4 research outputs found

    Abusive adversaries in 5G and beyond IoT

    Get PDF
    5G and subsequent cellular network generations aim to extend ubiquitous connectivity of billions of Internet-of-Things (IoT) for their consumers. Security is a prime concern in this context as adversaries have evolved to become smart and often employ new attack strategies. Network defenses can be enhanced against attacks by employing behavior models for devices to detect misbehavior. One example is Abusive Modeling (AM) that is inspired by financial technologies to defend adversaries operating with unlimited resources who have no intention of self-profit apart from harming the system. This article investigates behavior modeling against abusive adversaries in the context of 5G and beyond security functions for IoT. Security threats and countermeasures are discussed to understand AM. A complexitysecurity trade-off enables a better understanding of the limitations of state-based behavior modeling and paves the way as a future direction for developing more robust solutions against AM.PostprintPeer reviewe

    A Review of Wireless Sensor Networks with Cognitive Radio Techniques and Applications

    Get PDF
    The advent of Wireless Sensor Networks (WSNs) has inspired various sciences and telecommunication with its applications, there is a growing demand for robust methodologies that can ensure extended lifetime. Sensor nodes are small equipment which may hold less electrical energy and preserve it until they reach the destination of the network. The main concern is supposed to carry out sensor routing process along with transferring information. Choosing the best route for transmission in a sensor node is necessary to reach the destination and conserve energy. Clustering in the network is considered to be an effective method for gathering of data and routing through the nodes in wireless sensor networks. The primary requirement is to extend network lifetime by minimizing the consumption of energy. Further integrating cognitive radio technique into sensor networks, that can make smart choices based on knowledge acquisition, reasoning, and information sharing may support the network's complete purposes amid the presence of several limitations and optimal targets. This examination focuses on routing and clustering using metaheuristic techniques and machine learning because these characteristics have a detrimental impact on cognitive radio wireless sensor node lifetime

    KFREAIN: Design of A Kernel-Level Forensic Layer for Improving Real-Time Evidence Analysis Performance in IoT Networks

    Get PDF
    An exponential increase in number of attacks in IoT Networks makes it essential to formulate attack-level mitigation strategies. This paper proposes design of a scalable Kernel-level Forensic layer that assists in improving real-time evidence analysis performance to assist in efficient pattern analysis of the collected data samples. It has an inbuilt Temporal Blockchain Cache (TBC), which is refreshed after analysis of every set of evidences. The model uses a multidomain feature extraction engine that combines lightweight Fourier, Wavelet, Convolutional, Gabor, and Cosine feature sets that are selected by a stochastic Bacterial Foraging Optimizer (BFO) for identification of high variance features. The selected features are processed by an ensemble learning (EL) classifier that use low complexity classifiers reducing the energy consumption during analysis by 8.3% when compared with application-level forensic models. The model also showcased 3.5% higher accuracy, 4.9% higher precision, and 4.3% higher recall of attack-event identification when compared with standard forensic techniques. Due to kernel-level integration, the model is also able to reduce the delay needed for forensic analysis on different network types by 9.5%, thus making it useful for real-time & heterogenous network scenarios

    A GLRT Based Mechanism for Detecting Relay Misbehavior in Clustered IoT Networks

    No full text
    10.1109/tifs.2019.2922262IEEE Transactions on Information Forensics and Security1-
    corecore