968 research outputs found

    Lazy Evaluation of Convolutional Filters

    Get PDF
    In this paper we propose a technique which avoids the evaluation of certain convolutional filters in a deep neural network. This allows to trade-off the accuracy of a deep neural network with the computational and memory requirements. This is especially important on a constrained device unable to hold all the weights of the network in memory

    Bayesian Image Quality Transfer with CNNs: Exploring Uncertainty in dMRI Super-Resolution

    Get PDF
    In this work, we investigate the value of uncertainty modeling in 3D super-resolution with convolutional neural networks (CNNs). Deep learning has shown success in a plethora of medical image transformation problems, such as super-resolution (SR) and image synthesis. However, the highly ill-posed nature of such problems results in inevitable ambiguity in the learning of networks. We propose to account for intrinsic uncertainty through a per-patch heteroscedastic noise model and for parameter uncertainty through approximate Bayesian inference in the form of variational dropout. We show that the combined benefits of both lead to the state-of-the-art performance SR of diffusion MR brain images in terms of errors compared to ground truth. We further show that the reduced error scores produce tangible benefits in downstream tractography. In addition, the probabilistic nature of the methods naturally confers a mechanism to quantify uncertainty over the super-resolved output. We demonstrate through experiments on both healthy and pathological brains the potential utility of such an uncertainty measure in the risk assessment of the super-resolved images for subsequent clinical use.Comment: Accepted paper at MICCAI 201

    Enhancing SDO/HMI images using deep learning

    Full text link
    The Helioseismic and Magnetic Imager (HMI) provides continuum images and magnetograms with a cadence better than one per minute. It has been continuously observing the Sun 24 hours a day for the past 7 years. The obvious trade-off between full disk observations and spatial resolution makes HMI not enough to analyze the smallest-scale events in the solar atmosphere. Our aim is to develop a new method to enhance HMI data, simultaneously deconvolving and super-resolving images and magnetograms. The resulting images will mimic observations with a diffraction-limited telescope twice the diameter of HMI. Our method, which we call Enhance, is based on two deep fully convolutional neural networks that input patches of HMI observations and output deconvolved and super-resolved data. The neural networks are trained on synthetic data obtained from simulations of the emergence of solar active regions. We have obtained deconvolved and supper-resolved HMI images. To solve this ill-defined problem with infinite solutions we have used a neural network approach to add prior information from the simulations. We test Enhance against Hinode data that has been degraded to a 28 cm diameter telescope showing very good consistency. The code is open source.Comment: 13 pages, 10 figures. Accepted for publication in Astronomy & Astrophysic
    • …
    corecore