42,450 research outputs found

    A Declarative Semantics for CLP with Qualification and Proximity

    Full text link
    Uncertainty in Logic Programming has been investigated during the last decades, dealing with various extensions of the classical LP paradigm and different applications. Existing proposals rely on different approaches, such as clause annotations based on uncertain truth values, qualification values as a generalization of uncertain truth values, and unification based on proximity relations. On the other hand, the CLP scheme has established itself as a powerful extension of LP that supports efficient computation over specialized domains while keeping a clean declarative semantics. In this paper we propose a new scheme SQCLP designed as an extension of CLP that supports qualification values and proximity relations. We show that several previous proposals can be viewed as particular cases of the new scheme, obtained by partial instantiation. We present a declarative semantics for SQCLP that is based on observables, providing fixpoint and proof-theoretical characterizations of least program models as well as an implementation-independent notion of goal solutions.Comment: 17 pages, 26th Int'l. Conference on Logic Programming (ICLP'10

    A Complete and Recursive Feature Theory

    Get PDF
    Various feature descriptions are being employed in logic programming languages and constrained-based grammar formalisms. The common notational primitive of these descriptions are functional attributes called features. The descriptions considered in this paper are the possibly quantified first-order formulae obtained from a signature of binary and unary predicates called features and sorts, respectively. We establish a first-order theory FT by means of three axiom schemes, show its completeness, and construct three elementarily equivalent models. One of the models consists of so-called feature graphs, a data structure common in computational linguistics. The other two models consist of so-called feature trees, a record-like data structure generalizing the trees corresponding to first-order terms. Our completeness proof exhibits a terminating simplification system deciding validity and satisfiability of possibly quantified feature descriptions.Comment: Short version appeared in the 1992 Annual Meeting of the Association for Computational Linguistic
    corecore