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Chapter

Sequential Mini-Batch Noise
Covariance Estimator
Hee-Seung Kim, Lingyi Zhang, Adam Bienkowski,

Krishna R. Pattipati, David Sidoti, Yaakov Bar-Shalom

and David L. Kleinman

Abstract

Noise covariance estimation in an adaptive Kalman filter is a problem of significant
practical interest in a wide array of industrial applications. Reliable algorithms for
their estimation are scarce, and the necessary and sufficient conditions for
identifiability of the covariances were in dispute until very recently. This chapter
presents the necessary and sufficient conditions for the identifiability of noise covari-
ances, and then develops sequential mini-batch stochastic optimization algorithms for
estimating them. The optimization criterion involves the minimization of the sum of
the normalized temporal cross-correlations of the innovations; this is based on the
property that the innovations of an optimal Kalman filter are uncorrelated over time.
Our approach enforces the structural constraints on noise covariances and ensures the
symmetry and positive definiteness of the estimated covariance matrices. Our
approach is applicable to non-stationary and multiple model systems, where the noise
covariances can occasionally jump up or down by an unknown level. The validation of
the proposed method on several test cases demonstrates its computational efficiency
and accuracy.

Keywords: Adaptive Kalman filtering, Minimal polynomial, Noise covariance
estimation, Stochastic gradient descent (SGD), Mini-batch SGD

1. Introduction

This chapter addresses the following learning problem: Given a vector time series
and a library of models for the time evolution of the data (e.g., a Wiener process, a
white noise acceleration model, also called nearly constant velocity model, or a white
noise jerk model, also called nearly constant acceleration model), find suitable
process and measurement noise covariances and select the best dynamic model for
the time series. This problem is of considerable interest in a number of applications,
such as fault diagnosis, robotics, signal processing, navigation, and target tracking,
to name a few [1, 2].

The Kalman filter (KF) [3] is the optimal minimum mean square error (MMSE)
state estimator for linear systems with mutually uncorrelated Gaussian white process
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and measurement noises, and is the best linear state estimator when the noises are
non-Gaussian with known covariances. However, the noise covariances are unknown
or only partially known in many practical applications.

We derived the necessary and sufficient conditions for the identifiability of
unknown noise covariances, and presented a batch optimization algorithm for their
estimation using the sum of the normalized temporal cross-correlations of the inno-
vation sequence as the optimization criterion [4]. The motivation for this optimiza-
tion metric stems from the fact that the innovations of an optimal Kalman filter are
white, meaning that they are uncorrelated over time [2]. In [5], we proposed a
sequential mini-batch stochastic gradient descent (SGD) algorithm that required
multiple passes through the measurements for estimating noise covariances. We also
presented its applicability to non-stationary systems by detecting changes in noise
covariances. In this chapter, we present a practical single-pass stochastic gradient
descent algorithm for noise covariance estimation in non-stationary systems. Exten-
sions to multiple models where the system behavior can stem from a member of a
known subset of models are discussed in [6].

1.1 Prior work

The key to noise covariance estimation is an expression for the covariance of the
state estimation error and of the innovations of any stable, but not necessarily
optimal, filter as a function of noise covariances. This expression serves as a
foundational building block for the correlation-based methods for noise covariance
estimation. Pioneering contributions using this approach were made by [7–9].
Sarkka and Nummenmaa [10] proposed a recursive noise-adaptive Kalman filter
for linear state space models using variational Bayesian approximations. However,
the variational methods generally require tuning hyper-parameters to converge to
the correct covariance parameters and these algorithms often converge to local
minima.

In [5], we presented a computationally efficient and accurate sequential estimation
algorithm that is a major improvement over the batch estimation algorithm in [4]. The
novelties of this algorithm stem from its sequential nature and the use of mini-
batches, adaptive step size rules and dynamic thresholds for convergence in the
stochastic gradient descent (SGD) algorithm. The innovation cross-correlations are
obtained by a sequential fading memory filter. We applied a change-point detection
algorithm described in [11] to extract the change points in noise covariances for non-
stationary systems.

This chapter seeks to develop a streaming algorithm that reads measurements
exactly once, thus making it real-time and practical. The only caveat is that the
changes in noise covariances are assumed to occasionally jump up or down by an
unknown magnitude. Extensions of this algorithm to a multiple model setting may be
found in [6].

1.2 Organization of the chapter

The organisation of the chapter is as follows. Section 2 presents the mathematical
formulation of the sequential mini-batch gradient descent algorithm for estimating
the unknown noise covariances. In this section, we also present an overview of our
approach based on a fading memory filter-based innovation correlation estimation,
and an accelerated SGD update of the Kalman gain. In Section 3, we show that our
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single-pass method can track unknown noise covariances in non-stationary
systems. Lastly, we conclude the chapter with a brief summary of the contributions
in Section 4.

2. Sequential mini-batch SGD method for estimating process and
measurement noise covariances

Consider a discrete-time linear dynamic system

x kþ 1ð Þ ¼ Fx kð Þ þ Γv kð Þ (1)

z kð Þ ¼ Hx kð Þ þ w kð Þ (2)

where x kð Þ is the nx-dimensional state vector, v kð Þ is the sequence of zero-mean
white Gaussian process noise with unknown process noise covariance Q kð Þ in the
plant equation. The measurement equation, z kð Þ with nz-dimensional vector, is given
in (2). Here, w kð Þ is the sequence of zero-mean white Gaussian measurement noise
with unknown measurement noise covariance R kð Þ. In the system, F and Γ are the
nx � nx state transition matrix and the noise gain matrix, respectively, and H is the
nz � nx measurement matrix. Here, the two noise sequences and the initial state error
are assumed to be mutually uncorrelated. We assume that noise covariances Q kð Þ and
R kð Þ are piecewise constant such that the filter reaches a steady-state between any two
jumps of unknown magnitude.

Given Q kð Þ and R kð Þ, the Kalman filter involves the consecutive processes of
prediction and update given by [2, 3].

x̂ kþ 1jkð Þ ¼ Fx̂ kjkð Þ (3)

ν kþ 1ð Þ ¼ z kþ 1ð Þ �Hx̂ kþ 1jkð Þ (4)

x̂ kþ 1jkþ 1ð Þ ¼ x̂ kþ 1jkð Þ þW kþ 1ð Þν kþ 1ð Þ (5)

P kþ 1jkð Þ ¼ FP kjkð ÞF0 þ ΓQ kð ÞΓ0 (6)

S kþ 1ð Þ ¼ HP K þ 1jkð ÞH0 þ R kð Þ (7)

W kþ 1ð Þ ¼ P kþ 1jkð ÞH0S kþ 1ð Þ�1 (8)

P kþ 1jkþ 1ð Þ ¼ Inx �W kþ 1ð ÞHð ÞP kþ 1jkð Þ Inx �W kþ 1ð ÞHð Þ0

þW kþ 1ð ÞR kð ÞW kþ 1ð Þ0 (9)

The Kalman filter predicts the next state estimate at time index kþ 1ð Þ, given the
observations up to time index k in (3) and the concomitant predicted state estimation
error covariance in (6), using system dynamics, the updated state error covariance
P kjkð Þ at time index k and the process noise covariance, Q kð Þ. The updated state
estimate at time kþ 1ð Þ in (5) incorporates the measurement at time kþ 1ð Þ via the
Kalman gain matrix in (8), which depends on the innovation covariance S kþ 1ð Þ
(which in turn depends on the measurement noise covariance R kð Þ, and the predicted
state error covariance P kþ 1jkð Þ). The updated state error covariance P kþ 1jkþ 1ð Þ is
computed via (9); this is the Joseph form, which is less sensitive to round-off error
because it guarantees that the updated state covariance matrix will remain positive
definite.
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2.1 Identifiability conditions for estimating Q and R

The necessary and sufficient conditions for identifiability of the covariances in
adaptive Kalman filters were in dispute until very recently [4, 7–9, 12]. When Q and R
are unknown, consider the innovations corresponding to a stable, suboptimal closed-

loop filter matrix F ¼ F Inx �WHð Þ given by [4, 13].

ν kð Þ ¼ HF
m
x k�mð Þ � x̂ k�mjk�m� 1ð Þ½ �

þ H
X

m�1

j¼0

F
m�1�j

Γv k�mþ jð Þ � FWw k�mþ jð Þ½ �
( )

þw kð Þ (10)

Given the innovation sequence (10), a weighted sum of innovations, ξ kð Þ, can be
computed as

ξ kð Þ ¼
X

m

i¼0

aiν k� ið Þ (11)

where the weights are the coefficients of the minimal polynomial of the closed-

loop filter matrix F,
Pm

i¼0aiF
m�i ¼ 0,a0 ¼ 1: It is easy to see that ξ kð Þ is the sum of two

moving average processes driven by the process noise and measurement noise,
respectively, given by [4].

ξ kð Þ ¼
X

m

l¼1

Blv k� lð Þ þ
X

m

l¼0

Glw k� lð Þ (12)

Here, Bl and Gl are given by

Bl ¼ H
X

l�1

i¼0

aiF
l�i�1

 !

Γ (13)

Gl ¼ alInz �H
X

l�1

i¼0

aiF
l�i�1

 !

FW

" #

;G0 ¼ Inz (14)

Then, the cross-covariance between ξ kð Þ and ξ k� jð Þ, Lj, can be obtained as

Lj ¼ E ξ kð Þξ k� jð Þ0
� �

¼
X

m

i¼jþ1

BiQBi�j
0 þ
X

m

i¼j

GiRGi�j
0 (15)

The noise covariance matrices Q ¼ qij

h i

of dimension nv � nv and R ¼ rij
� �

of

dimension nz � nz are positive definite and symmetric. By converting the noise
covariance matrices and the Lj matrices to vectors, Zhang et al. [4] show that they are
related by the noise covariance identifiability matrix I given by

I
vec Qð Þ
vec Rð Þ

� �

¼

L0

L1

⋮

Lm

2

6

6

6

4

3

7

7

7

5

(16)

4

Kalman Filter - Engineering Applications



As shown in [4], if the matrix I has full rank, then the unknown noise covariance
matrices, Q and R, are identifiable. Direct solution of linear equations in (16) for Q
and R is highly ill-conditioned and is prone to numerical errors.

2.2 Recursive fading memory-based innovation correlation estimation

We compute the sample correlation matrix Ĉ
k

seq ið Þ at sample k for time lag i as a

weighted combination of the correlation matrix Ĉ
k�1

seq ið Þ at the previous sample (k� 1)

and time lag i, and the samples of innovations ν k� ið Þ and ν kð Þ. The tuning parameter
λ, a positive constant between 0 and 1, is the weight associated with the previous
sample correlation matrix. The current M sample correlation matrices at time k are
used as the initial values for the next pairs of samples for the recursive computation.
Let us define the number of measurement samples as N. Then,

Ĉ
k

seq ið Þ ¼ 1� λð Þν k� ið Þν kð Þ0 þ λĈ
k�1

seq ið Þ, (17)

Ĉ
0

seq ið Þ ¼ 0,i ¼ 0,1,2,⋯,M� 1; k ¼ M,⋯,N (18)

2.3 Objective function and the gradient

The ensemble cross-correlation of a steady-state suboptimal Kalman filter is

related to the closed-loop filter matrix F ¼ F Inx �WHð Þ, the matrix F, the measure-

ment matrix H, the steady-state predicted covariance matrix P, steady-state filter gain
W and the steady-state innovation covariance, C 0ð Þ via [8, 9].

C ið Þ ¼ E ν kð Þν k� ið Þ0
� �

¼ HF
i�1

F PH0 �WC 0ð Þ
� �

(19)

To avoid the scaling effects of measurements, the objective function Ψ formulated
in [4] involves a minimization of the sum of normalized C ið Þ with respect to the
corresponding diagonal elements of C 0ð Þ for i>0. Formally, we can define the objec-
tive function Ψ to be minimized with respect to W as

Ψ ¼ 1

2
tr
X

M�1

i¼1

diag C 0ð Þð Þ½ ��1
2C ið Þ0 diag C 0ð Þð Þ½ ��1C ið Þ diag C 0ð Þð Þ½ ��1

2

( )

(20)

where diag Cð Þ denotes the diagonal matrix of C. We can rewrite the objective
function by substituting (20) into (19) as

Ψ ¼ 1

2
tr
X

M�1

i¼1

ϕ ið ÞXφX0
( )

(21)

where

ϕ ið Þ ¼ HF
i�1

F
h i0

φ HF
i�1

F
h i

(22)

X ¼ PH0 �WC 0ð Þ (23)
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φ ¼ diag C 0ð Þð Þ½ ��1 (24)

The gradient of objective function, ∇WΨ, can be computed as [4].

∇WΨ ¼ �
X

M�1

i¼1

HF
i�1

F
h i0

φC ið ÞφC 0ð Þ � F0ZFX �
X

i�2

l¼0

C lþ 1ð ÞφC ið Þ0φHF
i�l�2

h i0

(25)

where

Z ¼ F
0
ZF þ 1

2

X

M�1

i¼1

HF
i�1

F
� �0

φC ið ÞφH þ HF
i�1

F
� �0

φC ið ÞφH
� �0

(26)

The Z term in (26) is computed by a Lyapunov equation; it is often small and can
be neglected in (25) for computational efficiency.

In computing the objective function and the gradient, we replace C ið Þ by their

sample estimates, Ĉseq ið Þ. With this replacement, the noise covariance estimation
becomes a data-dependent stochastic optimization/learning problem.

2.4 Estimation of Q and R

2.4.1 Estimation of R

We define μ kð Þ as the post-fit residual sequence of the Kalman filter, which is
related to the innovations ν kð Þ via

μ kð Þ ¼ z kð Þ �Hx̂ kjkð Þ ¼ Inz �HWð Þν kð Þ; k ¼ 1,2,⋯,N (27)

From the joint covariance of the innovation sequence ν kð Þ and the post-fit residual
sequence μ kð Þ, and the Schur determinant identity [14, 15], one can show that [4].

G ¼ E μ kð Þμ kð Þ0
� �

¼ RS�1R (28)

where S is the innovation covariance. Knowing the sampled estimates of G and

S=Ĉseq 0ð Þ, the measurement noise covariance R is estimated. Because (28) can be
interpreted as a continuous-time algebraic Riccati equation or as a simultaneous diag-
onalization problem in linear algebra [15], the measurement noise covariance R can be
estimated by solving a continuous-time Riccati equation as in [4, 16] or by solving the
simultaneous diagonalization problem via Cholesky decomposition and eigen decom-
position.

2.4.2 Estimation of Q

Since the process noise covariance Q and the steady-state updated covariance P are
generally coupled, Q and P can be obtained via a Gauss–Seidel type iterative compu-
tation given the estimated R. Wiener process is an exception where an explicit non-
iterative solution Q ¼ WSW 0 is possible [4]. Let t and l denote the indices of iteration
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starting with t = 0 and l = 0. The initial steady-state updated covariance, P0, can be
computed as the solution of the Lyapunov equation given by

P 0ð Þ ¼ ~FP 0ð Þ~F
0 þWRW 0 þ Inx �WHð ÞΓQ tð Þ

Γ
0 Inx �WHð Þ0;Q 0ð Þ ¼ WSW 0 (29)

where ~F ¼ Inx �WHð ÞF. We iteratively update P as in (30) until convergence

P lþ1ð Þ ¼ FP lð ÞF0 þ ΓQ tð Þ
Γ
0

� ��1
þH0R�1H

� ��1

(30)

Given the converged P, Q will be updated in the t-loop until the estimate of Q
converges.

Q tþ1ð Þ ¼ Γ
† PþWSW 0 � FPF0ð Þ tþ1ð Þ þ λQ Inx

h i

Γ
0ð Þ† (31)

where λQ is a regularization parameter used for ill-conditioned estimation
problems.

2.5 Updating the gain W sequentially

The estimation algorithm sequentially computes theM sample covariance matrices
at every measurement sample k as in (17). Let B be the mini-batch size for updating
the Kalman filter gainW in the SGD. Our proposed method updates the gainW when
the sample index k is divisible by the mini-batch size B. When compared to the batch
estimation algorithm, the sequential mini-batch SGD algorithm allows more opportu-
nities to converge to a better local minimum of (20) by frequently updating the filter
the gain [5]. The generic form of the gain update is given by

W rþ1ð Þ ¼ W rð Þ � α rð Þ
∇W rð ÞΨ (32)

where r is the updating index starting with r ¼ 0. In our previous research [5], we
explored the performance of accelerated SGD methods (e.g., bold driver [17], con-
stant, subgradient [18], RMSProp [19], Adam [20], Adadelta [21]) for updating

adaptive step size α rð Þ in (32). The root mean square propagation (RMSProp) method
is applied for the estimation procedure in this chapter. The RMSProp keeps track of
the moving average of the squared incremental gradients for each gain element by
adapting the step size element-wise as in the following.

τr,ij ¼ γτr�1,ij þ 1� γð Þ ∇W rð ÞΨ
� 	

ij

h i2
; τ0 ¼ 0 (33)

α
rð Þ
ij ¼ α 0ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τr,ij þ ε
p (34)

Here, γ ¼ 0:9 is the default value and ε ¼ 10�8 to prevent division by zero.
The pseudocode for the sequential mini-batch SGD estimation algorithm for a non-

stationary system is included as Algorithm 1.
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Algorithm 1 Pseudocode of sequential mini-batch SGD algorithm.

1: input: W0, Q0, R0, α0, B ⊳ W0: initial gain, Q0: initial Q, R0: initial R, α0: initial
step size, B: batch size.

2: r = 0 {⊳ Initialize the updating index r}.
3: for k = 1 to N do {⊳ N: Number of samples}.
4: compute innovation correlations ν kð Þ.
5: if k>Nb þM then {⊳ Nb: Number of burn-in samples}.

6: compute Ĉ
k

seq ið Þ, i = 0,1,2,...M-1.

7: if Mod k, Bð Þ ¼ 0 then.
8: compute the objective function Ψ.
9: compute the gradient ∇WΨ.

10: update the step size α rð Þ.

11: update the gain W
rþ1ð Þ
ij ¼ W

rð Þ
ij � α

rð Þ
ij ∇W rð ÞΨ
� 	

�ij.
12: update R rþ1ð Þ and Q rþ1ð Þ.
13: r = r + 1.
14: end if.
15: end if.
16: end for.

3. Numerical examples

In [5], we provided the evidence that the multi-pass sequential mini-batch sto-
chastic gradient descent (SGD) algorithms improve the computational efficiency of
the batch estimation algorithm via a number of test cases used in [2, 7–9, 12], and also
showed their applicability to non-stationary systems when coupled with a change-
point detection algorithm [11]. In [22], we proposed a single-pass sequential mini-
batch SGD estimation algorithm by accessing measurements exactly once for non-
stationary systems by modifying the example used in [12] to periodically change the
process and measurement noise covariances.

In this section, we illustrate the utility of our proposed single-pass sequential mini-
batch SGD estimation algorithm by applying it to general diverse examples involving
detectable (but not completely observable) systems, non-stationary systems and a
bearings-only tracking problem.

For the non-stationary systems, we assumed the process and measurement noise
covariances occasionally change by an unknown level. Here “occasionally” implies the
jumps are infrequent enough that the Kalman filter is in the steady-state prior to a jump
in the noise covariance. We define the number of subgroups in which the noise covari-
ances are not changing as Nsg. Given the number of observation samples, N, each
subgroup has constant noise covariances withN=Nsg samples. In this section, we consider
two non-stationary scenarios for tracking time-varying Q and R withNsg ¼ 5 subgroups.
We also consider the bearings-only tracking problem where Q changes continuously.

Note that the number of “burn-in” samples and the number of lags are Nb ¼ 50
and M ¼ 5, respectively in the estimation procedure. The root mean square
propagation (RMSProp) method is applied to update the filter gain. All Monte Carlo
simulations were run using a computer with an Intel Core i7-8665U processor and
16 GB of RAM.
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We used the averaged normalized innovation squared (NIS) metric [2] to measure
the consistency of the proposed algorithm.

εν kð Þ ¼ 1

Nmc

X

Nmc

i¼1

ν kð Þ0S�1ν kð Þ (35)

whereNmc is the number of Monte Carlo runs. The root mean square error (RMSE)
in resultant position and velocity is computed using

RMSE kð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Nmc

X

Nmc

i¼1

x kð Þtrue � x̂ kð Þ
� 	2

v

u

u

t (36)

3.1 Case 1: A detectable (but not completely observable) system that satisfies the
identifiability conditions

Mehra [8] stated, without proof, that a necessary and sufficient condition for noise
covariance estimation is that the system satisfies the observability property. This
example, due to Odelson et al. [7], demonstrates that this condition is not necessary.
The example does satisfy the full column rank condition for the identifiability
matrix in (16).

Odelson et al. [7] proposed a noise covariance estimation method based on the
autocovariance least-squares formulation by using the Kronecker operator δ. This
method computes the covariances from the residuals of the state estimation. Note that
the incompletely observable (but detectable 1) system used in [7] is described by

F ¼
0:1 0

0 0:2

� �

, H ¼ 1 0½ �, Γ ¼
1

2

� �

(37)

where F is the non-singular transition matrix, H is the constant output matrix, and
Γ is the constant input matrix in (1) and (2). Note that this system is a hypothetical
numerical example. The process noise v kð Þ and the measurement noise w kð Þ are
supposed to be uncorrelated Gaussian white noise sequences with zero-mean and
covariances as in the following

E v kð Þv jð Þ0
� �

¼ Qδkj (38)

E w kð Þw jð Þ0
� �

¼ Rδkj (39)

In this scenario, the true R values for the five subgroups are [0.30, 0.81, 0.49, 0.72,
0.42], and the true Q values for the five subgroups are [0.16, 0.49, 0.25, 0.36, 0.20].
The values are changed every 10,000 samples. Table 1 shows the results of 100 Monte
Carlo simulations based on the single-pass SGD algorithm in estimating Q and R. As
can be seen, the estimated Q and R are close to their corresponding true values. In this

1 The pair (F, H) in the system should be detectable in order for the continuous-time algebraic Riccati

equation to have at least one positive semidefinite solution and in this case at least one solution results in a

marginally stable steady-state KF [23, 24].
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Subgroup index R Q P11 P22 W11 W21

Truth Mean RMSE Truth Mean RMSE Truth Mean RMSE Truth Mean RMSE Truth Mean RMSE Truth Mean RMSE

1st 0.30 0.31 0.06 0.16 0.15 0.04 0.16 0.15 0.04 0.66 0.62 0.18 0.35 0.33 0.03 0.70 0.67 0.03

2nd 0.81 0.86 0.49 0.42 0.49 0.43 2.01 1.74 0.38 0.34 0.76 0.67

3rd 0.49 0.49 0.25 0.24 0.25 0.24 1.03 0.97 0.34 0.34 0.68 0.67

4th 0.72 0.71 0.36 0.35 0.36 0.35 1.48 1.44 0.33 0.34 0.67 0.67

5th 0.42 0.41 0.20 0.20 0.20 0.21 0.83 0.84 0.33 0.34 0.66 0.67

Table 1.
Single-pass SGD estimation for Case 1 (100 MC Runs; 50,000 samples; M = 5; RMSProp; Batch size = 64).
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scenario, the single-pass SGD estimation method has a speedup factor of 31 over the
batch and multiple-pass SGD estimation methods (not shown).

Figure 1 demonstrates that the sequential mini-batch gradient descent algorithm
can track Q and R correctly. Here, the trajectories of Q and R estimates are smoothed
by a simple first order fading memory filter with a smoothing weight of 0.7. Figure 1e
shows the averaged NIS of SGD (RMSProp; batch size of 64) method with the 95%
probability region [0.74, 1.30], and shows that the SGD-based Kalman filter is consis-
tent. The only place at which the NIS values are large are immediately after the jump
in the noise variances. This is because adaptation requires a few samples.

3.2 Case 2: a five-state inertial navigation system with diagonal Q and R

For estimating the unknown noise covariance parameters and the optimal Kalman
filter gain for part of an inertial navigation system (INS), Mehra [8] proposed an
iterative innovation correlations-based method starting from an arbitrary initial sta-
bilizing gain. Inertial navigation [25] involves tracking the position and orientation of
an object relative to a known starting orientation and velocity and it uses measure-
ments provided by accelerometers and gyroscopes. These systems have found univer-
sal use in military and commercial applications [26].

Since the earth is not flat, the inertial navigation systems need to keep tilting the
platform (with respect to inertial space) to keep the axes of the accelerometers
horizontal. Here, small error sources that drive the Schuler-loop cause the navigation
errors, and these errors are” damped” by making use of external velocity
measurements, such as are furnished by a Doppler radar [27, 28].

Figure 1.
Trajectories of Q and R estimates without signal smoothing and with a smoothing weight of 0.7 for Case 1.
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In this problem, Mehra [8] used a system based on the damped Schuler-loop error
propagation forced by exponentially correlated as well as white noise input. The
system matrices for this navigation system are given by

F ¼

0:75 �1:74 �0:3 0 �0:15

0:09 0:91 �0:0015 0 �0:008

0 0 0:95 0 0

0 0 0 0:55 0

0 0 0 0 0:905

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

;H ¼
1 0 0 0 1

0 1 0 1 0

" #

;

Γ ¼

0 0 0

0 0 0

24:64 0 0

0 0:835 0

0 0 1:83

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

(40)

where the system is discretized using a time step of 0.1 seconds. In this five-state
system, the first two states represent the a velocity damping term and velocity error,
respectively, and the other three states model the correlated noise processes. The noise
corresponding to states 3 and 5 impacts both the velocity error and the velocity
damping term; the fourth state impacts the sensor error in state 2 only.

In this problem, the true values corresponding to each subgroup with Nsg ¼ 5
subgroups and N ¼ 100,000 samples are as in (41). Each parameter of Q and R
changes every 20,000 samples.

R11

R22

" #

¼
0:25, 0:56, 0:64, 0:42, 0:36½ �
0:25, 0:25, 0:49, 0:16, 0:04½ �

" #

;

Q11

Q22

Q33

2

6

6

4

3

7

7

5

¼
0:25, 0:64, 0:49, 0:25, 0:49½ �
0:25, 0:36, 0:56, 0:16, 0:04½ �
0:36, 0:49, 0:64, 0:25, 0:09½ �

2

6

6

4

3

7

7

5

(41)

Table 2 shows the results of 100 Monte Carlo simulations for estimating the noise
parameters using RMSProp update. The estimated parameters are close to the
corresponding true values. Given 100,000 samples, the proposed method with a batch-
size of 64 requires 1,891 seconds for 100 Monte Carlo simulations, i.e., 18.91 seconds per
run. The batch andmulti-pass SGD estimationmethods needmore than 3,000 seconds for
a single MC run (not shown); the single-pass SGD algorithm has a speedup factor of 158.6.

Figure 2 shows the trajectories of the estimated Q and R with a signal smoothing
with a smoothing weight of 0.7. For this example, it is known that accurate estimation
of R11 is hard as shown in Figure 2d. The reason is that R11 is dominated by the state
uncertainty, i.e., the measurement noise is “buried” in a much larger innovation [4].
In spite of the difficulty in estimating R11, the filter is consistent as measured by NIS as
shown in Figure 2f.
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(a) R, Q and P Estimates for Case 2

Subgroup index R11 RMSE R22 RMSE Q11 RMSE Q22 RMSE Q33 RMSE

Truth Mean Truth Mean Truth Mean Truth Mean Truth Mean

1st 0.25 0.23 0.34 0.25 0.24 0.04 0.25 0.24 0.05 0.25 0.23 0.05 0.36 0.35 0.06

2nd 0.56 0.52 0.25 0.25 0.64 0.62 0.36 0.31 0.49 0.44

3rd 0.64 0.85 0.49 0.50 0.49 0.50 0.56 0.52 0.64 0.71

4th 0.42 0.44 0.16 0.16 0.25 0.26 0.16 0.16 0.25 0.25

5th 0.36 0.30 0.04 0.04 0.49 0.48 0.04 0.04 0.09 0.08

Subgroup index P11 RMSE P22 RMSE P33 RMSE P44 RMSE P55 RMSE

Truth Mean Truth Mean Truth Mean Truth Mean Truth Mean

1st 19.46 18.84 4.12 0.33 0.31 0.05 306.26 297.69 73.27 0.23 0.22 0.05 4.02 3.86 0.71

2nd 43.76 42.11 0.43 0.40 766.59 744.98 0.34 0.30 5.45 4.99

3rd 37.81 40.15 0.66 0.67 600.91 621.04 0.52 0.49 7.33 8.00

4th 18.49 18.96 0.22 0.22 303.75 312.24 0.15 0.15 2.78 2.78

5th 29.31 28.55 0.07 0.07 574.37 562.90 0.04 0.04 0.97 0.93

(b) W Estimates for Case 2

Subgroup index W11 RMSE W21 RMSE W31 RMSE W41 RMSE W51 RMSE

Truth Mean Truth Mean Truth Mean Truth Mean Truth Mean

1st 0.94 0.96 0.02 2:78 � 10�3 �3:56 � 10�3 0.01 �2.80 �2.75 0.04 �2:22 � 10�5 6:50 � 10�3 0.01 0.04 0.04 0.01

2nd 0.96 0.98 3:22 � 10�3 �4:32 � 10�3 �2.91 �2.88 �8:76 � 10�4 8:37 � 10�3 0.03 0.01

3rd 0.94 0.95 2:84 � 10�3 �3:84 � 10�3 �2.79 �2.83 �1:19 � 10�4 8:79 � 10�3 0.04 0.03

4th 0.94 0.95 3:84 � 10�3 2:08 � 10�4 �2.80 �2.84 �6:80 � 10�4 3:89 � 10�4 0.03 0.02

5th 0.98 1.00 3:50 � 10�3 �1:33 � 10�4 �3.03 �3.00 �1:09 � 10�3 2:10 � 10�4 0.01 0.01
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Subgroup index W12 RMSE W22 RMSE W32 RMSE W42 RMSE W52 RMSE

Truth Mean Truth Mean Truth Mean Truth Mean Truth Mean

1st 0.94 0.94 0.08 0.38 0.39 0.02 �1.63 �1.65 0.25 0.23 0.23 0.02 �0.94 �0.93 0.05

2nd 1.02 1.00 0.40 0.42 �1.65 �1.70 0.27 0.25 �1.02 �0.98

3rd 0.86 0.96 0.36 0.37 �1.56 �1.68 0.26 0.25 �0.86 �0.93

4th 0.99 0.98 0.39 0.39 �1.57 �1.69 0.23 0.23 �0.98 �0.99

5th 1.19 1.06 0.44 0.46 �1.26 �1.77 0.20 0.22 �1.17 �1.11

Table 2.
Single-pass SGD estimation for Case 2 (100 MC Runs, 100,000 samples; M = 5; RMSProp; Batch size = 64).
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3.3 Case 3: Bearings-only tracking problem

In many practical situations, it is generally hard to get a closed-form solution
for state estimation because the noise covariances are often unknown and the dynamics
are nonlinear. Arasaratnam et al. [29] proposed a nonlinear filter using bearings-only
measurements for estimating the position and velocity of a target in a high-dimensional
state. This method is based on the measurements from a passive sensor that measures
only the direction of arrival of a signal emitted by the target [2]. This so-called bearings-
only tracking problem arises in a variety of practical applications, such as air traffic
control, underwater sonar tracking and aircraft surveillance [2, 30, 31].

In this example, we consider a two-dimensional bearings-only tracking problem of
a nearly-constant velocity target from a single moving observer used in [32]. The
dynamics of the target (relative to the observer) are described by

x kþ 1ð Þ ¼ Fx kð Þ þ Γv kð Þ � U kð Þ (42)

z kð Þ ¼ h x kð Þð Þ þw kð Þ (43)

Formally, if the state vector of the target is xt kð Þ ¼ ζt, ηt, _ζ
t
, _ηt

h i0
, and the state

vector of the observer is xo kð Þ ¼ ζo, ηo, _ζ
o
, _ηo

h i0
for position and velocity along the ζ

and η axes, x kð Þ ¼ xt kð Þ � xo kð Þ represents the relative state vector of the target with
respect to the observer and the input vector U kð Þ ¼ xo kð Þ � Fxo k� 1ð Þ; w kð Þ is a zero-
mean white Gaussian noise with variance σ2θ. The nonlinear measurement involves the

bearing of the target from the observer’s platform, given by h x kð Þð Þ ¼ tan �1 ζ=ηð Þ.
Here, Γ is the identity matrix with ones on the diagonal and zeros elsewhere.

Figure 2.
Trajectories of Q and R estimates with a signal smoothing at smoothing weight = 0.7 for Case 2.

15

Sequential Mini-Batch Noise Covariance Estimator
DOI: http://dx.doi.org/10.5772/intechopen.108917



The system matrices for this problem are given by

F ¼

1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

,Γ ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

,Q ¼

T3=3 0 T2=2 0

0 T3=3 0 T2=2

T2=2 0 T 0

0 T2=2 0 T

2

6

6

6

4

3

7

7

7

5

~q kð Þ

(44)

where the sampling interval, T is 1 second. The zero-mean white process noise

intensity ~q kð Þ is ~q0 ¼ 9 � 10�12 km2=s3, except for the interval where it starts to increase
rapidly to 1.5 �~q0 around the sample index k = 480 and then decreases again rapidly
around k = 960 as below:

~q kð Þ ¼
~q0 þ 0:25~q0 1þ tanh 0:015 k� 480ð Þð Þð Þ, k≤ 720

~q0 þ 0:25~q0 1þ tanh 0:015 960� kð Þð Þð Þ, otherwise

�

(45)

The linearized measurement matrix, H kð Þ, is the Jacobian of the measurement
function given by

Hk ¼
∂h x kð Þð Þ
∂x kð Þ ¼ η kð Þ

ζ2 kð Þ þ η2 kð Þ
�ζ kð Þ

ζ2 kð Þ þ η2 kð Þ
0 0

� �

(46)

A total of 1920 measurement samples were generated for this scenario. The
observer moves straight with a speed of 5 knots, except for 480 seconds (between k =
480 and k = 960), where it turns with 2:4∘=s as shown in Figure 3 (these times are
marked by cross sign).

For a fair comparison of the estimation algorithms, we initialized all filters with
the same mean and covariance using the prior knowledge of the initial target range

Figure 3.
Observer and target trajectory (100 MC runs).
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and the initial bearing measurement [33, 34]. Here, the initial target range and the

initial bearing measurement are generated as r � N r, σ2r
� 	

and θ0 � N θ, σ2θ
� 	

,
respectively, where r is the true initial target range and θ is the true initial bearing
measurement. The initial target speed is initialized as s � N s, σ2s

� 	

, where s is the true
initial target speed. Let σ < �> denotes the standard deviation of the parameter.
Assuming that the target is moving towards the observer, the initial course estimate

can be obtained as c ¼ θ0 þ π. The initial state vector and the initial covariance are
given by

x̂0 ¼

ζ̂

η̂

_̂ζ

_̂η

2

6

6

6

6

4

3

7

7

7

7

5

¼

r cos θ0
� 	

r sin θ0
� 	

s sin cð Þ � _ζ
o

0

s cos cð Þ � _ηo0

2

6

6

6

6

4

3

7

7

7

7

5

;P0 ¼

Pζζ Pζη 0 0

Pηζ Pηη 0 0

0 0 P _ζ _ζ P _ζ _η

0 0 P
_η _ζ P _η _η

2

6

6

6

4

3

7

7

7

5

(47)

where

Pζζ ¼ r2σ2θ cos
2 θ0
� 	

þ σ2r sin
2 θ0
� 	

;Pηη ¼ r2σ2θ sin
2 θ0
� 	

þ σ2r cos
2 θ0
� 	

(48)

Pζη ¼ Pηζ ¼ σ2r � r2σ2θ
� 	

sin θ0
� 	

cos θ0
� 	

;P _ζ _ζ ¼ s2σ2c cos
2 cð Þ þ σ2s sin

2 cð Þ (49)

P _η _η ¼ s2σ2c sin
2 cð Þ þ σ2s cos

2 cð Þ;P _ζ _η ¼ P
_η _ζ ¼ σ2s � s2σ2c

� 	

sin cð Þ cos cð Þ (50)

Figure 4.
Comparison of estimation algorithms for the bearings-only tracking problem (100 MC runs).

17

Sequential Mini-Batch Noise Covariance Estimator
DOI: http://dx.doi.org/10.5772/intechopen.108917



where r and s are 5 km and 4 knots, respectively, and the target course is �140∘.

Here, σr is 2 km, σθ is 1.5 ∘, σs is 2 knots and σc ¼ π=
ffiffiffiffiffi

12
p

for this problem.
Figure 4 shows a comparison of algorithms for the bearings-only tracking prob-

lem. The cubature Kalman filter (CKF) uses a third-degree spherical-radial cubature
rule that provides the set of cubature points scaling linearly with the state-vector
dimension [29]. The cubature Kalman filter and our single-pass SGD extended KF
(EKF) method can track the target well, but our proposed method shows better
computational efficiency compared to CKF by a factor of 2.5 (not shown). Root mean
square error (RMSE) in position and velocity over 100 Monte Carlo runs are shown in
Figure 4c and Figure 4d. During the whole maneuver, the RMSE of the proposed
single-pass SGD-EKF algorithm was slightly lower than that with the CKF method.

4. Conclusions

In this chapter, we derived a single-pass sequential mini-batch SGD algorithm for
estimating the noise covariances in an adaptive Kalman filter. We demonstrated the
utility of the method using diverse examples involving a detectable (but not
completely observable) system, a non-stationary system, and a nonlinear bearings-
only tracking problem. The evaluation showed that the proposed method has accept-
able state estimation root mean square error (RMSE) and exhibits filter consistency as
measured by the normalized innovation squared (NIS) criterion.
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