22,633 research outputs found

    QUAL : A Provenance-Aware Quality Model

    Get PDF
    The research described here is supported by the award made by the RCUK Digital Economy program to the dot.rural Digital Economy Hub; award reference: EP/G066051/1.Peer reviewedPostprin

    Learning to Represent Haptic Feedback for Partially-Observable Tasks

    Full text link
    The sense of touch, being the earliest sensory system to develop in a human body [1], plays a critical part of our daily interaction with the environment. In order to successfully complete a task, many manipulation interactions require incorporating haptic feedback. However, manually designing a feedback mechanism can be extremely challenging. In this work, we consider manipulation tasks that need to incorporate tactile sensor feedback in order to modify a provided nominal plan. To incorporate partial observation, we present a new framework that models the task as a partially observable Markov decision process (POMDP) and learns an appropriate representation of haptic feedback which can serve as the state for a POMDP model. The model, that is parametrized by deep recurrent neural networks, utilizes variational Bayes methods to optimize the approximate posterior. Finally, we build on deep Q-learning to be able to select the optimal action in each state without access to a simulator. We test our model on a PR2 robot for multiple tasks of turning a knob until it clicks.Comment: IEEE International Conference on Robotics and Automation (ICRA), 201

    Blind Sensor Calibration using Approximate Message Passing

    Full text link
    The ubiquity of approximately sparse data has led a variety of com- munities to great interest in compressed sensing algorithms. Although these are very successful and well understood for linear measurements with additive noise, applying them on real data can be problematic if imperfect sensing devices introduce deviations from this ideal signal ac- quisition process, caused by sensor decalibration or failure. We propose a message passing algorithm called calibration approximate message passing (Cal-AMP) that can treat a variety of such sensor-induced imperfections. In addition to deriving the general form of the algorithm, we numerically investigate two particular settings. In the first, a fraction of the sensors is faulty, giving readings unrelated to the signal. In the second, sensors are decalibrated and each one introduces a different multiplicative gain to the measures. Cal-AMP shares the scalability of approximate message passing, allowing to treat big sized instances of these problems, and ex- perimentally exhibits a phase transition between domains of success and failure.Comment: 27 pages, 9 figure
    • …
    corecore