furthermore, compactness of our model is suitable for application on

resource bounded devices due to addressing real-time problem. Our

model is simple to construct and can be trained directly on full images.

Our proposed approach, which is learning deep models from scratch,

has very appealing advantages over existing solutions. Especially,

our approach is suitable for image segmentation of industry domain

which does not have large-scale image dataset like ImageNet for

transfer learning. According to our method including pre-processing,

enhanced feature-maps can be obtained for image segmentation.

In conclusion, the most important contribution of this work is

probably the first application of deep learning (image segmentation)

technology to semiconductor photolithography inspection systems.

Furthermore, we proposed an efficient novel deep architecture

(backbone network) that can be used learning from scratch in specific

domains where the acquisition of training images is limited, such as

 １２６

semiconductor photolithography. Thus, we believe that it can be

useful to many future image segmentation research efforts in diverse

industry domain which is requiring real-time and good performance

with only smaller training dataset.

 １２７

Bibliography

[1] A. M. Hafiz and G. M. Bhat, "A survey on instance segmentation: state

of the art," International journal of multimedia information retrieval,

vol. 9, no. 3, pp. 171-189, 2020, doi: 10.1007/s13735-020-00195-x.

[2] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, P.

Martinez-Gonzalez, and J. Garcia-Rodriguez, "A survey on deep

learning techniques for image and video semantic segmentation,"

Applied soft computing, vol. 70, pp. 41-65, 2018, doi:

10.1016/j.asoc.2018.05.018.

[3] A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár, "Panoptic

Segmentation," arXiv:1801.00868v3, 2018.

[4] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521,

no. 7553, pp. 436-444, 2015, doi: 10.1038/nature14539.

[5] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature

hierarchies for accurate object detection and semantic segmentation,"

arXiv.org, 2014.

 １２８

[6] R. Girshick, "Fast R-CNN," Microsoft Research, 2015.

[7] R. Shaoqing, H. Kaiming, R. Girshick, and S. Jian, "Faster R-CNN:

Towards Real-Time Object Detection with Region Proposal

Networks," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 39, no. 6, pp. 1137-1149, 2017, doi:

10.1109/TPAMI.2016.2577031.

[8] K. He, G. Gkioxari, P. Doll´ar, and R. Girshick, "Mask R-CNN,"

Facebook AI Research (FAIR), 2018.

[9] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look

Once: Unified, Real-Time Object Detection," ed: IEEE, 2016, pp. 779-

788.

[10] L. Jiao et al., "A Survey of Deep Learning-Based Object Detection,"

IEEE access, vol. 7, pp. 128837-128868, 2019, doi:

10.1109/ACCESS.2019.2939201.

[11] M. Tiwari, S. S. Lamba, and B. Gupta, "An image processing and

computer vision framework for efficient robotic sketching," Procedia

Computer Science, vol. 133, pp. 284-289, 2018, doi:

10.1016/j.procs.2018.07.035.

[12] J. Byung-Wan and L. Yun-Sung, "Computer Vision-Based Bridge

Displacement Measurements Using Rotation-Invariant Image

Processing Technique," Sustainability, vol. 10, no. 6, p. 1785, 2018,

doi: 10.3390/su10061785.

[13] P. K. Saha, "Tensor scale: A local morphometric parameter with

applications to computer vision and image processing," Computer

 １２９

Vision and Image Understanding, vol. 99, no. 3, pp. 384-413, 2005,

doi: 10.1016/j.cviu.2005.03.003.

[14] N. Gonçalves, V. Carvalho, M. Belsley, R. M. Vasconcelos, F. O.

Soares, and J. Machado, "Yarn features extraction using image

processing and computer vision – A study with cotton and polyester

yarns," Measurement, vol. 68, pp. 1-15, 2015, doi:

10.1016/j.measurement.2015.02.010.

[15] C. Ng, C. Wu, W. Ip, C. Chan, and T. Ho, "A real time quality monitoring

system for the lighting industry : a practical and rapid approach using

computer vision and image processing (CVIP) tools," International

journal of engineering business management, vol. 3, no. 4, pp. 14-21,

2011, doi: 10.5772/45670.

[16] D. L. B. R. Jurjo, C. Magluta, N. Roitman, and P. Batista Gonçalves,

"Analysis of the structural behavior of a membrane using digital image

processing," Mechanical Systems and Signal Processing, vol. 54-55,

pp. 394-404, 2015, doi: 10.1016/j.ymssp.2014.08.010.

[17] S. Sunoj et al., "Sunflower floral dimension measurements using digital

image processing," Comput. Electron. Agric., vol. 151, pp. 403-415,

2018, doi: 10.1016/j.compag.2018.06.026.

[18] H.-S. Choi, J.-H. Cheung, S.-H. Kim, and J.-H. Ahn, "Structural

dynamic displacement vision system using digital image processing,"

NDT and E International, vol. 44, no. 7, pp. 597-608, 2011, doi:

10.1016/j.ndteint.2011.06.003.

[19] A. Iswardani and W. Hidayat, "Mammographic Image Enhancement

 １３０

using Digital Image Processing Technique," arXiv.org, 2018.

[20] S. Nur Mutiara, R. Pola, and D. Tresna, "Vision-Based Pipe Monitoring

Robot For Crack Detection Using Canny Edge Detection Method as an

Image Processing Technique," Kinetik, vol. 2, no. 4, pp. 243-250,

2017, doi: 10.22219/kinetik.v2i4.243.

[21] L. Liu et al., "Deep Learning for Generic Object Detection: A Survey,"

2018.

[22] S. Agarwal and F. Jurie, "Recent Advances in Object Detection in the

Age of Deep Convolutional Neural Networks," arXiv.org, 2019.

[23] D. Jia, D. Wei, R. Socher, L. Li-Jia, L. Kai, and F.-F. Li, "ImageNet: A

large-scale hierarchical image database," ed, 2009, pp. 248-255.

[24] P. Sinno Jialin and Y. Qiang, "A Survey on Transfer Learning," IEEE

Transactions on Knowledge and Data Engineering, vol. 22, no. 10, pp.

1345-1359, 2010, doi: 10.1109/TKDE.2009.191.

[25] S. Xia et al., "Transferring Ensemble Representations Using Deep

Convolutional Neural Networks for Small-Scale Image Classification,"

IEEE Access, vol. 7, no. 99, pp. 168175-168186, 2019, doi:

10.1109/ACCESS.2019.2912908.

[26] W. Cui, G. Zheng, Z. Shen, S. Jiang, and W. Wang, "Transfer Learning

for Sequences via Learning to Collocate," arXiv.org, 2019.

[27] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J.

Vaughan, "A theory of learning from different domains," Machine

Learning, vol. 79, no. 1-2, pp. 151-175, 2010, doi: 10.1007/s10994-

 １３１

009-5152-4.

[28] Y. Ganin et al., "Domain-Adversarial Training of Neural Networks,"

arXiv.org, 2016.

[29] P. Sinno Jialin, I. W. Tsang, J. T. Kwok, and Y. Qiang, "Domain

Adaptation via Transfer Component Analysis," IEEE Transactions on

Neural Networks, vol. 22, no. 2, pp. 199-210, 2011, doi:

10.1109/TNN.2010.2091281.

[30] J. Dai, Y. Li, K. He, and J. Sun, "R-FCN: Object Detection via Region-

based Fully Convolutional Networks," arXiv.org, 2016.

[31] W. Liu, D. Anguelov, C. Szegedy, S. Reed, F. Cheng-Yang, and A. Berg,

"SSD: Single Shot MultiBox Detector," vol. 9905, ed. Ithaca, 2016.

[32] L. Tsung-Yi, P. Goyal, R. Girshick, H. Kaiming, and P. Dollar, "Focal

Loss for Dense Object Detection," vol. 2017-, ed, 2017, pp. 2999-

3007.

[33] T. Kong, A. Yao, Y. Chen, and F. Sun, "HyperNet: Towards Accurate

Region Proposal Generation and Joint Object Detection," arXiv.org,

2016.

[34] S. Bell, C. Zitnick, K. Bala, and R. Girshick, "Inside-Outside Net:

Detecting Objects in Context with Skip Pooling and Recurrent Neural

Networks," arXiv.org, 2015.

[35] T. Kong, F. Sun, A. Yao, H. Liu, M. Lu, and Y. Chen, "RON: Reverse

Connection with Objectness Prior Networks for Object Detection,"

arXiv.org, 2017.

 １３２

[36] P. Chao et al., "MegDet: A Large Mini-Batch Object Detector,"

arXiv.org, 2018.

[37] B. Singh and L. Davis, "An Analysis of Scale Invariance in Object

Detection - SNIP," arXiv.org, 2018.

[38] H. Hu, J. Gu, Z. Zhang, J. Dai, and Y. Wei, "Relation Networks for

Object Detection," arXiv.org, 2018.

[39] H. Xu, X. Lv, X. Wang, R. Zhou, N. Bodla, and R. Chellappa, "Deep

Regionlets for Object Detection," arXiv.org, 2018.

[40] R. J. Wang, X. Li, and C. X. Ling, "Pelee: A Real-Time Object Detection

System on Mobile Devices," arXiv:1804.06882v3, 2018.

[41] E. Shelhamer, J. Long, and T. Darrell, "Fully Convolutional Networks

for Semantic Segmentation," IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 39, no. 4, pp. 640-651, 2017, doi:

10.1109/TPAMI.2016.2572683.

[42] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, "Hypercolumns

for Object Segmentation and Fine-grained Localization," arXiv.org,

2015.

[43] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille,

"Semantic Image Segmentation with Deep Convolutional Nets and

Fully Connected CRFs," arXiv.org, 2016.

[44] Y. Fisher and V. Koltun, "Multi-Scale Context Aggregation by Dilated

Convolutions," arXiv.org, 2016.

[45] J. Wang and A. K. Asundi, "A computer vision system for wineglass

 １３３

defect inspection via Gabor-filter-based texture features,"

Information Sciences, vol. 127, no. 3, pp. 157-171, 2000, doi:

10.1016/S0020-0255(00)00036-0.

[46] J. Wang, Y. Liu, D. Zhang, H. Peng, and Y. Zhu, "A new computer vision

based multi-indentation inspection system for ceramics," An

International Journal, vol. 76, no. 2, pp. 2495-2513, 2017, doi:

10.1007/s11042-015-3223-z.

[47] M. Quintana, J. Torres, and J. M. Menendez, "A Simplified Computer

Vision System for Road Surface Inspection and Maintenance," IEEE

Transactions on Intelligent Transportation Systems, vol. 17, no. 3, pp.

608-619, 2016, doi: 10.1109/TITS.2015.2482222.

[48] A. l. Gonzalez et al., "Automatic Traffic Signs and Panels Inspection

System Using Computer Vision," IEEE Transactions on Intelligent

Transportation Systems, vol. 12, no. 2, pp. 485-499, 2011, doi:

10.1109/TITS.2010.2098029.

[49] R. G. Saeidi, M. Latifi, S. S. Najar, and A. G. Saeidi, "Computer Vision-

Aided Fabric Inspection System for On-Circular Knitting Machine,"

Textile Research Journal, vol. 75, no. 6, pp. 492-497, 2005, doi:

10.1177/0040517505053874.

[50] J. Lopez, M. Cobos, and E. Aguilera, "Computer-based detection and

classification of flaws in citrus fruits," Neural Computing and

Applications, vol. 20, no. 7, pp. 975-981, 2011, doi: 10.1007/s00521-

010-0396-2.

[51] R. Seulin, F. Merienne, and P. Gorria, "Simulation of Specular Surface

 １３４

Imaging Based on Computer Graphics: Application on a Vision

Inspection System," EURASIP Journal on Advances in Signal

Processing, vol. 2002, no. 7, pp. 1-10, 2002, doi:

10.1155/S1110865702203030.

[52] N. C. Mithun, N. U. Rashid, and S. M. M. Rahman, "Detection and

Classification of Vehicles From Video Using Multiple Time-Spatial

Images," IEEE transactions on intelligent transportation systems, vol.

13, no. 3, pp. 1215-1225, 2012, doi: 10.1109/TITS.2012.2186128.

[53] J. Wang, H. Zheng, Y. Huang, and X. Ding, "Vehicle Type Recognition

in Surveillance Images From Labeled Web-Nature Data Using Deep

Transfer Learning," IEEE transactions on intelligent transportation

systems, vol. 19, no. 9, pp. 2913-2922, 2018, doi:

10.1109/TITS.2017.2765676.

[54] J. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M.

Smeulders, "Selective Search for Object Recognition," International

journal of computer vision, vol. 104, no. 2, pp. 154-171, 2013, doi:

10.1007/s11263-013-0620-5.

[55] K. He, X. Zhang, S. Ren, and J. Sun, "Spatial Pyramid Pooling in Deep

Convolutional Networks for Visual Recognition," arXiv:1406.4729v4,

2014.

[56] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,

"Feature Pyramid Networks for Object Detection,"

arXiv:1612.03144v2 , 2016.

[57] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, "Fully Convolutional Instance-

 １３５

aware Semantic Segmentation," arXiv:1611.07709v2, 2016.

[58] P. O. Pinheiro, R. Collobert, and P. Dollar, "Learning to Segment Object

Candidates," arXiv:1506.06204v2, 2015.

[59] J. Dai, K. He, and J. Sun, "Instance-aware Semantic Segmentation via

Multi-task Network Cascades," arXiv:1512.04412v1, 2015.

[60] A. Arnab and P. H. S. Torr, "Bottom-up Instance Segmentation using

Deep Higher-Order CRFs," arXiv:1609.02583v1, 2016.

[61] A. Fathi et al., "Semantic Instance Segmentation via Deep Metric

Learning," arXiv:1703.10277v1, 2017.

[62] X. Liang, L. Lin, Y. Wei, X. Shen, J. Yang, and S. Yan, "Proposal-Free

Network for Instance-Level Object Segmentation," IEEE Trans

Pattern Anal Mach Intell, vol. 40, no. 12, pp. 2978-2991, 2018, doi:

10.1109/TPAMI.2017.2775623.

[63] A. Kirillov, E. Levinkov, B. Andres, B. Savchynskyy, and C. Rother,

"InstanceCut: from Edges to Instances with MultiCut,"

arXiv:1611.08272v1, 2016.

[64] M. Bai and R. Urtasun, "Deep Watershed Transform for Instance

Segmentation," arXiv:1611.08303v2, 2016.

[65] L. Shu, J. Jiaya, S. Fidler, and R. Urtasun, "SGN: Sequential Grouping

Networks for Instance Segmentation," ed: IEEE, 2017, pp. 3516-3524.

[66] A. Arnab and P. H. S. Torr, "Pixelwise Instance Segmentation with a

Dynamically Instantiated Network," arXiv:1704.02386v1, 2017.

 １３６

[67] Y. Liu et al., "Affinity Derivation and Graph Merge for Instance

Segmentation," arXiv:1811.10870v1, 2018.

[68] N. Gao, Y. Shan, Y. Wang, X. Zhao, and K. Huang, "SSAP: Single-Shot

Instance Segmentation With Affinity Pyramid," IEEE transactions on

circuits and systems for video technology, vol. 31, no. 2, pp. 661-673,

2021, doi: 10.1109/TCSVT.2020.2985420.

[69] M. Cordts et al., "The Cityscapes Dataset for Semantic Urban Scene

Understanding," arXiv:1604.01685v2, 2016.

[70] D. Bolya, C. Zhou, F. Xiao, and Y. Lee, "YOLACT: Real-time Instance

Segmentation," arXiv.org, 2019.

[71] W. Xu, H. Wang, F. Qi, and C. Lu, "Explicit Shape Encoding for Real-

Time Instance Segmentation," arXiv:1908.04067v1, 2019.

[72] E. Xie et al., "PolarMask: Single Shot Instance Segmentation with

Polar Representation," arXiv:1909.13226v4, 2019.

[73] Z. Tian, C. Shen, H. Chen, and T. He, "FCOS: Fully Convolutional One-

Stage Object Detection," arXiv:1904.01355v5, 2019.

[74] J. Ahn, S. Cho, and S. Kwak, "Weakly Supervised Learning of Instance

Segmentation with Inter-pixel Relations," arXiv:1904.05044v3, 2019.

[75] D. Neven, B. De Brabandere, M. Proesmans, and L. Van Gool,

"Instance Segmentation by Jointly Optimizing Spatial Embeddings and

Clustering Bandwidth," arXiv:1906.11109v2, 2019.

[76] S. Kong and C. Fowlkes, "Recurrent Pixel Embedding for Instance

Grouping," arXiv:1712.08273v1, 2017.

 １３７

[77] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, "Path Aggregation Network for

Instance Segmentation," arXiv:1803.01534v4, 2018.

[78] Z. Huang, L. Huang, Y. Gong, C. Huang, and X. Wang, "Mask Scoring

R-CNN," arXiv:1903.00241v1, 2019.

[79] K. Chen et al., "Hybrid Task Cascade for Instance Segmentation,"

arXiv:1901.07518v2, 2019.

[80] Z. Li, C. Peng, G. Yu, X. Zhang, Y. Deng, and J. Sun, "DetNet: Design

Backbone for Object Detection," ed. Cham: Cham: Springer

International Publishing, 2018, pp. 339-354.

[81] L.-C. Chen, A. Hermans, G. Papandreou, F. Schroff, P. Wang, and A.

Hartwig, "MaskLab: Instance Segmentation by Refining Object

Detection with Semantic and Direction Features," arXiv.org, 2017.

[82] Z. Cai and N. Vasconcelos, "Cascade R-CNN: Delving into High

Quality Object Detection," arXiv:1712.00726v1, 2017.

[83] Y. Lee and J. Park, "CenterMask : Real-Time Anchor-Free Instance

Segmentation," arXiv:1911.06667v6, 2019.

[84] Y. Wen, F. Hu, J. Ren, X. Shang, L. Li, and X. Xi, "Joint multi-task

cascade for instance segmentation," Journal of real-time image

processing, vol. 17, no. 6, pp. 1983-1989, 2020, doi: 10.1007/s11554-

020-01007-5.

[85] X. Zhang, H. Li, F. Meng, Z. Song, and L. Xu, "Segmenting Beyond the

Bounding Box for Instance Segmentation," IEEE transactions on

circuits and systems for video technology, pp. 1-1, 2021, doi:

 １３８

10.1109/TCSVT.2021.3063377.

[86] Q. Wen et al., "Automatic Building Extraction from Google Earth

Images under Complex Backgrounds Based on Deep Instance

Segmentation Network," Sensors (Basel), vol. 19, no. 2, p. 333, 2019,

doi: 10.3390/s19020333.

[87] Z. Xu, S. Liu, J. Shi, and C. Lu, "Outdoor RGBD Instance Segmentation

With Residual Regretting Learning," IEEE Trans Image Process, vol.

29, pp. 5301-5309, 2020, doi: 10.1109/TIP.2020.2975711.

[88] B. Zhang and J. Zhang, "A Traffic Surveillance System for Obtaining

Comprehensive Information of the Passing Vehicles Based on Instance

Segmentation," IEEE transactions on intelligent transportation

systems, pp. 1-16, 2020, doi: 10.1109/TITS.2020.3001154.

[89] J. Chen, G. Wang, L. Luo, W. Gong, and Z. Cheng, "Building Area

Estimation in Drone Aerial Images Based on Mask R-CNN," IEEE

geoscience and remote sensing letters, vol. 18, no. 5, pp. 891-894,

2021, doi: 10.1109/LGRS.2020.2988326.

[90] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image

Recognition," Microsoft Research, 2015.

[91] G. Huang, Z. Liu, and K. Weinberger, "Densely Connected

Convolutional Networks," arXiv.org, 2018.

[92] A. Krizhevsky, I. Sutskever, and G. Hinton, "ImageNet classification

with deep convolutional neural networks," Communications of the

ACM, vol. 60, no. 6, pp. 84-90, 2017, doi: 10.1145/3065386.

 １３９

[93] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks

for Large-Scale Image Recognition," arXiv.org, 2015.

[94] C. Szegedy et al., "Going Deeper with Convolutions,"

arXiv:1409.4842v1, 2014.

[95] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, "Aggregated Residual

Transformations for Deep Neural Networks," arXiv:1611.05431v2,

2016.

[96] F. Yu, D. Wang, E. Shelhamer, and T. Darrell, "Deep Layer

Aggregation," arXiv:1707.06484v3, 2017.

[97] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, "Inception-v4,

Inception-ResNet and the Impact of Residual Connections on

Learning," arXiv.org, 2016.

[98] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,

"Rethinking the Inception Architecture for Computer Vision,"

arXiv:1512.00567v3, 2015.

[99] Y. Chen, J. Li, H. Xiao, X. Jin, and J. Feng, "Dual Path Networks,"

arXiv.org, 2017.

[100] W. Wang, X. Li, J. Yang, and T. Lu, "Mixed Link Networks,"

arXiv:1802.01808v1, 2018.

[101] F. Guo, Y. Qian, Y. Wu, Z. Leng, and H. Yu, "Automatic railroad track

components inspection using real‐time instance segmentation,"

Computer-aided civil and infrastructure engineering, vol. 36, no. 3, pp.

362-377, 2021, doi: 10.1111/mice.12625.

 １４０

[102] S.-H. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang, and P.

Torr, "Res2Net: A New Multi-Scale Backbone Architecture," IEEE

Trans Pattern Anal Mach Intell, vol. 43, no. 2, pp. 652-662, 2021, doi:

10.1109/TPAMI.2019.2938758.

[103] L. Tsung-Yi, P. Dollár, R. Girshick, K. He, B. Hariharan, and S.

Belongie, "Feature Pyramid Networks for Object Detection," arXiv.org,

2017.

[104] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look

Once: Unified, Real-Time Object Detection," vol. 2016-, ed, 2016,

pp. 779-788.

[105] Z. Li, C. Peng, G. Yu, X. Zhang, Y. Deng, and J. Sun, "DetNet: A

Backbone network for Object Detection," arXiv:1804.06215v2, 2018.

[106] A. G. Howard et al., "MobileNets: Efficient Convolutional Neural

Networks for Mobile Vision Applications," arXiv:1704.04861v1, 2017.

[107] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,

"MobileNetV2: Inverted Residuals and Linear Bottlenecks,"

arXiv:1801.04381v4, 2018.

[108] X. Zhang, X. Zhou, M. Lin, and J. Sun, "ShuffleNet: An Extremely

Efficient Convolutional Neural Network for Mobile Devices,"

arXiv:1707.01083v2, 2017.

[109] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K.

Keutzer, "SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and <0.5MB model size," arXiv:1602.07360v4, 2016.

 １４１

[110] F. Chollet, "Xception: Deep Learning with Depthwise Separable

Convolutions," arXiv:1610.02357v3, 2016.

[111] C.-Y. Wang, H.-Y. M. Liao, I. H. Yeh, Y.-H. Wu, P.-Y. Chen, and J.-

W. Hsieh, "CSPNet: A New Backbone that can Enhance Learning

Capability of CNN," arXiv:1911.11929v1, 2019.

[112] K. K. Pal and S. K. S., "Preprocessing for image classification by

convolutional neural networks," IEEE International Conference On

Recent Trends In Electronics Information Communication Technology,

pp. 1778-1781, May 20-21 2016.

[113] J. Yim and K.-A. Sohn, "Enhancing the Performance of Convolutional

Neural Networks on Quality Degraded Datasets," arXiv:1710.06805v1,

2017.

[114] J. Qin, Y. Zhang, H. Zhou, F. Yu, B. Sun, and Q. Wang, "Protein Crystal

Instance Segmentation Based on Mask R-CNN," Crystals (Basel), vol.

11, no. 2, p. 157, 2021, doi: 10.3390/cryst11020157.

[115] G. F. C. Campos, S. M. Mastelini, G. J. Aguiar, R. G. Mantovani, L. F.

d. Melo, and S. Barbon Jr, "Machine learning hyperparameter selection

for Contrast Limited Adaptive Histogram Equalization," EURASIP

journal on image and video processing, vol. 2019, no. 1, pp. 1-18,

2019, doi: 10.1186/s13640-019-0445-4.

[116] J. Huang et al., "Speed/accuracy trade-offs for modern convolutional

object detectors," arXiv.org, 2017.

[117] K. He, X. Zhang, S. Ren, and J. Sun, "Identity Mappings in Deep

Residual Networks," arXiv.org, 2016.

 １４２

[118] K.-H. Kim, S. Hong, B. Roh, Y. Cheon, and M. Park, "PVANET: Deep

but Lightweight Neural Networks for Real-time Object Detection,"

arXiv.org, 2016.

[119] T. Nakazawa and D. V. Kulkarni, "Wafer Map Defect Pattern

Classification and Image Retrieval Using Convolutional Neural

Network," IEEE Transactions on Semiconductor Manufacturing, vol.

31, no. 2, pp. 309-314, 2018, doi: 10.1109/tsm.2018.2795466.

[120] Y. Liu, F. Yang, and P. Hu, "Small-Object Detection in UAV-Captured

Images via Multi-Branch Parallel Feature Pyramid Networks," IEEE

access, vol. 8, pp. 145740-145750, 2020, doi:

10.1109/ACCESS.2020.3014910.

[121] Z. Li and F. Zhou, "FSSD: Feature Fusion Single Shot Multibox

Detector," arXiv:1712.00960v3, 2017.

[122] L. Taylor and G. Nitschke, "Improving Deep Learning using Generic

Data Augmentation," arXiv.org, 2017.

[123] D. Han, Q. Liu, and W. Fan, "A new image classification method using

CNN transfer learning and web data augmentation," Expert Systems

With Applications, vol. 95, pp. 43-56, 2018, doi:

10.1016/j.eswa.2017.11.028.

[124] R. Takahashi, T. Matsubara, and K. Uehara, "Data Augmentation using

Random Image Cropping and Patching for Deep CNNs," IEEE

Transactions on Circuits and Systems for Video Technology, pp. 1-1,

2019, doi: 10.1109/TCSVT.2019.2935128.

[125] H. Huang, H. Zhou, X. Yang, L. Zhang, L. Qi, and A.-Y. Zang, "Faster

 １４３

R-CNN for marine organisms detection and recognition using data

augmentation," Neurocomputing, vol. 337, pp. 372-384, 2019, doi:

10.1016/j.neucom.2019.01.084.

[126] M. Sajjad, S. Khan, K. Muhammad, W. Wu, A. Ullah, and S. W. Baik,

"Multi-grade brain tumor classification using deep CNN with

extensive data augmentation," Journal of Computational Science, vol.

30, pp. 174-182, 2019, doi: 10.1016/j.jocs.2018.12.003.

[127] C. Shorten and T. Khoshgoftaar, "A survey on Image Data

Augmentation for Deep Learning," Journal of Big Data, vol. 6, no. 1,

pp. 1-48, 2019, doi: 10.1186/s40537-019-0197-0.

[128] M. Everingham et al., "The Pascal Visual Object Classes (VOC)

Challenge," International journal of computer vision, vol. 88, no. 2, pp.

303-338, 2010, doi: 10.1007/s11263-009-0275-4.

[129] M. Everingham et al., "The Pascal Visual Object Classes Challenge: A

Retrospective," International journal of computer vision, vol. 111, no.

1, pp. 98-136, 2015, doi: 10.1007/s11263-014-0733-5.

[130] Z. Shen, Z. Liu, J. Li, Y.-G. Jiang, Y. Chen, and X. Xue, "Object

Detection from Scratch with Deep Supervision," arXiv:1809.09294v2,

2018.

[131] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio, "The

One Hundred Layers Tiramisu: Fully Convolutional DenseNets for

Semantic Segmentation," arXiv.org, 2017.

[132] S. Ioffe and C. Szegedy, "Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift," arXiv.org,

 １４４

2015.

[133] X. Glorot, A. Bordes, and Y. Bengio, "Deep sparse rectifier neural

networks," vol. 15, ed, 2011, pp. 315-323.

[134] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based

learning applied to document recognition," Proceedings of the IEEE,

vol. 86, no. 11, pp. 2278-2324, 1998, doi: 10.1109/5.726791.

[135] V. Santhanam and L. S. Davis, "A Generic Improvement to Deep

Residual Networks Based on Gradient Flow," IEEE Transactions on

Neural Networks and Learning Systems, pp. 1-10, 2019, doi:

10.1109/TNNLS.2019.2929198.

[136] A. L. KABADE and D. V. G. Sangam, "Canny edge detection algorithm,"

International Journal of Advanced Research in Electronics and

Communication Engineering, vol. 5, no. 5, May 2016.

[137] Ş. Öztürk and B. Akdemir, "Comparison of Edge Detection Algorithms

for Texture Analysis on Glass Production," Procedia, social and

behavioral sciences, vol. 195, pp. 2675-2682, 2015, doi:

10.1016/j.sbspro.2015.06.477.

[138] O. R. Vincent and O. Folorunso, "A Descriptive Algorithm for Sobel

Image Edge Detection," Proceedings of Informing Science & IT

Education Conference (InSITE) 2009.

[139] C. Cortes, M. Mohri, and A. Rostamizadeh, "L2 Regularization for

Learning Kernels," arXiv:1205.2653v1, 2012.

[140] K. He, X. Zhang, S. Ren, and J. Sun, "Delving Deep into Rectifiers:

 １４５

Surpassing Human-Level Performance on ImageNet Classification,"

arXiv:1502.01852v1, 2015.

[141] M. Abadi et al., "TensorFlow: Large-Scale Machine Learning on

Heterogeneous Distributed Systems," arXiv.org, 2016.

[142] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D.

Batra, "Grad-CAM: Visual Explanations from Deep Networks via

Gradient-Based Localization," International journal of computer vision,

vol. 128, no. 2, pp. 336-359, 2020, doi: 10.1007/s11263-019-01228-

7.

 １４６

초록

반도체 제조에서 결함 검출은 높은 수율을 유지하는데 중요합니다.

전형적으로, 반도체 웨이퍼의 결함은 제조 공정에서 발생하고 있습니다.

반도체 포토리소그래피 공정 검사에 사용되는 대부분의 컴퓨터 비전

시스템들은 여전히 외부 환경 변화에 민감한 이미지 처리 알고리즘을

사용하고 있어서 검사 오류가 자주 발생하고 있습니다. 따라서, 이미지

처리 알고리즘의 장점과 딥 러닝의 장점을 융합하여 이 문제를

해결하려고 합니다.

이 논문에서 우리는 반도체 포토리소그래피 검사와 같이 훈련

데이터 세트가 제한된 상황에서 향상된 기능 맵을 추출하기 위해 이미지

분할 검출기(Image Segmentation Detector, 이하 ISD)를 제안합니다.

ISD는 이미지 분할을 위한 최신 Mask R-CNN 프레임 워크의 새로운

백본 네트워크로 사용합니다. ISD는 4 개의 조밀한 블록과 4 개의 전환

레이어로 구성합니다. 특히, ISD의 각 조밀한 블록은 보다 컴팩트함을

위해 단축 연결 및 동적 성장률을 가지고 레이어에서 생성된 피쳐 맵을

결합하고 있습니다. ISD는 최근 적용하고 있는 전이 학습 방법을

사용하지 않고 처음부터 훈련합니다. 또한, ISD는 합성곱

신경망(Convolutional Neural Network, 이하 CNN)의 향상된 기능

맵을 추출하기 위해 우리가 설계한 이미지 필터를 통해 사전 처리된

이미지 데이터 세트로 훈련을 합니다. ISD의 설계 핵심 원칙 중 하나는

 １４７

소형화로 실시간 문제를 해결하고 리소스에 제한이 있는 장치에

적용하는데 중요한 역할을 하게 합니다.

모델을 실증적으로 입증하기 위해 이 논문에서는 현재 운영 중인

반도체 제조 장비에 내장된 컴퓨터 비전 시스템에서 획득한 실제

이미지를 사용합니다. ISD는 가장 일반적인 성능 측정 지표인 평균

정밀도에서 최첨단 백본 네트워크 보다 일관되게 더 나은 성능을

얻습니다. 특히, ISD는 베이스 라인으로 삼은 DenseNet 보다

파라미터들이 4배 더 적지만, 성능이 우수 합니다. 우리는 또한 ISD가

Mask R-CNN 백본 네트워크로 주로 사용하는 ResNet 보다 268배

훨씬 더 적은 파라미터들을 가지고, 추가 데이터 또는 사전 훈련된

모델을 사용하지 않고, 성능에서 비슷하거나 더 나은 결과를 얻을 수

있음을 관찰합니다. 우리의 실험 결과들은 ISD가 제한된 훈련 데이터

세트만으로 실시간 및 우수한 성능을 요구하는 반도체 산업의 다양한

분야들에서 많은 미래의 이미지 분할 연구 노력에 유용할 수 있음을

보여줍니다.

	Chapter 1. Introduction
	1.1. Background and Motivation

	Chapter 2. Related Work
	2.1. Inspection Method
	2.2. Instance Segmentation
	2.3. Backbone Structure
	2.4. Enhanced Feature Map
	2.5. Detection Performance Evaluation
	2.6. Learning Network Model from Scratch

	Chapter 3. Proposed Method
	3.1. ISD Architecture
	3.2. Pre-processing
	3.3. Model Training
	3.4. Training Objective
	3.5. Setting and Configurations

	Chapter 4. Experimental Evaluation
	4.1. Classification Results on ISD
	4.2. Comparison with Pre-processing
	4.3. Image Segmentation Results on ISD
	4.3.1. Results on Suck-back State
	4.3.2. Results on Dispensing State

	4.4. Comparison with State-of-the-art Methods

	Chapter 5. Conclusion
	Bibliography
	초록

<startpage>21
Chapter 1. Introduction １
 1.1. Background and Motivation ４
Chapter 2. Related Work １２
 2.1. Inspection Method １２
 2.2. Instance Segmentation １６
 2.3. Backbone Structure ２４
 2.4. Enhanced Feature Map ３５
 2.5. Detection Performance Evaluation ４７
 2.6. Learning Network Model from Scratch ５０
Chapter 3. Proposed Method ５２
 3.1. ISD Architecture ５２
 3.2. Pre-processing ６３
 3.3. Model Training ７１
 3.4. Training Objective ７３
 3.5. Setting and Configurations ７５
Chapter 4. Experimental Evaluation ７８
 4.1. Classification Results on ISD ８１
 4.2. Comparison with Pre-processing ８５
 4.3. Image Segmentation Results on ISD ９４
 4.3.1. Results on Suck-back State ９４
 4.3.2. Results on Dispensing State １０４
 4.4. Comparison with State-of-the-art Methods １１３
Chapter 5. Conclusion １２１
Bibliography １２７
초록 １４６
</body>

