2,932 research outputs found

    A framework for testing safety and effective computability of extended datalog

    Full text link

    O-Minimal Hybrid Reachability Games

    Full text link
    In this paper, we consider reachability games over general hybrid systems, and distinguish between two possible observation frameworks for those games: either the precise dynamics of the system is seen by the players (this is the perfect observation framework), or only the starting point and the delays are known by the players (this is the partial observation framework). In the first more classical framework, we show that time-abstract bisimulation is not adequate for solving this problem, although it is sufficient in the case of timed automata . That is why we consider an other equivalence, namely the suffix equivalence based on the encoding of trajectories through words. We show that this suffix equivalence is in general a correct abstraction for games. We apply this result to o-minimal hybrid systems, and get decidability and computability results in this framework. For the second framework which assumes a partial observation of the dynamics of the system, we propose another abstraction, called the superword encoding, which is suitable to solve the games under that assumption. In that framework, we also provide decidability and computability results

    Effective computation for nonlinear systems

    Get PDF
    Nonlinear dynamical and control systems are an important source of applications for theories of computation over the the real numbers, since these systems are usually to complicated to study analytically, but may be extremely sensitive to numerical error. Further, computerassisted proofs and verification problems require a rigorous treatment of numerical errors. In this paper we will describe how to provide a semantics for effective computations on sets and maps and show how these operations have been implemented in the tool Ariadne for the analysis, design and verification of nonlinear and hybrid systems

    Bridging the Gap Between Intent and Outcome: Knowledge, Tools & Principles for Security-Minded Decision-Making

    Get PDF
    Well-intentioned decisions---even ones intended to improve aggregate security--- may inadvertently jeopardize security objectives. Adopting a stringent password composition policy ostensibly yields high-entropy passwords; however, such policies often drive users to reuse or write down passwords. Replacing URLs in emails with safe URLs that navigate through a gatekeeper service that vets them before granting user access may reduce user exposure to malware; however, it may backfire by reducing the user\u27s ability to parse the URL or by giving the user a false sense of security if user expectations misalign with the security checks delivered by the vetting process. A short timeout threshold may ensure the user is promptly logged out when the system detects they are away; however, if an infuriated user copes by inserting a USB stick in their computer to emulate mouse movements, then not only will the detection mechanism fail but the insertion of the USB stick may present a new attack surface. These examples highlight the disconnect between decision-maker intentions and decision outcomes. Our focus is on bridging this gap. This thesis explores six projects bound together by the core objective of empowering people to make decisions that achieve their security and privacy objectives. First, we use grounded theory to examine Amazon reviews of password logbooks and to obtain valuable insights into users\u27 password management beliefs, motivations, and behaviors. Second, we present a discrete-event simulation we built to assess the efficacy of password policies. Third, we explore the idea of supplementing language-theoretic security with human-computability boundaries. Fourth, we conduct an eye-tracking study to understand users\u27 visual processes while parsing and classifying URLs. Fifth, we discuss preliminary findings from a study conducted on Amazon Mechanical Turk to examine why users fall for unsafe URLs. And sixth, we develop a logic-based representation of mismorphisms, which allows us to express the root causes of security problems. Each project demonstrates a key technique that can help in bridging the gap between intent and outcome

    [Subject benchmark statement]: computing

    Get PDF
    • …
    corecore