8 research outputs found

    Training effective node classifiers for cascade classification

    Get PDF
    Extent: 23p. The final publication is available at www.springerlink.com: http://link.springer.com/article/10.1007/s11263-013-0608-1Cascade classifiers are widely used in real-time object detection. Different from conventional classifiers that are designed for a low overall classification error rate, a classifier in each node of the cascade is required to achieve an extremely high detection rate and moderate false positive rate. Although there are a few reported methods addressing this requirement in the context of object detection, there is no principled feature selection method that explicitly takes into account this asymmetric node learning objective. We provide such an algorithm here. We show that a special case of the biased minimax probability machine has the same formulation as the linear asymmetric classifier (LAC) of Wu et al (2005). We then design a new boosting algorithm that directly optimizes the cost function of LAC. The resulting totally-corrective boosting algorithm is implemented by the column generation technique in convex optimization. Experimental results on object detection verify the effectiveness of the proposed boosting algorithm as a node classifier in cascade object detection, and show performance better than that of the current state-of-the-art.Chunhua Shen, Peng Wang, Sakrapee Paisitkriangkrai, Anton van den Henge

    Dimensionality Reduction in Dynamic Optimization under Uncertainty

    Get PDF
    Dynamic optimization problems affected by uncertainty are ubiquitous in many application domains. Decision makers typically model the uncertainty through random variables governed by a probability distribution. If the distribution is precisely known, then the emerging optimization problems constitute stochastic programs or chance constrained programs. On the other hand, if the distribution is at least partially unknown, then the emanating optimization problems represent robust or distributionally robust optimization problems. In this thesis, we leverage techniques from stochastic and distributionally robust optimization to address complex problems in finance, energy systems management and, more abstractly, applied probability. In particular, we seek to solve uncertain optimization problems where the prior distributional information includes only the first and the second moments (and, sometimes, the support). The main objective of the thesis is to solve large instances of practical optimization problems. For this purpose, we develop complexity reduction and decomposition schemes, which exploit structural symmetries or multiscale properties of the problems at hand in order to break them down into smaller and more tractable components. In the first part of the thesis we study the growth-optimal portfolio, which maximizes the expected log-utility over a single investment period. In a classical stochastic setting, this portfolio is known to outperform any other portfolio with probability 1 in the long run. In the short run, however, it is notoriously volatile. Moreover, its performance suffers in the presence of distributional ambiguity. We design fixed-mix strategies that offer similar performance guarantees as the classical growth-optimal portfolio but for a finite investment horizon. Moreover, the proposed performance guarantee remains valid for any asset return distribution with the same mean and covariance matrix. These results rely on a Taylor approximation of the terminal logarithmic wealth that becomes more accurate as the rebalancing frequency is increased. In the second part of the thesis, we demonstrate that such a Taylor approximation is in fact not necessary. Specifically, we derive sharp probability bounds on the tails of a product of non-negative random variables. These generalized Chebyshev bounds can be computed numerically using semidefinite programming--in some cases even analytically. Similar techniques can also be used to derive multivariate Chebyshev bounds for sums, maxima, and minima of random variables. In the final part of the thesis, we consider a multi-market reservoir management problem. The eroding peak/off-peak spreads on European electricity spot markets imply reduced profitability for the hydropower producers and force them to participate in the balancing markets. This motivates us to propose a two-layer stochastic programming model for the optimal operation of a cascade of hydropower plants selling energy on both spot and balancing markets. The planning problem optimizes the reservoir management over a yearly horizon with weekly granularity, and the trading subproblems optimize the market transactions over a weekly horizon with hourly granularity. We solve both the planning and trading problems in linear decision rules, and we exploit the inherent parallelizability of the trading subproblems to achieve computational tractability

    Convex Nonlinear and Integer Programming Approaches for Distributionally Robust Optimization of Complex Systems

    Full text link
    The primary focus of the dissertation is to develop distributionally robust optimization (DRO) models and related solution approaches for decision making in energy and healthcare service systems with uncertainties, which often involves nonlinear constraints and discrete decision variables. Without assuming specific distributions, DRO techniques solve for solutions against the worst-case distribution of system uncertainties. In the DRO framework, we consider both risk-neutral (e.g., expectation) and risk-averse (e.g., chance constraint and Conditional Value-at-Risk (CVaR)) measures. The aim is twofold: i) developing efficient solution algorithms for DRO models with integer and/or binary variables, sometimes nonlinear structures and ii) revealing managerial insights of DRO models for specific applications. We mainly focus on DRO models of power system operations, appointment scheduling, and resource allocation in healthcare. Specifically, we first study stochastic optimal power flow (OPF), where (uncertain) renewable integration and load control are implemented to balance supply and (uncertain) demand in power grids. We propose a chance-constrained OPF (CC-OPF) model and investigate its DRO variant which is reformulated as a semidefinite programming (SDP) problem. We compare the DRO model with two benchmark models, in the IEEE 9-bus, 39-bus, and 118-bus systems with different flow congestion levels. The DRO approach yields a higher probability of satisfying the chance constraints and shorter solution time. It also better utilizes reserves at both generators and loads when the system has congested flows. Then we consider appointment scheduling under random service durations with given (fixed) appointment arrival order. We propose a DRO formulation and derive a conservative SDP reformulation. Furthermore, we study a scheduling variant under random no-shows of appointments and derive tractable reformulations for certain beliefs of no-show patterns. One preceding problem of appointment scheduling in the healthcare service operations is the surgery block allocation problem that assigns surgeries to operating rooms. We derive an equivalent 0-1 SDP reformulation and a less conservative 0-1 second-order cone programming (SOCP) reformulation for its DRO model. Finally, we study distributionally robust chance-constrained binary programs (DCBP) for limiting the probability of undesirable events, under mean-covariance information. We reformulate DCBPs as equivalent 0-1 SOCP formulations under two moment-based ambiguity sets. We further exploit the submodularity of the 0-1 SOCP reformulations under diagonal and non-diagonal matrices. We derive extended polymatroid inequalities via submodularity and lifting, which are incorporated into a branch-and-cut algorithm incorporated for efficiently solving DCBPs. We demonstrate the computational efficacy and solution performance with diverse instances of a chance-constrained bin packing problem.PHDIndustrial & Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/149946/1/zyiling_1.pd

    A General Projection Property for Distribution Families

    No full text
    Surjectivity of linear projections between distribution families with fixed mean and covariance (regardless of dimension) is re-derived by a new proof. We further extend this property to distribution families that respect additional constraints, such as symmetry, unimodality and log-concavity. By combining our results with classic univariate inequalities, we provide new worst-case analyses for natural risk criteria arising in classification, optimization, portfolio selection and Markov decision processes.
    corecore