2 research outputs found

    A Generic Framework for Constraint-Driven Data Selection in Mobile Crowd Photographing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Mobile crowd photographing (MCP) is an emerging area of interest for researchers as the built-in cameras of mobile devices are becoming one of the commonly used visual logging approaches in our daily lives. In order to meet diverse MCP application requirements and constraints of sensing targets, a multifacet task model should be defined for a generic MCP data collection framework. Furthermore, MCP collects pictures in a distributed way in which a large number of contributors upload pictures whenever and wherever it is suitable. This inevitably leads to evolving picture streams. This paper investigates the multiconstraint-driven data selection problem in MCP picture aggregation and proposes a pyramid-tree (PTree) model which can efficiently select an optimal subset from the evolving picture streams based on varied coverage needs of MCP tasks. By utilizing the PTree model in a generic MCP data collection framework, which is called CrowdPic, we test and evaluate the effectiveness, efficiency, and flexibility of the proposed framework through crowdsourcing-based and simulation-based experiments. Both the theoretical analysis and simulation results indicate that the PTree-based framework can effectively select a subset with high utility coverage and low redundancy ratio from the streaming data. The overall framework is also proved flexible and applicable to a wide range of MCP task scenarios

    A Photo-Based Mobile Crowdsourcing Framework for Event Reporting

    Full text link
    Mobile Crowdsourcing (MCS) photo-based is an arising field of interest and a trending topic in the domain of ubiquitous computing. It has recently drawn substantial attention of the smart cities and urban computing communities. In fact, the built-in cameras of mobile devices are becoming the most common way for visual logging techniques in our daily lives. MCS photo-based frameworks collect photos in a distributed way in which a large number of contributors upload photos whenever and wherever it is suitable. This inevitably leads to evolving picture streams which possibly contain misleading and redundant information that affects the task result. In order to overcome these issues, we develop, in this paper, a solution for selecting highly relevant data from an evolving picture stream and ensuring correct submission. The proposed photo-based MCS framework for event reporting incorporates (i) a deep learning model to eliminate false submissions and ensure photos credibility and (ii) an A-Tree shape data structure model for clustering streaming pictures to reduce information redundancy and provide maximum event coverage. Simulation results indicate that the implemented framework can effectively reduce false submissions and select a subset with high utility coverage with low redundancy ratio from the streaming data.Comment: Published in 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS
    corecore