6 research outputs found

    Time Reversal Enabled Fiber-Optic Time Synchronization

    Full text link
    Over the past few decades, fiber-optic time synchronization (FOTS) has provided fundamental support for the efficient operation of modern society. Looking toward the future beyond fifth-generation/sixth-generation (B5G/6G) scenarios and very large radio telescope arrays, developing high-precision, low-complexity and scalable FOTS technology is crucial for building a large-scale time synchronization network. However, the traditional two-way FOTS method needs a data layer to exchange time delay information. This increases the complexity of system and makes it impossible to realize multiple-access time synchronization. In this paper, a time reversal enabled FOTS method is proposed. It measures the clock difference between two locations without involving a data layer, which can reduce the complexity of the system. Moreover, it can also achieve multiple-access time synchronization along the fiber link. Tests over a 230 km fiber link have been carried out to demonstrate the high performance of the proposed method

    IEEE 1588 High Accuracy Default Profile: Applications and Challenges

    Get PDF
    Highly accurate synchronization has become a major requirement because of the rise of distributed applications, regulatory requests and position, navigation and timing backup needs. This fact has led to the development of new technologies which fulfill the new requirements in terms of accuracy and dependability. Nevertheless, some of these novel proposals have lacked determinism, robustness, interoperability, deployability, scalability or management tools preventing them to be extensively used in real industrial scenarios. Different segments require accurate timing information over a large number of nodes. Due to the high availability and low price of global satellite-based time references, many critical distributed facilities depend on them. However, the vulnerability to jamming or spoofing represents a well-known threat and back-up systems need to be deployed to mitigate it. The recently approved draft standard IEEE 1588-2019 includes the High Accuracy Default Precision Time Protocol Profile which is intensively based on the White Rabbit protocol. White Rabbit is an extension of current IEEE 1588-2008 network synchronization protocol for sub-nanosecond synchronization. This approach has been validated and intensively used during the last years. This paper revises the pre-standard protocol to expose the challenges that the High Accuracy profile will find after its release and covers existing applications, promising deployments and the technological roadmap, providing hints and an overview of features to be studied. The authors review different issues that have prevented the industrial adoption of White Rabbit in the past and introduce the latest developments that will facilitate the next IEEE 1588 High Accuracy extensive adoption.This work was supported in part by the AMIGA6 under Grant AYA2015-65973-C3-2-R, in part by the AMIGA7 under Grant RTI2018-096228-B-C32, and in part by the Torres Quevedo under Grant PTQ2018-010198

    Precise Network Time Monitoring: Picosecond-level packet timestamping for Fintech networks

    Get PDF
    Network visibility and monitoring are critical in modern networks due to the increased density, additional complexity, higher bandwidth, and lower latency requirements. Precise packet timestamping and synchronization are essential to temporally correlate captured information in different datacenter locations. This is key for visibility, event ordering and latency measurements in segments as telecom, power grids and electronic trading in finance, where order execution and reduced latency are critical for successful business outcomes. This contribution presents Precise Network Time Monitoring (PNTM), a novel mechanism for asynchronous Ethernet packet timestamping which adapts a Digital Dual Mixer Time Difference (DDMTD) implemented in an FPGA. Picosecond-precision packet timestamping is outlined for 1 Gigabit Ethernet. Furthermore, this approach is combined with the White Rabbit (WR) synchronization protocol, used as reference for the IEEE 1588-2019 High Accuracy Profile to provide unprecedented packet capturing correlation accuracy in distributed network scenarios thanks to its sub-nanosecond time transfer. The paper presents different application examples, describes the method of implementation, integration of WR with PNTM and subsequently describes experiments to demonstrate that PNTM is a suitable picosecond-level distributed packet timestamping solutionNational project AMIGA7 RTI2018-096228-B-C32Andalusian project SINPA B-TIC-445-UGR1

    Data transport over optical fibre for ska using advanced modulation flexible spectrum technology

    Get PDF
    Flexible Spectrum Dense Wavelength Division Multiplexed (DWDM) optical fibre networks are next-generation technology for handling extremely high data rates of the kind produced by MeerKAT and SKA.We optimise the flexible spectrum for real-time dynamic channel wavelength assignment, to ensure optimum network performance. We needed to identify and develop novel hardware and dynamic algorithms for these networks to function optimally to perform critical tasks. Such tasks include wavelength assignment, signal routing, network restoration and network protection. The antennas of the Square Kilometre Array (SKA) network connect to the correlator and data processor in a simple point-to-point fixed configuration. The connection of the astronomer users to the data processor, however, requires a more complex network architecture. This is because the network has users scattered around South Africa, Africa and the whole world. This calls for upgrade of the classical fixed wavelength spectrum grids, to flexible spectrum grid that has improved capacity, reliable, simple and cost-effectiveness through sharing of network infrastructure. The exponential growth of data traffic in current optical communication networks requires higher capacity for the bandwidth demands at a reduced cost per bit. All-optical signal processing is a promising technique to improve network resource utilisation and resolve wavelength contention associated with the flexible spectrum. Flexible Spectrum Dense Wavelength Division Multiplexed (DWDM) optical fibre networks are next-generation technology for handling extremely high data rates of the kind produced by MeerKAT and SKA. Each DWDM channel is capable of 10 Gbps transmission rate, which is sliceable into finer flexible grid 12.5 GHz granularity to offer the network elastic spectrum and channel spacing capable of signal routing and wavelength switching for the scalability of aggregate bandwidth. The variable-sized portions of the flexible spectrum assignment to end users at different speeds depend on bandwidth demand, allowing efficient utilisation of the spectrum resources. The entire bandwidth of dynamic optical connections must be contiguously allocated. However, there is an introduction of spectrum fragmentation due to spectrum contiguity related to the optical channels having different width. Thus large traffic demands are likely to experience blocking regardless of available bandwidth. To minimise the congestion and cost-effectively obtain high performance, the optical network must be reconfigurable, achievable by adding wavelength as an extra degree of freedom for effectiveness. This can introduce colourless, directionless and contentionless reconfigurability to route individual wavelengths from fibre to fibre across multiple nodes to avoid wavelength blocking/collisions, increasing the flexibility and capacity of a network. For these networks to function optimally, novel hardware and dynamic algorithms identification and development is a critical task. Such tasks include wavelength assignment, signal routing, network restoration and network protection. In this work, we for the first time to our knowledge proposed a spectrum defragmentation technique through reallocation of the central frequency of the optical transmitter, to increase the probability of finding a sufficient continuous spectrum. This is to improve network resource utilisation, capacity and resolve wavelength contention associated with a flexible spectrum in optical communication networks. The following chapter provides details on a flexible spectrum in optical fibre networks utilising DWDM, optimising transmitter-receivers, advanced modulation formats, coherent detection, reconfigurable optical add and drop multiplexer (ROADM) technology to implement hardware and middleware platforms which address growing bandwidth demands for scalability, flexibility and cost-efficiency. A major attribute is tunable lasers, an essential component for future flexible spectrum with application to wavelength switching, routing, wavelength conversion and ROADM for the multi-node optical network through spectrum flexibility and cost-effective sharing of fibre links, transmitters and receivers. Spectrum slicing into fine granular sub-carriers and assigning several frequency slots to accommodate diverse traffic demands is a viable approach. This work experimentally presents a spectral efficient technique for bandwidth variability, wavelength allocation, routing, defragmentation and wavelength selective switches in the nodes of a network, capable of removing the fixed grid spacing using low cost, high bandwidth, power-efficient and wavelength-tunable vertical-cavity surface-emitting laser (VCSEL) transmitter directly modulated with 10 Gbps data. This to ensure that majority of the spectrum utilisation at finer channel spacing, wastage of the spectrum resource as caused by the wavelength continuity constraint reduction and it improves bandwidth utilisation. The technique is flexible in terms of modulation formats and accommodates various formats with spectrally continuous channels, fulfilling the future bandwidth demands with transmissions beyond 100 Gbps per channel while maintaining spectral efficiency

    Data transport over optical fibre for ska using advanced modulation flexible spectrum technology

    Get PDF
    Flexible Spectrum Dense Wavelength Division Multiplexed (DWDM) optical fibre networks are next-generation technology for handling extremely high data rates of the kind produced by MeerKAT and SKA.We optimise the flexible spectrum for real-time dynamic channel wavelength assignment, to ensure optimum network performance. We needed to identify and develop novel hardware and dynamic algorithms for these networks to function optimally to perform critical tasks. Such tasks include wavelength assignment, signal routing, network restoration and network protection. The antennas of the Square Kilometre Array (SKA) network connect to the correlator and data processor in a simple point-to-point fixed configuration. The connection of the astronomer users to the data processor, however, requires a more complex network architecture. This is because the network has users scattered around South Africa, Africa and the whole world. This calls for upgrade of the classical fixed wavelength spectrum grids, to flexible spectrum grid that has improved capacity, reliable, simple and cost-effectiveness through sharing of network infrastructure. The exponential growth of data traffic in current optical communication networks requires higher capacity for the bandwidth demands at a reduced cost per bit. All-optical signal processing is a promising technique to improve network resource utilisation and resolve wavelength contention associated with the flexible spectrum. Flexible Spectrum Dense Wavelength Division Multiplexed (DWDM) optical fibre networks are next-generation technology for handling extremely high data rates of the kind produced by MeerKAT and SKA. Each DWDM channel is capable of 10 Gbps transmission rate, which is sliceable into finer flexible grid 12.5 GHz granularity to offer the network elastic spectrum and channel spacing capable of signal routing and wavelength switching for the scalability of aggregate bandwidth. The variable-sized portions of the flexible spectrum assignment to end users at different speeds depend on bandwidth demand, allowing efficient utilisation of the spectrum resources. The entire bandwidth of dynamic optical connections must be contiguously allocated. However, there is an introduction of spectrum fragmentation due to spectrum contiguity related to the optical channels having different width. Thus large traffic demands are likely to experience blocking regardless of available bandwidth. To minimise the congestion and cost-effectively obtain high performance, the optical network must be reconfigurable, achievable by adding wavelength as an extra degree of freedom for effectiveness. This can introduce colourless, directionless and contentionless reconfigurability to route individual wavelengths from fibre to fibre across multiple nodes to avoid wavelength blocking/collisions, increasing the flexibility and capacity of a network. For these networks to function optimally, novel hardware and dynamic algorithms identification and development is a critical task. Such tasks include wavelength assignment, signal routing, network restoration and network protection. In this work, we for the first time to our knowledge proposed a spectrum defragmentation technique through reallocation of the central frequency of the optical transmitter, to increase the probability of finding a sufficient continuous spectrum. This is to improve network resource utilisation, capacity and resolve wavelength contention associated with a flexible spectrum in optical communication networks. The following chapter provides details on a flexible spectrum in optical fibre networks utilising DWDM, optimising transmitter-receivers, advanced modulation formats, coherent detection, reconfigurable optical add and drop multiplexer (ROADM) technology to implement hardware and middleware platforms which address growing bandwidth demands for scalability, flexibility and cost-efficiency. A major attribute is tunable lasers, an essential component for future flexible spectrum with application to wavelength switching, routing, wavelength conversion and ROADM for the multi-node optical network through spectrum flexibility and cost-effective sharing of fibre links, transmitters and receivers. Spectrum slicing into fine granular sub-carriers and assigning several frequency slots to accommodate diverse traffic demands is a viable approach. This work experimentally presents a spectral efficient technique for bandwidth variability, wavelength allocation, routing, defragmentation and wavelength selective switches in the nodes of a network, capable of removing the fixed grid spacing using low cost, high bandwidth, power-efficient and wavelength-tunable vertical-cavity surface-emitting laser (VCSEL) transmitter directly modulated with 10 Gbps data. This to ensure that majority of the spectrum utilisation at finer channel spacing, wastage of the spectrum resource as caused by the wavelength continuity constraint reduction and it improves bandwidth utilisation. The technique is flexible in terms of modulation formats and accommodates various formats with spectrally continuous channels, fulfilling the future bandwidth demands with transmissions beyond 100 Gbps per channel while maintaining spectral efficiency
    corecore