65 research outputs found

    Moment Estimation Using a Marginalized Transform

    Get PDF
    We present a method for estimating mean and covariance of a transformed Gaussian random variable. The method is based on evaluations of the transforming function and resembles the unscented transform and Gauss-Hermite integration in that respect. The information provided by the evaluations is used in a Bayesian framework to form a posterior description of the parameters in a model of the transforming function. Estimates are then derived by marginalizing these parameters from the analytical expression of the mean and covariance. An estimation algorithm, based on the assumption that the transforming function can be described using Hermite polynomials, is presented and applied to the non-linear filtering problem. The resulting marginalized transform (MT) estimator is compared to the cubature rule, the unscented transform and the divided difference estimator. The evaluations show that the presented method performs better than these methods, more specifically in estimating the covariance matrix. Contrary to the unscented transform, the resulting approximation of the covariance matrix is guaranteed to be positive-semidefinite

    Converted Measurement Trackers for Systems with Nonlinear Measurement Functions

    Get PDF
    Converted measurement tracking is a technique that filters in the coordinate system where the underlying process of interest is linear and Gaussian, and requires the measurements to be nonlinearly transformed to fit. The goal of the transformation is to allow for tracking in the coordinate system that is most natural for describing system dynamics. There are two potential issues that arise when performing converted measurement tracking. The first is conversion bias that occurs when the measurement transformation introduces a bias in the expected value of the converted measurement. The second is estimation bias that occurs because the estimate of the converted measurement error covariance is correlated with the measurement noise, leading to a biased Kalman gain. The goal of this research is to develop a new approach to converted measurement tracking that eliminates the conversion bias and mitigates the estimation bias. This new decorrelated unbiased converted measurement (DUCM) approach is developed and applied to numerous tracking problems applicable to sonar and radar systems. The resulting methods are compared to the current state of the art based on their mean square error (MSE) performance, consistency and performance with respect to the posterior Cramer-Rao lower bound

    Cubature Kalman filter Based on generalized minimum error entropy with fiducial point

    Full text link
    In real applications, non-Gaussian distributions are frequently caused by outliers and impulsive disturbances, and these will impair the performance of the classical cubature Kalman filter (CKF) algorithm. In this letter, a modified generalized minimum error entropy criterion with fiducial point (GMEEFP) is studied to ensure that the error comes together to around zero, and a new CKF algorithm based on the GMEEFP criterion, called GMEEFP-CKF algorithm, is developed. To demonstrate the practicality of the GMEEFP-CKF algorithm, several simulations are performed, and it is demonstrated that the proposed GMEEFP-CKF algorithm outperforms the existing CKF algorithms with impulse noise

    Sequential Mini-Batch Noise Covariance Estimator

    Get PDF
    Noise covariance estimation in an adaptive Kalman filter is a problem of significant practical interest in a wide array of industrial applications. Reliable algorithms for their estimation are scarce, and the necessary and sufficient conditions for identifiability of the covariances were in dispute until very recently. This chapter presents the necessary and sufficient conditions for the identifiability of noise covariances, and then develops sequential mini-batch stochastic optimization algorithms for estimating them. The optimization criterion involves the minimization of the sum of the normalized temporal cross-correlations of the innovations; this is based on the property that the innovations of an optimal Kalman filter are uncorrelated over time. Our approach enforces the structural constraints on noise covariances and ensures the symmetry and positive definiteness of the estimated covariance matrices. Our approach is applicable to non-stationary and multiple model systems, where the noise covariances can occasionally jump up or down by an unknown level. The validation of the proposed method on several test cases demonstrates its computational efficiency and accuracy
    corecore