31 research outputs found

    Nexus Authorization Logic (NAL): Logical Results

    Full text link
    Nexus Authorization Logic (NAL) [Schneider et al. 2011] is a logic for reasoning about authorization in distributed systems. A revised version of NAL is given here, including revised syntax, a revised proof theory using localized hypotheses, and a new Kripke semantics. The proof theory is proved sound with respect to the semantics, and that proof is formalized in Coq

    Belief Semantics of Authorization Logic

    Full text link
    Authorization logics have been used in the theory of computer security to reason about access control decisions. In this work, a formal belief semantics for authorization logics is given. The belief semantics is proved to subsume a standard Kripke semantics. The belief semantics yields a direct representation of principals' beliefs, without resorting to the technical machinery used in Kripke semantics. A proof system is given for the logic; that system is proved sound with respect to the belief and Kripke semantics. The soundness proof for the belief semantics, and for a variant of the Kripke semantics, is mechanized in Coq

    Non-normal modalities in variants of Linear Logic

    Get PDF
    This article presents modal versions of resource-conscious logics. We concentrate on extensions of variants of Linear Logic with one minimal non-normal modality. In earlier work, where we investigated agency in multi-agent systems, we have shown that the results scale up to logics with multiple non-minimal modalities. Here, we start with the language of propositional intuitionistic Linear Logic without the additive disjunction, to which we add a modality. We provide an interpretation of this language on a class of Kripke resource models extended with a neighbourhood function: modal Kripke resource models. We propose a Hilbert-style axiomatization and a Gentzen-style sequent calculus. We show that the proof theories are sound and complete with respect to the class of modal Kripke resource models. We show that the sequent calculus admits cut elimination and that proof-search is in PSPACE. We then show how to extend the results when non-commutative connectives are added to the language. Finally, we put the logical framework to use by instantiating it as logics of agency. In particular, we propose a logic to reason about the resource-sensitive use of artefacts and illustrate it with a variety of examples

    Modular Focused Proof Systems for Intuitionistic Modal Logics

    Get PDF
    Focusing is a general technique for syntactically compartmentalizing the non-deterministic choices in a proof system, which not only improves proof search but also has the representational benefit of distilling sequent proofs into synthetic normal forms. However, since focusing is usually specified as a restriction of the sequent calculus, the technique has not been transferred to logics that lack a (shallow) sequent presentation, as is the case for some of the logics of the modal cube. We have recently extended the focusing technique to classical nested sequents, a generalization of ordinary sequents. In this work we further extend focusing to intuitionistic nested sequents, which can capture all the logics of the intuitionistic S5 cube in a modular fashion. We present an internal cut-elimination procedure for the focused system which in turn is used to show its completeness

    Intuitionistic Gödel-Löb Logic, à la Simpson:Labelled Systems and Birelational Semantics

    Get PDF
    We derive an intuitionistic version of Gödel-Löb modal logic (GL) in the style of Simpson, via proof theoretic techniques. We recover a labelled system, ℓIGL, by restricting a non-wellfounded labelled system for GL to have only one formula on the right. The latter is obtained using techniques from cyclic proof theory, sidestepping the barrier that GL’s usual frame condition (converse well-foundedness) is not first-order definable. While existing intuitionistic versions of GL are typically defined over only the box (and not the diamond), our presentation includes both modalities. Our main result is that ℓIGL coincides with a corresponding semantic condition in birelational semantics: the composition of the modal relation and the intuitionistic relation is conversely well-founded. We call the resulting logic IGL. While the soundness direction is proved using standard ideas, the completeness direction is more complex and necessitates a detour through several intermediate characterisations of IGL

    A Logical Foundation for Environment Classifiers

    Full text link
    Taha and Nielsen have developed a multi-stage calculus {\lambda}{\alpha} with a sound type system using the notion of environment classifiers. They are special identifiers, with which code fragments and variable declarations are annotated, and their scoping mechanism is used to ensure statically that certain code fragments are closed and safely runnable. In this paper, we investigate the Curry-Howard isomorphism for environment classifiers by developing a typed {\lambda}-calculus {\lambda}|>. It corresponds to multi-modal logic that allows quantification by transition variables---a counterpart of classifiers---which range over (possibly empty) sequences of labeled transitions between possible worlds. This interpretation will reduce the "run" construct---which has a special typing rule in {\lambda}{\alpha}---and embedding of closed code into other code fragments of different stages---which would be only realized by the cross-stage persistence operator in {\lambda}{\alpha}---to merely a special case of classifier application. {\lambda}|> enjoys not only basic properties including subject reduction, confluence, and strong normalization but also an important property as a multi-stage calculus: time-ordered normalization of full reduction. Then, we develop a big-step evaluation semantics for an ML-like language based on {\lambda}|> with its type system and prove that the evaluation of a well-typed {\lambda}|> program is properly staged. We also identify a fragment of the language, where erasure evaluation is possible. Finally, we show that the proof system augmented with a classical axiom is sound and complete with respect to a Kripke semantics of the logic

    Intuitionistic G\"odel-L\"ob logic, \`a la Simpson: labelled systems and birelational semantics

    Full text link
    We derive an intuitionistic version of G\"odel-L\"ob modal logic (GL\sf{GL}) in the style of Simpson, via proof theoretic techniques. We recover a labelled system, â„“IGL\sf{\ell IGL}, by restricting a non-wellfounded labelled system for GL\sf{GL} to have only one formula on the right. The latter is obtained using techniques from cyclic proof theory, sidestepping the barrier that GL\sf{GL}'s usual frame condition (converse well-foundedness) is not first-order definable. While existing intuitionistic versions of GL\sf{GL} are typically defined over only the box (and not the diamond), our presentation includes both modalities. Our main result is that â„“IGL\sf{\ell IGL} coincides with a corresponding semantic condition in birelational semantics: the composition of the modal relation and the intuitionistic relation is conversely well-founded. We call the resulting logic IGL\sf{IGL}. While the soundness direction is proved using standard ideas, the completeness direction is more complex and necessitates a detour through several intermediate characterisations of IGL\sf{IGL}.Comment: 25 pages including 8 pages appendix, 4 figure
    corecore