13 research outputs found

    1-Bit Massive MIMO Transmission: Embracing Interference with Symbol-Level Precoding

    Get PDF
    The deployment of large-scale antenna arrays for cellular base stations (BSs), termed as `Massive MIMO', has been a key enabler for meeting the ever-increasing capacity requirement for 5G communication systems and beyond. Despite their promising performance, fully-digital massive MIMO systems require a vast amount of hardware components including radio frequency chains, power amplifiers, digital-to-analog converters (DACs), etc., resulting in a huge increase in terms of the total power consumption and hardware costs for cellular BSs. Towards both spectrally-efficient and energy-efficient massive MIMO deployment, a number of hardware limited architectures have been proposed, including hybrid analog-digital structures, constant-envelope transmission, and use of low-resolution DACs. In this paper, we overview the recent interest in improving the error-rate performance of massive MIMO systems deployed with 1-bit DACs through precoding at the symbol level. This line of research goes beyond traditional interference suppression or cancellation techniques by managing interference on a symbol-by-symbol basis. This provides unique opportunities for interference-aware precoding tailored for practical massive MIMO systems. Firstly, we characterize constructive interference (CI) and elaborate on how CI can benefit the 1-bit signal design by exploiting the traditionally undesired multi-user interference as well as the interference from imperfect hardware components. Subsequently, we overview several solutions for 1-bit signal design to illustrate the gains achievable by exploiting CI. Finally, we identify some challenges and future research directions for 1-bit massive MIMO systems that are yet to be explored.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Spectral Efficiency of One-Bit Sigma-Delta Massive MIMO

    Get PDF
    We examine the uplink spectral efficiency of a massive MIMO base station employing a one-bit Sigma-Delta ( \Sigma \Delta ) sampling scheme implemented in the spatial rather than the temporal domain. Using spatial rather than temporal oversampling, and feedback of the quantization error between adjacent antennas, the method shapes the spatial spectrum of the quantization noise away from an angular sector where the signals of interest are assumed to lie. It is shown that, while a direct Bussgang analysis of the \Sigma \Delta approach is not suitable, an alternative equivalent linear model can be formulated to facilitate an analysis of the system performance. The theoretical properties of the spatial quantization noise power spectrum are derived for the \Sigma \Delta array, as well as an expression for the spectral efficiency of maximum ratio combining (MRC). Simulations verify the theoretical results and illustrate the significant performance gains offered by the \Sigma \Delta approach for both MRC and zero-forcing receivers

    Linear Precoding with Low-Resolution DACs for Massive MU-MIMO-OFDM Downlink

    Full text link
    We consider the downlink of a massive multiuser (MU) multiple-input multiple-output (MIMO) system in which the base station (BS) is equipped with low-resolution digital-to-analog converters (DACs). In contrast to most existing results, we assume that the system operates over a frequency-selective wideband channel and uses orthogonal frequency division multiplexing (OFDM) to simplify equalization at the user equipments (UEs). Furthermore, we consider the practically relevant case of oversampling DACs. We theoretically analyze the uncoded bit error rate (BER) performance with linear precoders (e.g., zero forcing) and quadrature phase-shift keying using Bussgang's theorem. We also develop a lower bound on the information-theoretic sum-rate throughput achievable with Gaussian inputs, which can be evaluated in closed form for the case of 1-bit DACs. For the case of multi-bit DACs, we derive approximate, yet accurate, expressions for the distortion caused by low-precision DACs, which can be used to establish lower bounds on the corresponding sum-rate throughput. Our results demonstrate that, for a massive MU-MIMO-OFDM system with a 128-antenna BS serving 16 UEs, only 3--4 DAC bits are required to achieve an uncoded BER of 10^-4 with a negligible performance loss compared to the infinite-resolution case at the cost of additional out-of-band emissions. Furthermore, our results highlight the importance of taking into account the inherent spatial and temporal correlations caused by low-precision DACs
    corecore