3,496 research outputs found

    The Galerkin Finite Element Method for A Multi-term Time-Fractional Diffusion equation

    Get PDF
    We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous piecewise linear functions. Nearly optimal error estimates for both cases of initial data and inhomogeneous term are derived, which cover both smooth and nonsmooth data. Further we develop a fully discrete scheme based on a finite difference discretization of the time-fractional derivatives, and discuss its stability and error estimate. Extensive numerical experiments for one and two-dimension problems confirm the convergence rates of the theoretical results.Comment: 22 pages, 4 figure

    A Computational Study of an Implicit Local Discontinuous Galerkin Method for Time-Fractional Diffusion Equations

    Get PDF
    We propose, analyze, and test a fully discrete local discontinuous Galerkin (LDG) finite element method for a time-fractional diffusion equation. The proposed method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space. By choosing the numerical fluxes carefully, we prove that our scheme is unconditionally stable and convergent. Finally, numerical examples are performed to illustrate the effectiveness and the accuracy of the method

    Time-fractional Cahn-Hilliard equation: Well-posedness, degeneracy, and numerical solutions

    Full text link
    In this paper, we derive the time-fractional Cahn-Hilliard equation from continuum mixture theory with a modification of Fick's law of diffusion. This model describes the process of phase separation with nonlocal memory effects. We analyze the existence, uniqueness, and regularity of weak solutions of the time-fractional Cahn-Hilliard equation. In this regard, we consider degenerating mobility functions and free energies of Landau, Flory--Huggins and double-obstacle type. We apply the Faedo-Galerkin method to the system, derive energy estimates, and use compactness theorems to pass to the limit in the discrete form. In order to compensate for the missing chain rule of fractional derivatives, we prove a fractional chain inequality for semiconvex functions. The work concludes with numerical simulations and a sensitivity analysis showing the influence of the fractional power. Here, we consider a convolution quadrature scheme for the time-fractional component, and use a mixed finite element method for the space discretization

    Error Estimates for Approximations of Distributed Order Time Fractional Diffusion with Nonsmooth Data

    Get PDF
    In this work, we consider the numerical solution of an initial boundary value problem for the distributed order time fractional diffusion equation. The model arises in the mathematical modeling of ultra-slow diffusion processes observed in some physical problems, whose solution decays only logarithmically as the time tt tends to infinity. We develop a space semidiscrete scheme based on the standard Galerkin finite element method, and establish error estimates optimal with respect to data regularity in L2(D)L^2(D) and H1(D)H^1(D) norms for both smooth and nonsmooth initial data. Further, we propose two fully discrete schemes, based on the Laplace transform and convolution quadrature generated by the backward Euler method, respectively, and provide optimal convergence rates in the L2(D)L^2(D) norm, which exhibits exponential convergence and first-order convergence in time, respectively. Extensive numerical experiments are provided to verify the error estimates for both smooth and nonsmooth initial data, and to examine the asymptotic behavior of the solution.Comment: 25 pages, 2 figure

    Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview

    Get PDF
    Over the past few decades, there has been substantial interest in evolution equations that involving a fractional-order derivative of order α∈(0,1)\alpha\in(0,1) in time, due to their many successful applications in engineering, physics, biology and finance. Thus, it is of paramount importance to develop and to analyze efficient and accurate numerical methods for reliably simulating such models, and the literature on the topic is vast and fast growing. The present paper gives a concise overview on numerical schemes for the subdiffusion model with nonsmooth problem data, which are important for the numerical analysis of many problems arising in optimal control, inverse problems and stochastic analysis. We focus on the following aspects of the subdiffusion model: regularity theory, Galerkin finite element discretization in space, time-stepping schemes (including convolution quadrature and L1 type schemes), and space-time variational formulations, and compare the results with that for standard parabolic problems. Further, these aspects are showcased with illustrative numerical experiments and complemented with perspectives and pointers to relevant literature.Comment: 24 pages, 3 figure
    • …
    corecore