1,554 research outputs found

    Extracting adverse drug reactions and their context using sequence labelling ensembles in TAC2017

    Full text link
    Adverse drug reactions (ADRs) are unwanted or harmful effects experienced after the administration of a certain drug or a combination of drugs, presenting a challenge for drug development and drug administration. In this paper, we present a set of taggers for extracting adverse drug reactions and related entities, including factors, severity, negations, drug class and animal. The systems used a mix of rule-based, machine learning (CRF) and deep learning (BLSTM with word2vec embeddings) methodologies in order to annotate the data. The systems were submitted to adverse drug reaction shared task, organised during Text Analytics Conference in 2017 by National Institute for Standards and Technology, archiving F1-scores of 76.00 and 75.61 respectively.Comment: Paper describing submission for TAC ADR shared tas

    Hi, how can I help you?: Automating enterprise IT support help desks

    Full text link
    Question answering is one of the primary challenges of natural language understanding. In realizing such a system, providing complex long answers to questions is a challenging task as opposed to factoid answering as the former needs context disambiguation. The different methods explored in the literature can be broadly classified into three categories namely: 1) classification based, 2) knowledge graph based and 3) retrieval based. Individually, none of them address the need of an enterprise wide assistance system for an IT support and maintenance domain. In this domain the variance of answers is large ranging from factoid to structured operating procedures; the knowledge is present across heterogeneous data sources like application specific documentation, ticket management systems and any single technique for a general purpose assistance is unable to scale for such a landscape. To address this, we have built a cognitive platform with capabilities adopted for this domain. Further, we have built a general purpose question answering system leveraging the platform that can be instantiated for multiple products, technologies in the support domain. The system uses a novel hybrid answering model that orchestrates across a deep learning classifier, a knowledge graph based context disambiguation module and a sophisticated bag-of-words search system. This orchestration performs context switching for a provided question and also does a smooth hand-off of the question to a human expert if none of the automated techniques can provide a confident answer. This system has been deployed across 675 internal enterprise IT support and maintenance projects.Comment: To appear in IAAI 201

    Biomedical Named Entity Recognition: A Review

    Get PDF
    Biomedical Named Entity Recognition (BNER) is the task of identifying biomedical instances such as chemical compounds, genes, proteins, viruses, disorders, DNAs and RNAs. The key challenge behind BNER lies on the methods that would be used for extracting such entities. Most of the methods used for BNER were relying on Supervised Machine Learning (SML) techniques. In SML techniques, the features play an essential role in terms of improving the effectiveness of the recognition process. Features can be identified as a set of discriminating and distinguishing characteristics that have the ability to indicate the occurrence of an entity. In this manner, the features should be able to generalize which means to discriminate the entities correctly even on new and unseen samples. Several studies have tackled the role of feature in terms of identifying named entities. However, with the surge of biomedical researches, there is a vital demand to explore biomedical features. This paper aims to accommodate a review study on the features that could be used for BNER in which various types of features will be examined including morphological features, dictionary-based features, lexical features and distance-based features

    Recognition of protein/gene names from text using an ensemble of classifiers

    Get PDF
    This paper proposes an ensemble of classifiers for biomedical name recognition in which three classifiers, one Support Vector Machine and two discriminative Hidden Markov Models, are combined effectively using a simple majority voting strategy. In addition, we incorporate three post-processing modules, including an abbreviation resolution module, a protein/gene name refinement module and a simple dictionary matching module, into the system to further improve the performance. Evaluation shows that our system achieves the best performance from among 10 systems with a balanced F-measure of 82.58 on the closed evaluation of the BioCreative protein/gene name recognitiontask (Task 1A)
    corecore