822,214 research outputs found

    A Privacy Preserving Framework for RFID Based Healthcare Systems

    Get PDF
    RFID (Radio Frequency IDentification) is anticipated to be a core technology that will be used in many practical applications of our life in near future. It has received considerable attention within the healthcare for almost a decade now. The technology’s promise to efficiently track hospital supplies, medical equipment, medications and patients is an attractive proposition to the healthcare industry. However, the prospect of wide spread use of RFID tags in the healthcare area has also triggered discussions regarding privacy, particularly because RFID data in transit may easily be intercepted and can be send to track its user (owner). In a nutshell, this technology has not really seen its true potential in healthcare industry since privacy concerns raised by the tag bearers are not properly addressed by existing identification techniques. There are two major types of privacy preservation techniques that are required in an RFID based healthcare system—(1) a privacy preserving authentication protocol is required while sensing RFID tags for different identification and monitoring purposes, and (2) a privacy preserving access control mechanism is required to restrict unauthorized access of private information while providing healthcare services using the tag ID. In this paper, we propose a framework (PriSens-HSAC) that makes an effort to address the above mentioned two privacy issues. To the best of our knowledge, it is the first framework to provide increased privacy in RFID based healthcare systems, using RFID authentication along with access control technique

    Reconfigurable Security: Edge Computing-based Framework for IoT

    Full text link
    In various scenarios, achieving security between IoT devices is challenging since the devices may have different dedicated communication standards, resource constraints as well as various applications. In this article, we first provide requirements and existing solutions for IoT security. We then introduce a new reconfigurable security framework based on edge computing, which utilizes a near-user edge device, i.e., security agent, to simplify key management and offload the computational costs of security algorithms at IoT devices. This framework is designed to overcome the challenges including high computation costs, low flexibility in key management, and low compatibility in deploying new security algorithms in IoT, especially when adopting advanced cryptographic primitives. We also provide the design principles of the reconfigurable security framework, the exemplary security protocols for anonymous authentication and secure data access control, and the performance analysis in terms of feasibility and usability. The reconfigurable security framework paves a new way to strength IoT security by edge computing.Comment: under submission to possible journal publication

    Addressing information flow in lean production management and control in construction

    Get PDF
    Traditionally, production control on construction sites has been a challenging area, where the ad-hoc production control methods foster uncertainty - one of the biggest enemies of efficiency and smooth production flow. Lean construction methods such as the Last Planner System have partially tackled this problem by addressing the flow aspect through means such as constraints analysis and commitment planning. However, such systems have relatively long planning cycles to respond to the dynamic production requirements of construction, where almost daily if not hourly control is needed. New solutions have been designed by researchers to improve this aspect such as VisiLean, but again these types of software systems require the proximity and availability of computer devices to workers. Given this observation, there is a need for a communication system between the field and site office that is highly interoperable and provides real-time task status information. A High-level communication framework (using VisiLean) is presented in this paper, which aims to overcome the problems of system integration and improve the flow of information within the production system. The framework provides, among other things, generic and standardized interfaces to simplify the “push” and “pull” of the right (production) information, whenever needed, wherever needed, by whoever needs it. Overall, it is anticipated that the reliability of the production control will be improve
    • 

    corecore