4 research outputs found

    Optimization of multi-objective land use model with genetic algorithm

    Get PDF
    The first task of the city planner is to effectively locate integrated land use types for various objectives. The Multi Objective Land Use Planning Model developed to achieve this goal, aims to maximize land value and minimize the transportation. The genetic algorithm method developed to find the optimum layout according to the Multi-Objective Land Use Planning Model has been explained, the success and performance of the process has been tested with artificial data, and its usability in real problems has been examined. According to the results of the study, using this method, it is revealed that layout plans that are very close to the maximum efficiency value can be found within 1 day in cities with a population of up to 1,000,000, within 1 week in cities up to 5,000,000, and within 1.5 months in cities close to 16,000,000. By examining the results, the deficiencies of this method are determined and the suggestions for improvement of this method are stated. The problem chosen in this study is a problem that most city planners have to solve and the developed application has been opened to the use of other experts. This makes this work unique as it allows planning experts who are incapable of developing such methods to experiment

    Integrated Models and Tools for Design and Management of Global Supply Chain

    Get PDF
    In modern and global supply chain, the increasing trend toward product variety, level of service, short delivery delay and response time to consumers, highlight the importance to set and configure smooth and efficient logistic processes and operations. In order to comply such purposes the supply chain management (SCM) theory entails a wide set of models, algorithms, procedure, tools and best practices for the design, the management and control of articulated supply chain networks and logistics nodes. The purpose of this Ph.D. dissertation is going in detail on the principle aspects and concerns of supply chain network and warehousing systems, by proposing and illustrating useful methods, procedures and support-decision tools for the design and management of real instance applications, such those currently face by enterprises. In particular, after a comprehensive literature review of the principal warehousing issues and entities, the manuscript focuses on design top-down procedure for both less-than-unit-load OPS and unit-load storage systems. For both, decision-support software platforms are illustrated as useful tools to address the optimization of the warehousing performances and efficiency metrics. The development of such interfaces enables to test the effectiveness of the proposed hierarchical top-down procedure with huge real case studies, taken by industry applications. Whether the large part of the manuscript deals with micro concerns of warehousing nodes, also macro issues and aspects related to the planning, design, and management of the whole supply chain are enquired and discussed. The integration of macro criticalities, such as the design of the supply chain infrastructure and the placement of the logistic nodes, with micro concerns, such the design of warehousing nodes and the management of material handling, is addressed through the definition of integrated models and procedures, involving the overall supply chain and the whole product life cycle. A new integrated perspective should be applied in study and planning of global supply chains. Each aspect of the reality influences the others. Each product consumed by a customer tells a story, made by activities, transformations, handling, processes, traveling around the world. Each step of this story accounts costs, time, resources exploitation, labor, waste, pollution. The economical and environmental sustainability of the modern global supply chain is the challenge to face
    corecore