458 research outputs found

    From spline wavelet to sampling theory on circulant graphs and beyond– conceiving sparsity in graph signal processing

    Get PDF
    Graph Signal Processing (GSP), as the field concerned with the extension of classical signal processing concepts to the graph domain, is still at the beginning on the path toward providing a generalized theory of signal processing. As such, this thesis aspires to conceive the theory of sparse representations on graphs by traversing the cornerstones of wavelet and sampling theory on graphs. Beginning with the novel topic of graph spline wavelet theory, we introduce families of spline and e-spline wavelets, and associated filterbanks on circulant graphs, which lever- age an inherent vanishing moment property of circulant graph Laplacian matrices (and their parameterized generalizations), for the reproduction and annihilation of (exponen- tial) polynomial signals. Further, these families are shown to provide a stepping stone to generalized graph wavelet designs with adaptive (annihilation) properties. Circulant graphs, which serve as building blocks, facilitate intuitively equivalent signal processing concepts and operations, such that insights can be leveraged for and extended to more complex scenarios, including arbitrary undirected graphs, time-varying graphs, as well as associated signals with space- and time-variant properties, all the while retaining the focus on inducing sparse representations. Further, we shift from sparsity-inducing to sparsity-leveraging theory and present a novel sampling and graph coarsening framework for (wavelet-)sparse graph signals, inspired by Finite Rate of Innovation (FRI) theory and directly building upon (graph) spline wavelet theory. At its core, the introduced Graph-FRI-framework states that any K-sparse signal residing on the vertices of a circulant graph can be sampled and perfectly reconstructed from its dimensionality-reduced graph spectral representation of minimum size 2K, while the structure of an associated coarsened graph is simultaneously inferred. Extensions to arbitrary graphs can be enforced via suitable approximation schemes. Eventually, gained insights are unified in a graph-based image approximation framework which further leverages graph partitioning and re-labelling techniques for a maximally sparse graph wavelet representation.Open Acces

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    Bilateral Filter: Graph Spectral Interpretation and Extensions

    Full text link
    In this paper we study the bilateral filter proposed by Tomasi and Manduchi, as a spectral domain transform defined on a weighted graph. The nodes of this graph represent the pixels in the image and a graph signal defined on the nodes represents the intensity values. Edge weights in the graph correspond to the bilateral filter coefficients and hence are data adaptive. Spectrum of a graph is defined in terms of the eigenvalues and eigenvectors of the graph Laplacian matrix. We use this spectral interpretation to generalize the bilateral filter and propose more flexible and application specific spectral designs of bilateral-like filters. We show that these spectral filters can be implemented with k-iterative bilateral filtering operations and do not require expensive diagonalization of the Laplacian matrix

    Infrared and Visible Image Fusion Based on Oversampled Graph Filter Banks

    Get PDF
    The infrared image (RI) and visible image (VI) fusion method merges complementary information from the infrared and visible imaging sensors to provide an effective way for understanding the scene. The graph filter bank-based graph wavelet transform possesses the advantages of the classic wavelet filter bank and graph representation of a signal. Therefore, we propose an RI and VI fusion method based on oversampled graph filter banks. Specifically, we consider the source images as signals on the regular graph and decompose them into the multiscale representations with M-channel oversampled graph filter banks. Then, the fusion rule for the low-frequency subband is constructed using the modified local coefficient of variation and the bilateral filter. The fusion maps of detail subbands are formed using the standard deviation-based local properties. Finally, the fusion image is obtained by applying the inverse transform on the fusion subband coefficients. The experimental results on benchmark images show the potential of the proposed method in the image fusion applications
    • …
    corecore