942 research outputs found

    Possibilistic Information Flow Control for Workflow Management Systems

    Full text link
    In workflows and business processes, there are often security requirements on both the data, i.e. confidentiality and integrity, and the process, e.g. separation of duty. Graphical notations exist for specifying both workflows and associated security requirements. We present an approach for formally verifying that a workflow satisfies such security requirements. For this purpose, we define the semantics of a workflow as a state-event system and formalise security properties in a trace-based way, i.e. on an abstract level without depending on details of enforcement mechanisms such as Role-Based Access Control (RBAC). This formal model then allows us to build upon well-known verification techniques for information flow control. We describe how a compositional verification methodology for possibilistic information flow can be adapted to verify that a specification of a distributed workflow management system satisfies security requirements on both data and processes.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    A Bestiary of Sets and Relations

    Full text link
    Building on established literature and recent developments in the graph-theoretic characterisation of its CPM category, we provide a treatment of pure state and mixed state quantum mechanics in the category fRel of finite sets and relations. On the way, we highlight the wealth of exotic beasts that hide amongst the extensive operational and structural similarities that the theory shares with more traditional arenas of categorical quantum mechanics, such as the category fdHilb. We conclude our journey by proving that fRel is local, but not without some unexpected twists.Comment: In Proceedings QPL 2015, arXiv:1511.0118

    Pure Maps between Euclidean Jordan Algebras

    Get PDF
    We propose a definition of purity for positive linear maps between Euclidean Jordan Algebras (EJA) that generalizes the notion of purity for quantum systems. We show that this definition of purity is closed under composition and taking adjoints and thus that the pure maps form a dagger category (which sets it apart from other possible definitions.) In fact, from the results presented in this paper, it follows that the category of EJAs with positive contractive linear maps is a dagger-effectus, a type of structure originally defined to study von Neumann algebras in an abstract categorical setting. In combination with previous work this characterizes EJAs as the most general systems allowed in a generalized probabilistic theory that is simultaneously a dagger-effectus. Using the dagger structure we get a notion of dagger-positive maps of the form f = g*g. We give a complete characterization of the pure dagger-positive maps and show that these correspond precisely to the Jordan algebraic version of the sequential product that maps (a,b) to sqrt(a) b sqrt(a). The notion of dagger-positivity therefore characterizes the sequential product.Comment: In Proceedings QPL 2018, arXiv:1901.0947

    Additive monotones for resource theories of parallel-combinable processes with discarding

    Full text link
    A partitioned process theory, as defined by Coecke, Fritz, and Spekkens, is a symmetric monoidal category together with an all-object-including symmetric monoidal subcategory. We think of the morphisms of this category as processes, and the morphisms of the subcategory as those processes that are freely executable. Via a construction we refer to as parallel-combinable processes with discarding, we obtain from this data a partially ordered monoid on the set of processes, with f > g if one can use the free processes to construct g from f. The structure of this partial order can then be probed using additive monotones: order-preserving monoid homomorphisms with values in the real numbers under addition. We first characterise these additive monotones in terms of the corresponding partitioned process theory. Given enough monotones, we might hope to be able to reconstruct the order on the monoid. If so, we say that we have a complete family of monotones. In general, however, when we require our monotones to be additive monotones, such families do not exist or are hard to compute. We show the existence of complete families of additive monotones for various partitioned process theories based on the category of finite sets, in order to shed light on the way such families can be constructed.Comment: In Proceedings QPL 2015, arXiv:1511.0118
    • …
    corecore