3,830 research outputs found

    An objective based classification of aggregation techniques for wireless sensor networks

    No full text
    Wireless Sensor Networks have gained immense popularity in recent years due to their ever increasing capabilities and wide range of critical applications. A huge body of research efforts has been dedicated to find ways to utilize limited resources of these sensor nodes in an efficient manner. One of the common ways to minimize energy consumption has been aggregation of input data. We note that every aggregation technique has an improvement objective to achieve with respect to the output it produces. Each technique is designed to achieve some target e.g. reduce data size, minimize transmission energy, enhance accuracy etc. This paper presents a comprehensive survey of aggregation techniques that can be used in distributed manner to improve lifetime and energy conservation of wireless sensor networks. Main contribution of this work is proposal of a novel classification of such techniques based on the type of improvement they offer when applied to WSNs. Due to the existence of a myriad of definitions of aggregation, we first review the meaning of term aggregation that can be applied to WSN. The concept is then associated with the proposed classes. Each class of techniques is divided into a number of subclasses and a brief literature review of related work in WSN for each of these is also presented

    An ANFIS estimator based data aggregation scheme for fault tolerant Wireless Sensor Networks

    Get PDF
    AbstractWireless Sensor Networks (WSNs) are used widely in many mission critical applications like battlefield surveillance, environmental monitoring, forest fire monitoring etc. A lot of research is being done to reduce the energy consumption, enhance the network lifetime and fault tolerance capability of WSNs. This paper proposes an ANFIS estimator based data aggregation scheme called Neuro-Fuzzy Optimization Model (NFOM) for the design of fault-tolerant WSNs. The proposed scheme employs an Adaptive Neuro-Fuzzy Inference System (ANFIS) estimator for intra-cluster and inter-cluster fault detection in WSNs. The Cluster Head (CH) acts as the intra-cluster fault detection and data aggregation manager. It identifies the faulty Non-Cluster Head (NCH) nodes in a cluster by the application of the proposed ANFIS estimator. The CH then aggregates data from only the normal NCHs in that cluster and forwards it to the high-energy gateway nodes. The gateway nodes act as the inter-cluster fault detection and data aggregation manager. They pro-actively identify the faulty CHs by the application of the proposed ANFIS estimator and perform inter-cluster fault tolerant data aggregation. The simulation results confirm that the proposed NFOM data aggregation scheme can significantly improve the network performance as compared to other existing schemes with respect to different performance metrics

    Automatic Fire Detection: A Survey from Wireless Sensor Network Perspective

    Get PDF
    Automatic fire detection is important for early detection and promptly extinguishing fire. There are ample studies investigating the best sensor combinations and appropriate techniques for early fire detection. In the previous studies fire detection has either been considered as an application of a certain field (e.g., event detection for wireless sensor networks) or the main concern for which techniques have been specifically designed (e.g., fire detection using remote sensing techniques). These different approaches stem from different backgrounds of researchers dealing with fire, such as computer science, geography and earth observation, and fire safety. In this report we survey previous studies from three perspectives: (1) fire detection techniques for residential areas, (2) fire detection techniques for forests, and (3) contributions of sensor networks to early fire detection

    An Adaptive Fault-Tolerant Communication Scheme for Body Sensor Networks

    Get PDF
    A high degree of reliability for critical data transmission is required in body sensor networks (BSNs). However, BSNs are usually vulnerable to channel impairments due to body fading effect and RF interference, which may potentially cause data transmission to be unreliable. In this paper, an adaptive and flexible fault-tolerant communication scheme for BSNs, namely AFTCS, is proposed. AFTCS adopts a channel bandwidth reservation strategy to provide reliable data transmission when channel impairments occur. In order to fulfill the reliability requirements of critical sensors, fault-tolerant priority and queue are employed to adaptively adjust the channel bandwidth allocation. Simulation results show that AFTCS can alleviate the effect of channel impairments, while yielding lower packet loss rate and latency for critical sensors at runtime.Comment: 10 figures, 19 page

    A Thorough Insight to Techniques for Performance Evaluation in Biological Sensors

    Get PDF
    The biological sensor has played a significant and contributory role in the area of medical science and healthcare industry. Owing to critical healthcare usage, it is essential that such type of sensors should be highly robust, sustainable under the adverse condition and highly fault tolerant against any forms of possible system failure in future. A massive amount of research work has been done in the area of the sensor network. However, works done in biological sensors are quite less in number. Hence, this manuscript highlights all the significant research work towards the line of discussion for evaluating the effective in the techniques for performance evaluation of biological sensor. The study finally explores the problems and discusses it under research gap. Finally, the manuscript gives highlights of the future direction of the work to solve the research gap explored from the proposed review of the existing system

    Use of AI Techniques for Residential Fire Detection in Wireless Sensor Networks

    Get PDF
    Early residential fire detection is important for prompt extinguishing and reducing damages and life losses. To detect fire, one or a combination of sensors and a detection algorithm are needed. The sensors might be part of a wireless sensor network (WSN) or work independently. The previous research in the area of fire detection using WSN has paid little or no attention to investigate the optimal set of sensors as well as use of learning mechanisms and Artificial Intelligence (AI) techniques. They have only made some assumptions on what might be considered as appropriate sensor or an arbitrary AI technique has been used. By closing the gap between traditional fire detection techniques and modern wireless sensor network capabilities, in this paper we present a guideline on choosing the most optimal sensor combinations for accurate residential fire detection. Additionally, applicability of a feed forward neural network (FFNN) and NaĂŻve Bayes Classifier is investigated and results in terms of detection rate and computational complexity are analyzed

    Fuzzy-based fault-tolerant and instant synchronization routing technique in wireless sensor network for rapid transit system

    Get PDF
    In the present era, rapid transits are one of the most affordable means of public transport with various useful integrated application systems. The majority of the integrated applications are deployed in concern over safety and precautionary measures against the worst side-effects of unfortunate emergencies. For such cases, high-end reliable and autonomous systems provide possible positive solutions. Wireless Sensor Network is one of the suitable choices for rapid transit applications to gain positive results with inexpensive implementation cost. However, managing few network consequences like fault tolerance, energy balancing and routing critical informative packets are considered to be the challenging task due to their limited resource usage restriction. In this paper, a novel fuzzy logic-based fault tolerance and instant synchronized routing technique have been proposed specifically for the rapid transit system. On utilizing the fuzzy logic concepts, most of the computational complexities and uncertainties of the system is reduced. The central thematic of the proposed design is concerned over the synchronized routing and permanent faults which abruptly depicts the non-functional nature of the sensor nodes during normal operations. Moreover, our proposed simulation outcomes proved to be improvised evidence on obtaining maximum packet delivery ratio which tends to handle an emergency situation in the compartments of rapid transits
    • …
    corecore