43,341 research outputs found

    A Novel Method of Fraud Detection of Credit Cards by Fuzzy, LSTM, and PSO Optimization

    Get PDF
    Since online shopping has become so popular, credit card theft has skyrocketed. This makes it hard to spot fake charges on accounts. In this research, credit card fraud detection is performed using a fuzzy database. It has been considered a data mining challenge to reliably identify whether or not a transaction is legitimate. This paper discusses the LSTM method and fuzzy logic. The learning process was sped up and made more precise by using a technique called particle swarm optimization (PSO). Performance values have been compared with those of the LSTM and fuzzy logic techniques, and a PSO-based neural network has been intensively trained by increasing the number of iterations and the population, or number of swarms. It has been shown that the PSO-based algorithm yields the best result for detecting fraudulent transactions. The goal of this method is to lower the mean square error (MSE) rate of the system. PSO is a popular optimization technique that can be used to locate the optimal set of features for the credit card fraud detection system. The proposed method PSO shows less mean squared error compared with Fuzzy and LSTM techniques

    An Investigation in Efficient Spatial Patterns Mining

    Get PDF
    The technical progress in computerized spatial data acquisition and storage results in the growth of vast spatial databases. Faced with large amounts of increasing spatial data, a terminal user has more difficulty in understanding them without the helpful knowledge from spatial databases. Thus, spatial data mining has been brought under the umbrella of data mining and is attracting more attention. Spatial data mining presents challenges. Differing from usual data, spatial data includes not only positional data and attribute data, but also spatial relationships among spatial events. Further, the instances of spatial events are embedded in a continuous space and share a variety of spatial relationships, so the mining of spatial patterns demands new techniques. In this thesis, several contributions were made. Some new techniques were proposed, i.e., fuzzy co-location mining, CPI-tree (Co-location Pattern Instance Tree), maximal co-location patterns mining, AOI-ags (Attribute-Oriented Induction based on Attributes’ Generalization Sequences), and fuzzy association prediction. Three algorithms were put forward on co-location patterns mining: the fuzzy co-location mining algorithm, the CPI-tree based co-location mining algorithm (CPI-tree algorithm) and the orderclique- based maximal prevalence co-location mining algorithm (order-clique-based algorithm). An attribute-oriented induction algorithm based on attributes’ generalization sequences (AOI-ags algorithm) is further given, which unified the attribute thresholds and the tuple thresholds. On the two real-world databases with time-series data, a fuzzy association prediction algorithm is designed. Also a cell-based spatial object fusion algorithm is proposed. Two fuzzy clustering methods using domain knowledge were proposed: Natural Method and Graph-Based Method, both of which were controlled by a threshold. The threshold was confirmed by polynomial regression. Finally, a prototype system on spatial co-location patterns’ mining was developed, and shows the relative efficiencies of the co-location techniques proposed The techniques presented in the thesis focus on improving the feasibility, usefulness, effectiveness, and scalability of related algorithm. In the design of fuzzy co-location Abstract mining algorithm, a new data structure, the binary partition tree, used to improve the process of fuzzy equivalence partitioning, was proposed. A prefix-based approach to partition the prevalent event set search space into subsets, where each sub-problem can be solved in main-memory, was also presented. The scalability of CPI-tree algorithm is guaranteed since it does not require expensive spatial joins or instance joins for identifying co-location table instances. In the order-clique-based algorithm, the co-location table instances do not need be stored after computing the Pi value of corresponding colocation, which dramatically reduces the executive time and space of mining maximal colocations. Some technologies, for example, partitions, equivalence partition trees, prune optimization strategies and interestingness, were used to improve the efficiency of the AOI-ags algorithm. To implement the fuzzy association prediction algorithm, the “growing window” and the proximity computation pruning were introduced to reduce both I/O and CPU costs in computing the fuzzy semantic proximity between time-series. For new techniques and algorithms, theoretical analysis and experimental results on synthetic data sets and real-world datasets were presented and discussed in the thesis

    Learning Opposites Using Neural Networks

    Full text link
    Many research works have successfully extended algorithms such as evolutionary algorithms, reinforcement agents and neural networks using "opposition-based learning" (OBL). Two types of the "opposites" have been defined in the literature, namely \textit{type-I} and \textit{type-II}. The former are linear in nature and applicable to the variable space, hence easy to calculate. On the other hand, type-II opposites capture the "oppositeness" in the output space. In fact, type-I opposites are considered a special case of type-II opposites where inputs and outputs have a linear relationship. However, in many real-world problems, inputs and outputs do in fact exhibit a nonlinear relationship. Therefore, type-II opposites are expected to be better in capturing the sense of "opposition" in terms of the input-output relation. In the absence of any knowledge about the problem at hand, there seems to be no intuitive way to calculate the type-II opposites. In this paper, we introduce an approach to learn type-II opposites from the given inputs and their outputs using the artificial neural networks (ANNs). We first perform \emph{opposition mining} on the sample data, and then use the mined data to learn the relationship between input xx and its opposite x˘\breve{x}. We have validated our algorithm using various benchmark functions to compare it against an evolving fuzzy inference approach that has been recently introduced. The results show the better performance of a neural approach to learn the opposites. This will create new possibilities for integrating oppositional schemes within existing algorithms promising a potential increase in convergence speed and/or accuracy.Comment: To appear in proceedings of the 23rd International Conference on Pattern Recognition (ICPR 2016), Cancun, Mexico, December 201

    Learning Opposites with Evolving Rules

    Full text link
    The idea of opposition-based learning was introduced 10 years ago. Since then a noteworthy group of researchers has used some notions of oppositeness to improve existing optimization and learning algorithms. Among others, evolutionary algorithms, reinforcement agents, and neural networks have been reportedly extended into their opposition-based version to become faster and/or more accurate. However, most works still use a simple notion of opposites, namely linear (or type- I) opposition, that for each x∈[a,b]x\in[a,b] assigns its opposite as x˘I=a+b−x\breve{x}_I=a+b-x. This, of course, is a very naive estimate of the actual or true (non-linear) opposite x˘II\breve{x}_{II}, which has been called type-II opposite in literature. In absence of any knowledge about a function y=f(x)y=f(\mathbf{x}) that we need to approximate, there seems to be no alternative to the naivety of type-I opposition if one intents to utilize oppositional concepts. But the question is if we can receive some level of accuracy increase and time savings by using the naive opposite estimate x˘I\breve{x}_I according to all reports in literature, what would we be able to gain, in terms of even higher accuracies and more reduction in computational complexity, if we would generate and employ true opposites? This work introduces an approach to approximate type-II opposites using evolving fuzzy rules when we first perform opposition mining. We show with multiple examples that learning true opposites is possible when we mine the opposites from the training data to subsequently approximate x˘II=f(x,y)\breve{x}_{II}=f(\mathbf{x},y).Comment: Accepted for publication in The 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2015), August 2-5, 2015, Istanbul, Turke
    • 

    corecore