1,050 research outputs found

    A Survey on Causal Discovery Methods for Temporal and Non-Temporal Data

    Full text link
    Causal Discovery (CD) is the process of identifying the cause-effect relationships among the variables from data. Over the years, several methods have been developed primarily based on the statistical properties of data to uncover the underlying causal mechanism. In this study we introduce the common terminologies in causal discovery, and provide a comprehensive discussion of the approaches designed to identify the causal edges in different settings. We further discuss some of the benchmark datasets available for evaluating the performance of the causal discovery algorithms, available tools to perform causal discovery readily, and the common metrics used to evaluate these methods. Finally, we conclude by presenting the common challenges involved in CD and also, discuss the applications of CD in multiple areas of interest

    Reasoning about Independence in Probabilistic Models of Relational Data

    Full text link
    We extend the theory of d-separation to cases in which data instances are not independent and identically distributed. We show that applying the rules of d-separation directly to the structure of probabilistic models of relational data inaccurately infers conditional independence. We introduce relational d-separation, a theory for deriving conditional independence facts from relational models. We provide a new representation, the abstract ground graph, that enables a sound, complete, and computationally efficient method for answering d-separation queries about relational models, and we present empirical results that demonstrate effectiveness.Comment: 61 pages, substantial revisions to formalisms, theory, and related wor

    D'ya like DAGs? A Survey on Structure Learning and Causal Discovery

    Full text link
    Causal reasoning is a crucial part of science and human intelligence. In order to discover causal relationships from data, we need structure discovery methods. We provide a review of background theory and a survey of methods for structure discovery. We primarily focus on modern, continuous optimization methods, and provide reference to further resources such as benchmark datasets and software packages. Finally, we discuss the assumptive leap required to take us from structure to causality.Comment: 35 page

    Inferring Causality from Time Series data based on Structural Causal Model and its application to Neural Connectomics

    Full text link
    Inferring causation from time series data is of scientific interest in different disciplines, particularly in neural connectomics. While different approaches exist in the literature with parametric modeling assumptions, we focus on a non-parametric model for time series satisfying a Markovian structural causal model with stationary distribution and without concurrent effects. We show that the model structure can be used to its advantage to obtain an elegant algorithm for causal inference from time series based on conditional dependence tests, coined Causal Inference in Time Series (CITS) algorithm. We describe Pearson's partial correlation and Hilbert-Schmidt criterion as candidates for such conditional dependence tests that can be used in CITS for the Gaussian and non-Gaussian settings, respectively. We prove the mathematical guarantee of the CITS algorithm in recovering the true causal graph, under standard mixing conditions on the underlying time series. We also conduct a comparative evaluation of performance of CITS with other existing methodologies in simulated datasets. We then describe the utlity of the methodology in neural connectomics -- in inferring causal functional connectivity from time series of neural activity, and demonstrate its application to a real neurobiological dataset of electro-physiological recordings from the mouse visual cortex recorded by Neuropixel probes

    Causal Discovery from Temporal Data: An Overview and New Perspectives

    Full text link
    Temporal data, representing chronological observations of complex systems, has always been a typical data structure that can be widely generated by many domains, such as industry, medicine and finance. Analyzing this type of data is extremely valuable for various applications. Thus, different temporal data analysis tasks, eg, classification, clustering and prediction, have been proposed in the past decades. Among them, causal discovery, learning the causal relations from temporal data, is considered an interesting yet critical task and has attracted much research attention. Existing casual discovery works can be divided into two highly correlated categories according to whether the temporal data is calibrated, ie, multivariate time series casual discovery, and event sequence casual discovery. However, most previous surveys are only focused on the time series casual discovery and ignore the second category. In this paper, we specify the correlation between the two categories and provide a systematical overview of existing solutions. Furthermore, we provide public datasets, evaluation metrics and new perspectives for temporal data casual discovery.Comment: 52 pages, 6 figure
    • …
    corecore