In this paper we study the bilateral filter proposed by Tomasi and Manduchi,
as a spectral domain transform defined on a weighted graph. The nodes of this
graph represent the pixels in the image and a graph signal defined on the nodes
represents the intensity values. Edge weights in the graph correspond to the
bilateral filter coefficients and hence are data adaptive. Spectrum of a graph
is defined in terms of the eigenvalues and eigenvectors of the graph Laplacian
matrix. We use this spectral interpretation to generalize the bilateral filter
and propose more flexible and application specific spectral designs of
bilateral-like filters. We show that these spectral filters can be implemented
with k-iterative bilateral filtering operations and do not require expensive
diagonalization of the Laplacian matrix