21,806 research outputs found

    Multi-Layer Cyber-Physical Security and Resilience for Smart Grid

    Full text link
    The smart grid is a large-scale complex system that integrates communication technologies with the physical layer operation of the energy systems. Security and resilience mechanisms by design are important to provide guarantee operations for the system. This chapter provides a layered perspective of the smart grid security and discusses game and decision theory as a tool to model the interactions among system components and the interaction between attackers and the system. We discuss game-theoretic applications and challenges in the design of cross-layer robust and resilient controller, secure network routing protocol at the data communication and networking layers, and the challenges of the information security at the management layer of the grid. The chapter will discuss the future directions of using game-theoretic tools in addressing multi-layer security issues in the smart grid.Comment: 16 page

    Bad Data Injection Attack and Defense in Electricity Market using Game Theory Study

    Full text link
    Applications of cyber technologies improve the quality of monitoring and decision making in smart grid. These cyber technologies are vulnerable to malicious attacks, and compromising them can have serious technical and economical problems. This paper specifies the effect of compromising each measurement on the price of electricity, so that the attacker is able to change the prices in the desired direction (increasing or decreasing). Attacking and defending all measurements are impossible for the attacker and defender, respectively. This situation is modeled as a zero sum game between the attacker and defender. The game defines the proportion of times that the attacker and defender like to attack and defend different measurements, respectively. From the simulation results based on the PJM 5 Bus test system, we can show the effectiveness and properties of the studied game.Comment: To appear in IEEE Transactions on Smart Grid, Special Issue on Cyber, Physical, and System Security for Smart Gri

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions

    Global Risks 2015, 10th Edition.

    Get PDF
    The 2015 edition of the Global Risks report completes a decade of highlighting the most significant long-term risks worldwide, drawing on the perspectives of experts and global decision-makers. Over that time, analysis has moved from risk identification to thinking through risk interconnections and the potentially cascading effects that result. Taking this effort one step further, this year's report underscores potential causes as well as solutions to global risks. Not only do we set out a view on 28 global risks in the report's traditional categories (economic, environmental, societal, geopolitical and technological) but also we consider the drivers of those risks in the form of 13 trends. In addition, we have selected initiatives for addressing significant challenges, which we hope will inspire collaboration among business, government and civil society communitie
    • …
    corecore