65,188 research outputs found

    Orthogonal Codes for Robust Low-Cost Communication

    Full text link
    Orthogonal coding schemes, known to asymptotically achieve the capacity per unit cost (CPUC) for single-user ergodic memoryless channels with a zero-cost input symbol, are investigated for single-user compound memoryless channels, which exhibit uncertainties in their input-output statistical relationships. A minimax formulation is adopted to attain robustness. First, a class of achievable rates per unit cost (ARPUC) is derived, and its utility is demonstrated through several representative case studies. Second, when the uncertainty set of channel transition statistics satisfies a convexity property, optimization is performed over the class of ARPUC through utilizing results of minimax robustness. The resulting CPUC lower bound indicates the ultimate performance of the orthogonal coding scheme, and coincides with the CPUC under certain restrictive conditions. Finally, still under the convexity property, it is shown that the CPUC can generally be achieved, through utilizing a so-called mixed strategy in which an orthogonal code contains an appropriate composition of different nonzero-cost input symbols.Comment: 2nd revision, accepted for publicatio

    Entanglement transmission and generation under channel uncertainty: Universal quantum channel coding

    Full text link
    We determine the optimal rates of universal quantum codes for entanglement transmission and generation under channel uncertainty. In the simplest scenario the sender and receiver are provided merely with the information that the channel they use belongs to a given set of channels, so that they are forced to use quantum codes that are reliable for the whole set of channels. This is precisely the quantum analog of the compound channel coding problem. We determine the entanglement transmission and entanglement-generating capacities of compound quantum channels and show that they are equal. Moreover, we investigate two variants of that basic scenario, namely the cases of informed decoder or informed encoder, and derive corresponding capacity results.Comment: 45 pages, no figures. Section 6.2 rewritten due to an error in equation (72) of the old version. Added table of contents, added section 'Conclusions and further remarks'. Accepted for publication in 'Communications in Mathematical Physics

    Quantum capacity under adversarial quantum noise: arbitrarily varying quantum channels

    Full text link
    We investigate entanglement transmission over an unknown channel in the presence of a third party (called the adversary), which is enabled to choose the channel from a given set of memoryless but non-stationary channels without informing the legitimate sender and receiver about the particular choice that he made. This channel model is called arbitrarily varying quantum channel (AVQC). We derive a quantum version of Ahlswede's dichotomy for classical arbitrarily varying channels. This includes a regularized formula for the common randomness-assisted capacity for entanglement transmission of an AVQC. Quite surprisingly and in contrast to the classical analog of the problem involving the maximal and average error probability, we find that the capacity for entanglement transmission of an AVQC always equals its strong subspace transmission capacity. These results are accompanied by different notions of symmetrizability (zero-capacity conditions) as well as by conditions for an AVQC to have a capacity described by a single-letter formula. In he final part of the paper the capacity of the erasure-AVQC is computed and some light shed on the connection between AVQCs and zero-error capacities. Additionally, we show by entirely elementary and operational arguments motivated by the theory of AVQCs that the quantum, classical, and entanglement-assisted zero-error capacities of quantum channels are generically zero and are discontinuous at every positivity point.Comment: 49 pages, no figures, final version of our papers arXiv:1010.0418v2 and arXiv:1010.0418. Published "Online First" in Communications in Mathematical Physics, 201

    Secret Message Transmission over Quantum Channels under Adversarial Quantum Noise: Secrecy Capacity and Super-Activation

    Full text link
    We determine the secrecy capacities of AVQCs (arbitrarily varying quantum channels). Both secrecy capacity with average error probability and with maximal error probability are derived. Both derivations are based on one common code construction. The code we construct fulfills a stringent secrecy requirement, which is called the strong code concept. We determine when the secrecy capacity is a continuous function of the system parameters and completely characterize its discontinuity points both for average error criterion and for maximal error criterion. Furthermore, we prove the phenomenon "super-activation" for secrecy capacities of AVQCs, i.e., two quantum channels both with zero secrecy capacity, which, if used together, allow secure transmission with positive capacity. We also discuss the relations between the entanglement distillation capacity, the entanglement generating capacity, and the strong subspace transmission capacity for AVQCs.Comment: arXiv admin note: text overlap with arXiv:1702.0348
    corecore