254 research outputs found

    Enabling High-Dimensional Hierarchical Uncertainty Quantification by ANOVA and Tensor-Train Decomposition

    Get PDF
    Hierarchical uncertainty quantification can reduce the computational cost of stochastic circuit simulation by employing spectral methods at different levels. This paper presents an efficient framework to simulate hierarchically some challenging stochastic circuits/systems that include high-dimensional subsystems. Due to the high parameter dimensionality, it is challenging to both extract surrogate models at the low level of the design hierarchy and to handle them in the high-level simulation. In this paper, we develop an efficient ANOVA-based stochastic circuit/MEMS simulator to extract efficiently the surrogate models at the low level. In order to avoid the curse of dimensionality, we employ tensor-train decomposition at the high level to construct the basis functions and Gauss quadrature points. As a demonstration, we verify our algorithm on a stochastic oscillator with four MEMS capacitors and 184 random parameters. This challenging example is simulated efficiently by our simulator at the cost of only 10 minutes in MATLAB on a regular personal computer.Comment: 14 pages (IEEE double column), 11 figure, accepted by IEEE Trans CAD of Integrated Circuits and System

    An approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data

    Get PDF
    Invited review article for Anniversary Edition of Journal.In this paper, we shall review an approach by which we can seek higher order time discretisation schemes for solving time fractional partial differential equations with nonsmooth data. The low regularity of the solutions of time fractional partial differential equations implies standard time discretisation schemes only yield first order accuracy. To obtain higher order time discretisation schemes when the solutions of time fractional partial differential equations have low regularities, one may correct the starting steps of the standard time discretisation schemes to capture the singularities of the solutions. We will consider these corrections of some higher order time discretisation schemes obtained by using Lubich's fractional multistep methods, L1 scheme and its modification, discontinuous Galerkin methods, etc. Numerical examples are given to show that the theoretical results are consistent with the numerical results

    Numerical approximations of fractional differential equations: a Chebyshev pseudo-spectral approach.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Pietermaritzburg.This study lies at the interface of fractional calculus and numerical methods. Recent studies suggest that fractional differential and integral operators are well suited to model physical phenomena with intrinsic memory retention and anomalous behaviour. The global property of fractional operators presents difficulties in fnding either closed-form solutions or accurate numerical solutions to fractional differential equations. In rare cases, when analytical solutions are available, they often exist only in terms of complex integrals and special functions, or as infinite series. Similarly, obtaining an accurate numerical solution to arbitrary order differential equation is often computationally demanding. Fractional operators are non-local, and so it is practicable that when approximating fractional operators, non-local methods should be preferred. One such non-local method is the spectral method. In this thesis, we solve problems that arise in the ow of non-Newtonian fluids modelled with fractional differential operators. The recurrent theme in this thesis is the development, testing and presentation of tractable, accurate and computationally efficient numerical schemes for various classes of fractional differential equations. The numerical schemes are built around the pseudo{spectral collocation method and shifted Chebyshev polynomials of the first kind. The literature shows that pseudo-spectral methods converge geometrically, are accurate and computationally efficient. The objective of this thesis is to show, among other results, that these features are true when the method is applied to a variety of fractional differential equations. A survey of the literature shows that many studies in which pseudo-spectral methods are used to numerically approximate the solutions of fractional differential equations often to do this by expanding the solution in terms of certain orthogonal polynomials and then simultaneously solving for the coefficients of expansion. In this study, however, the orthogonality condition of the Chebyshev polynomials of the first kind and the Chebyshev-Gauss-Lobatto quadrature are used to numerically find the coefficients of the series expansions. This approach is then applied to solve various fractional differential equations, which include, but are not limited to time{space fractional differential equations, two{sided fractional differential equations and distributed order differential equations. A theoretical framework is provided for the convergence of the numerical schemes of each of the aforementioned classes of fractional differential equations. The overall results, which include theoretical analysis and numerical simulations, demonstrate that the numerical method performs well in comparison to existing studies and is appropriate for any class of arbitrary order differential equations. The schemes are easy to implement and computationally efficient
    • …
    corecore