4 research outputs found

    A Generative Model of Words and Relationships from Multiple Sources

    Full text link
    Neural language models are a powerful tool to embed words into semantic vector spaces. However, learning such models generally relies on the availability of abundant and diverse training examples. In highly specialised domains this requirement may not be met due to difficulties in obtaining a large corpus, or the limited range of expression in average use. Such domains may encode prior knowledge about entities in a knowledge base or ontology. We propose a generative model which integrates evidence from diverse data sources, enabling the sharing of semantic information. We achieve this by generalising the concept of co-occurrence from distributional semantics to include other relationships between entities or words, which we model as affine transformations on the embedding space. We demonstrate the effectiveness of this approach by outperforming recent models on a link prediction task and demonstrating its ability to profit from partially or fully unobserved data training labels. We further demonstrate the usefulness of learning from different data sources with overlapping vocabularies.Comment: 8 pages, 5 figures; incorporated feedback from reviewers; to appear in Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence 201

    Continuous expressive speaking styles synthesis based on CVSM and MR-HMM

    Get PDF
    This paper introduces a continuous system capable of automatically producing the most adequate speaking style to synthesize a desired target text. This is done thanks to a joint modeling of the acoustic and lexical parameters of the speaker models by adapting the CVSM projection of the training texts using MR-HMM techniques. As such, we consider that as long as sufficient variety in the training data is available, we should be able to model a continuous lexical space into a continuous acoustic space. The proposed continuous automatic text to speech system was evaluated by means of a perceptual evaluation in order to compare them with traditional approaches to the task. The system proved to be capable of conveying the correct expressiveness (average adequacy of 3.6) with an expressive strength comparable to oracle traditional expressive speech synthesis (average of 3.6) although with a drop in speech quality mainly due to the semi-continuous nature of the data (average quality of 2.9). This means that the proposed system is capable of improving traditional neutral systems without requiring any additional user interaction

    Domain transfer for deep natural language generation from abstract meaning representations

    Get PDF
    Stochastic natural language generation systems that are trained from labelled datasets are often domainspecific in their annotation and in their mapping from semantic input representations to lexical-syntactic outputs. As a result, learnt models fail to generalize across domains, heavily restricting their usability beyond single applications. In this article, we focus on the problem of domain adaptation for natural language generation. We show how linguistic knowledge from a source domain, for which labelled data is available, can be adapted to a target domain by reusing training data across domains. As a key to this, we propose to employ abstract meaning representations as a common semantic representation across domains. We model natural language generation as a long short-term memory recurrent neural network encoderdecoder, in which one recurrent neural network learns a latent representation of a semantic input, and a second recurrent neural network learns to decode it to a sequence of words. We show that the learnt representations can be transferred across domains and can be leveraged effectively to improve training on new unseen domains. Experiments in three different domains and with six datasets demonstrate that the lexical-syntactic constructions learnt in one domain can be transferred to new domains and achieve up to 75-100% of the performance of in-domain training. This is based on objective metrics such as BLEU and semantic error rate and a subjective human rating study. Training a policy from prior knowledge from a different domain is consistently better than pure in-domain training by up to 10%
    corecore