177 research outputs found

    Absoluteness via Resurrection

    Full text link
    The resurrection axioms are forcing axioms introduced recently by Hamkins and Johnstone, developing on ideas of Chalons and Velickovi\'c. We introduce a stronger form of resurrection axioms (the \emph{iterated} resurrection axioms RAα(Γ)\textrm{RA}_\alpha(\Gamma) for a class of forcings Γ\Gamma and a given ordinal α\alpha), and show that RAω(Γ)\textrm{RA}_\omega(\Gamma) implies generic absoluteness for the first-order theory of Hγ+H_{\gamma^+} with respect to forcings in Γ\Gamma preserving the axiom, where γ=γΓ\gamma=\gamma_\Gamma is a cardinal which depends on Γ\Gamma (γΓ=ω1\gamma_\Gamma=\omega_1 if Γ\Gamma is any among the classes of countably closed, proper, semiproper, stationary set preserving forcings). We also prove that the consistency strength of these axioms is below that of a Mahlo cardinal for most forcing classes, and below that of a stationary limit of supercompact cardinals for the class of stationary set preserving posets. Moreover we outline that simultaneous generic absoluteness for Hγ0+H_{\gamma_0^+} with respect to Γ0\Gamma_0 and for Hγ1+H_{\gamma_1^+} with respect to Γ1\Gamma_1 with γ0=γΓ0≠γΓ1=γ1\gamma_0=\gamma_{\Gamma_0}\neq\gamma_{\Gamma_1}=\gamma_1 is in principle possible, and we present several natural models of the Morse Kelley set theory where this phenomenon occurs (even for all HγH_\gamma simultaneously). Finally, we compare the iterated resurrection axioms (and the generic absoluteness results we can draw from them) with a variety of other forcing axioms, and also with the generic absoluteness results by Woodin and the second author.Comment: 34 page

    Decidability and Universality in Symbolic Dynamical Systems

    Full text link
    Many different definitions of computational universality for various types of dynamical systems have flourished since Turing's work. We propose a general definition of universality that applies to arbitrary discrete time symbolic dynamical systems. Universality of a system is defined as undecidability of a model-checking problem. For Turing machines, counter machines and tag systems, our definition coincides with the classical one. It yields, however, a new definition for cellular automata and subshifts. Our definition is robust with respect to initial condition, which is a desirable feature for physical realizability. We derive necessary conditions for undecidability and universality. For instance, a universal system must have a sensitive point and a proper subsystem. We conjecture that universal systems have infinite number of subsystems. We also discuss the thesis according to which computation should occur at the `edge of chaos' and we exhibit a universal chaotic system.Comment: 23 pages; a shorter version is submitted to conference MCU 2004 v2: minor orthographic changes v3: section 5.2 (collatz functions) mathematically improved v4: orthographic corrections, one reference added v5:27 pages. Important modifications. The formalism is strengthened: temporal logic replaced by finite automata. New results. Submitte

    Probabilistic modal {\mu}-calculus with independent product

    Full text link
    The probabilistic modal {\mu}-calculus is a fixed-point logic designed for expressing properties of probabilistic labeled transition systems (PLTS's). Two equivalent semantics have been studied for this logic, both assigning to each state a value in the interval [0,1] representing the probability that the property expressed by the formula holds at the state. One semantics is denotational and the other is a game semantics, specified in terms of two-player stochastic parity games. A shortcoming of the probabilistic modal {\mu}-calculus is the lack of expressiveness required to encode other important temporal logics for PLTS's such as Probabilistic Computation Tree Logic (PCTL). To address this limitation we extend the logic with a new pair of operators: independent product and coproduct. The resulting logic, called probabilistic modal {\mu}-calculus with independent product, can encode many properties of interest and subsumes the qualitative fragment of PCTL. The main contribution of this paper is the definition of an appropriate game semantics for this extended probabilistic {\mu}-calculus. This relies on the definition of a new class of games which generalize standard two-player stochastic (parity) games by allowing a play to be split into concurrent subplays, each continuing their evolution independently. Our main technical result is the equivalence of the two semantics. The proof is carried out in ZFC set theory extended with Martin's Axiom at an uncountable cardinal
    • …
    corecore