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ABSTRACT

METHODS FOR ENABLING CAUSAL INFERENCE IN
RELATIONAL DOMAINS

MAY 2017

DAVID ARBOUR

B.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David Jensen

The analysis of data from complex systems is quickly becoming a fundamental

aspect of modern business, government, and science. The field of causal inference is

concerned with developing a set of statistical methods that allow practitioners make

inferences about unseen interventions. This field has seen significant advances in re-

cent years. However, the vast majority of this work assumes that data instances are

independent, whereas many systems are best described in terms of interconnected in-

stances, i.e. relational systems. This discrepancy prevents causal inference techniques

from being reliably applied in many real-world settings.

In this thesis, I will present three contributions to the field of causal inference

that seek to enable the analysis of relational systems. First, I will present theory

for consistently testing statistical dependence in relational domains. I then show

how the significance of this test can be measured in practice using a novel bootstrap

vii



method for structured domains. Second, I show that statistical dependence in rela-

tional domains is inherently asymmetric, implying a simple test of causal direction

from observational data. This test requires no assumptions on either the marginal

distributions of variables or the functional form of dependence. Third, I describe rela-

tional causal adjustment, a procedure to identify the effects of arbitrary interventions

from observational relational data via an extension of Pearls backdoor criterion. A

series of evaluations on synthetic domains shows the estimates obtained by relational

causal adjustment are close to those obtained from explicit experimentation.
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n

∑n
i φ(xi)⊗ φ(yi) defines an

injective mapping of the joint distribution of X and Y, i.e.
P (X, Y ) is uniquely identified by Cxy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Scale-free network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Small-world network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xiii



3.3 Type I errors for graphs with varying number of nodes and fixed auto
dependence using the Barabasi-Albert model. . . . . . . . . . . . . . . . . . . . . 44

4.1 Scatterplots for the sum of X values of related nodes (x-axis) vs. the
sum of X values of related nodes with additive Gaussian noise
(y-axis). The noise coefficient (cε) varies from 0 to 2. The
underlying network structure is a regular network of degree 10
with 500 nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Orientation accuracy for regular graphs for varying degree (4.6a), size
of network (4.6b), and noise coefficient (4.6c). . . . . . . . . . . . . . . . . . . . . 59

4.3 Orientation accuracy for various network types and functional forms,
as the size of the graph increases. The noise coefficient is set to
0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Orientation accuracy for various network types and functional forms,
as the coefficient of the noise increases. The network size was kept
constant at 1000 nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Accuracy detecting confounding for regular graphs for varying
degree (4.6a), size of network (4.6b), and noise
coefficient (4.6c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Accuracy detecting confounding for different types of networks
graphs with varying noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Social Network Privacy Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 ER Diagram for Social Network Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Abstract Ground Graph for the Social Network Example. In this
example, each user’s disposition (U0.D) affects that user’s privacy
settings (U0.P rv) and time on site (U0.T oS). Further, the
dispositions and privacy settings of a user’s immediate peers
(U1.D and U1.D, respectively) affect that user’s time on site. A
user’s privacy settings are also influenced by their peers’ privacy
settings. This structure repeats for U2, representing friends of
friends. Higher orders of Up can be considered, but are not shown
here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xiv



5.4 An abstract ground graph representing the dependence structure
under network experiment. This structure is similar to 5.3, except
that disposition no longer influences privacy settings, and is
excluded from the diagram. A variable D representing the
experimental design may induce marginal dependence between
treatments. It is possible that the outcome of peers (U1.T oS)
affects U0.T oS, but including U1.P rv in a conditioning set is
sufficient to satisfy the back-door criterion for treatment
U0.P rv. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Examples of outcome models considered in this work, shown here as a
function of the proportion of treated friends. . . . . . . . . . . . . . . . . . . . . . 86

5.6 Accuracy of experimental and observational effect estimates across
various outcome models as confounding strength is varied. . . . . . . . . . 89

5.7 Comparison of estimates obtained from retrospective, confounded,
observational data (left) and those from experimentation (right).
An overestimated effect results in positive error, and an
underestimated effect results in negative error. These methods
almost always overestimate the true global effect. . . . . . . . . . . . . . . . . . 91

5.8 An example of the sigmoid outcome model. In this case, a model of
the marginal peer effect is estimated from observational data
using a boosted model and from experimental data with a linear
model, with βI = βP = 5 and βL = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.9 Estimated Total Effects in the Enron Data . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.1 An example of a network with data generated from an autodependent
process and its permutation. On the left is the original network,
where color represents the value of interest. On the right is a
permutation of that network that preserves the structure while
permuting the values. Shading of each node represents the value
of the variable on that node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xv



CHAPTER 1

INTRODUCTION

Advances within the field of machine learning have introduced a number of pow-

erful techniques for analyzing and modeling relationships in observational data sets.

These algorithms are often characterized by their ability perform prediction or pro-

vide descriptive information of data, e.g. determining the presence and location of an

object in an image; finding clusterings in a given data set. This has lead to a number

of successful applications in fields ranging from human level performance in computer

vision [47], to expert level playing of the game Jeopardy! [27], and automatic discovery

of topics in large text corpora [8].

The vast majority of machine learning methods operate by exploiting statistical

dependence between variables, i.e., the focus is to provide very accurate predictions

about unseen observational data, rather than learning underlying mechanisms that

gave rise to that data. However, in many situations the goal is to predict the effect of

an action or intervention, rather than simple prediction. To illustrate the difference

between prediction and intervention, we will consider a simple example. Suppose that

we are interested in understanding the weather and that we have collected historical

data with observations of whether or not it rained on a given day and the number

of people carrying umbrellas during their morning commute. If we are interested in

building a machine learning classifier that will predict whether or not it will rain on

a given day, the number of commuters with umbrellas is a very informative measure,

and would likely result in high predictive accuracy. However, the learned model is

1



useless for intervention. If we were somehow able to make everyone carry an umbrella

to work, there would be no effect on whether or not it rains that day.

The field of causal inference seeks to explicitly model the effect of intervention on

an observed system. The most widely known causal inference method is randomized

experimentation. In this setting, a small representative group is assigned to either

treatment or control, an outcome is measured, and the results are extrapolated to

infer the effect of the treatment on a larger population 1. When experimentation is

infeasible or undesirable, methods for observational causal inference can be used to

infer the effect of intervention from purely observational data2. There are a num-

ber of approaches for observational causal inference that have been proposed in the

literature (c.f. Pearl [71], Rubin [77], Dawid [21]). While these approaches differ in

philosophy and specific algorithmic detail, they all consist of specifying the structure

of a domain, and then leveraging the specified structure to reason over the set of

variables necessary to condition on in order to infer the direct causal effect.

When causal structure cannot be reliably specified using a priori knowledge,

causal discovery can be used to infer the structure of a domain from observational

data [83, 70]. The most commonly employed methods for causal discovery (e.g.,

Spirtes, et al. [83]) rely on a series of dependence tests to infer the causal structure

of a domain. There has been a number of advances in testing statistical depen-

dence in the machine learning community in recent years (c.f., Gretton, et al. [34],

Lopez-Paz, et al. [54], Margaritis and Thrun [63]). The most successful of these is

the Hilbert-Schmidt independence criterion (HSIC) [34]. HSIC provides a consistent,

non-parametric measure of dependence between variables which has been shown to

1This extrapolation need not be complex. In fact, for binary treatments a simple difference
between the means of treatment and control is employed.

2We note that observational causal inference methods can often be employed for experimental
analysis as well.
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provide state of the art performance in terms of type I and type II errors, and causal

structure learning [95].

The majority of the existing literature concerning causal inference and discovery

rely heavily on the assumption of independent and identically distributed (i.i.d) in-

stances. However, many real-world systems arise from systems that are relational,

i.e. structured as networks 3. Examples of these systems include social, technological

and biological networks. Instances in these systems can be represented as intercon-

nected nodes in a graph in which the attributes of each node are often correlated.

Such relational data contain dependent instances, and thus violate the i.i.d. assump-

tion. As a result, much of the existing algorithmic mechanisms for inferring causal

structure and effects cannot be applied to relational data. Further, there are classes

of interventions, such as peer effects, that cannot be easily expressed in frameworks

designed to model i.i.d. data.

Recent work has developed methods for causal inference and discovery in relational

domains. Maier, et al. [57] introduce, relational d-separation, a theory for graphically

reasoning about conditional independence in relational domains. Subsequent work

leveraged relational d-separation to learning causal structure of relational domains [55,

61, 48]. While this work represents a significant advance, the results (both theoretical

and experimental) assume an idealized setting with the presence of an independence

oracle. This prevents these methods from being reliably used by practitioners.

This thesis presents a set of techniques that aim to enable causal discovery in

relational domains, as well as causal inference from the learned structure. Toward

this end, we provide the following contributions:

• Consistent non-parametric testing of statistical dependence in relational do-

mains. We show that the Hilbert-Schmidt independence criterion can provide

3Throughout this thesis we use the terms relational and structured interchangeably to denote
domains that can be represented via network structure.
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consistent measures of dependence in the presence of non-i.i.d. data having arbi-

trary dependence structure between instances. This is an improvement of prior

results for testing dependence in non-i.i.d. domains (i.e., Zhang et al. [98, 97])

weakening the required assumptions on both the structure of dependence, as

well as the strength of dependence between instances. In order to assess sta-

tistical significance from finite samples, we provide an extension of the wild

bootstrap to relational domains that is consistent, and provides state of the

art results in terms of type I error. To our knowledge this is the first provably

consistent bootstrap procedure for arbitrarily structured domains.

• An examination of the relationship between association and causality in re-

lational domains. Specifically, we show that, in contrast to the i.i.d. setting,

dependence in relational domains can exhibit inherent asymmetry, regardless

of the form of functional dependence or marginal distributions. We show how

these results imply a simple test for causal direction from purely observational

data which is simple to implement and effective in practice. We also discuss the

implications of this finding for causal discovery in relational domains.

• A novel method for inferring the effect of unseen interventions from obser-

vational relational data. This consists of presenting an adaptation of Pearl’s

adjustment criterion [71] to relational domains. Comparing to the state of the

art in experimental design for relational domains, we show that we can recover

causal estimates which are close to those obtained via randomization. We also

show how the method derived for observational causal inference can be used to

improve the estimates of experiments performed in relational domains.

The remainder of this thesis is structured as follows. Chapter 2 provides the

necessary concepts required for understanding the contributions of the thesis. This

consists of three distinct sections: Bayesian networks and relational models, repro-
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ducing kernel Hilbert spaces, and weak dependence. Chapter 3 examines the problem

of testing for dependence in relational data. Specifically, we will define tests of au-

todependence, marginal dependence and conditional dependence for relational data

and introduce the structured wild bootstrap to simulate from the null distribution of

these tests where necessary. Chapter 4 examines the problem of identifying causal

direction from observational relational data. Chapter 5 introduces relational causal

adjustment (RCA), an algorithm for determining causal effects in observational rela-

tional data. We show the efficacy of RCA with respect to explicit experimentation,

and then show how RCA can be used as a post-hoc adjustment to improve the es-

timates that have been obtained via randomization. Finally, Chapter 6 summarizes

the contributions of this thesis, and suggests directions for future work.
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CHAPTER 2

BACKGROUND

We will now introduce concepts necessary for the reader for understanding the

contributions and context of our work. We will first introduce the formalizations of

causal graphical models and relational causal graphical models. These concepts will

be principally be used in chapter 5 where they are directly utilized to define novel

methods of causal effect estimation in graphical models. They also provide valuable

context for the entire thesis, in particular chapter 4 where our results on the inference

of causal direction in relational models have implications for learning the structure of

relational causal models. These two representations provide a basis for reasoning over

causal dependencies and conditional dependence in both i.i.d. and relational domains.

We then provide a brief introduction to reproducing kernel Hilbert spaces (RKHS).

This will be used in chapters 3 and 4 where we utilize and extend measures of depen-

dence constructed using the RKHS framework. Finally, we introduce the notion of

weak dependence and associated measures, which are a necessary component of the

proofs contained in chapter 4.

Finally, before proceeding, we will define some notation used throughout the re-

mainder of the thesis.

P (X) Probability distribution of the random variable X

P (X|Z) Probability distribution of the random variable X

after conditioning on Z

p(x) Probability density of x

X |= Y |Z Random variables X and Y are independent after

conditioning on Z

6



2.1 Bayesian Networks

Bayesian networks are widely used graphical model for i.i.d. data that are able to

compactly represent a joint probability distribution, while admitting a set of efficient

algorithmic tools for reasoning about various properties of its corresponding joint

distribution. They have been successfully used to model domains in a number of

fields, including epidemiology [80], cognitive science [32], and ecology [9].

The structure of a Bayesian network is given as a directed graph G =< V,E >.

Each vertex, v ∈ V represents a random variable. Each edge, e ∈ E represents a

probabilistic dependency between variables. For any two nodes, X and Y , in the

network, if X → Y then X is called a parent of Y and Y the child of X. A node Z

is an ancestor of Y if there is a directed path beginning at Z that reaches X in the

network. A node W is a descendant of Y if there is a directed path beginning at Y

that reaches W in the network.

Compact factorization of the joint distribution represented by a Bayesian network

is possible because of the Markov condition. The Markov condition states that a

variable X is rendered conditionally independent of all its non-descendants given its

parents, i.e. P (X|V \X) = P (X|parents(X)), where ‘\’ is the set difference operator.

For joint probability distributions satisfying the Markov condition the distribution

can be factorized as

P (V ) =
∏

v∈V

P (v|parents(v))

A simple example of a Bayesian network can be seen in Figure 2.1. This network

represents a joint distribution of four random variables A,B,C,D. For the sake of

simplicity, assume that each is a binary random variable. Assuming the Markov

condition, the factorization implied by the network is given by P (A,B,C,D) =

P (A)P (B|A)P (C|A)P (D|B,C). Using this representation requires 20+2(21)+22 = 9

entries. Contrast this to a naive representation using which would require 15 param-
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eters representing 24 = 16 states. The magnitude of this relative advantage increases

as a function of the number of variables, since the number of states required to naively

represent a joint probability distribution grows exponentially as a function of the size

of the joint distribution, while the number of parameters required for a Bayesian

network is a function of the number of the incoming degrees of each node in the

network.

The Markov condition provides a binding between between the network structure

and the set of independencies that are present in all probability distributions that are

compatible with the network structure. The rules of d-separation [70] leverage this

to provide a set of algorithmic rules to answer arbitrary conditional independence

queries in Bayesian networks, given in the following definition.

Definition 1. Given three disjoint sets of random variables X,Y,Z, X and Y are

said to be d-separated given Z if:

• No member of Z is a descendant of both X and Y .

• All paths from X to Y are blocked after conditioning on Z, i.e., there is at least

one member of Z that sits along any undirected path between X and Y .

The rules of d-separation allow for reasoning about conditional (in)dependencies

that hold in a distribution. For example, the network shown in Figure 2.1 entails the

following dependencies:

• B 6⊥⊥ C|∅

• B |= C|A

• B 6⊥⊥ C|A,D

We refer to A as a confounder of B and C, i.e. a variable that is a common cause

of both B and C. Similarly, we refer to D as a collider of B and C, i.e. a variable
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Figure 2.1: An example Bayesian network representing the joint distribution
P (A,B,C,D) = P (B|A)P (C|A)P (D|B,C).

that is a common effect of B and C. The introduction of dependence between two

variables after conditioning on a collider is a well known statistical phenomenon that

is referred to as Berkson’s fallacy1 [92] and explaining away [71] in the statistics and

machine learning communities, respectively.

2.1.1 Causal Bayesian networks

In addition to defining a joint probability distribution, Bayesian networks can also

be endowed wtih causal semantics, provided a few additional assumptions [83, 71].

A1. (Faithfulness) All independencies entailed by the structure of G are present in

D.

A2. (Causal Sufficiency) For all variables X, Y, Z ∈ D, if Z is a common cause of

X and Y , then Z has been measured and is present in X .

A3. (Invariance under experimentation). The conditional distribution of outcomes,

P (Y |pa(Y )), under intervention is identical to the conditional distribution observa-

tionally.

1Berkson’s fallacy is also commonly referred to as Berkson’s paradox and Berkson’s bias.
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The do operator [71] explicitly models the effect of an intervention on a system

modeled by a Bayesian network. The operation itself is simple to perform, and can

be explained in a single step. The structure G′ representing the joint distribution D′

that results after intervening on a variable X, is given by taking the original structure

G, and removing all incoming edges to X.

The do-operator and approximations of interventional effects from observational

data is covered in much greater detail in chapter 5, where we also provide an extension

to relational domains.

2.1.2 Learning Causal Structure from Observational Data

In general, there are two approaches for learning the causal structure of a Bayesian

network. Search and score methods, explicitly optimize the likelihood of a network

given some observed data, penalizing for the number of parameters (a function of the

number of edges in the network) [11]. The second category are known as “constraint

based” methods. Broadly2, these methods begin with a fully connected graph and

undirected graph, and then perform the following steps:

1. For each size conditioning set (beginning with the empty set) test for (condi-

tional) dependence of each pair of variables. If two variables can be rendered

independent then remove the edge between them.

2. Once the set of possible conditional independencies has been exhausted, orient

as many edges as possible by recursively applying rules leveraging either testable

statistical properties or assertions based on modeling assumptions.

The accuracy and ability of constraint based methods is due almost exclusively to

the accuracy of marginal and conditional independence tests. It has been shown that

2We refer the reader to Spirtes, et al.[83] for a complete treatment of constraint based learning.
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Type II errors, i.e. false conclusions of independence, can lead to arbitrarily poor

performance [17].

2.2 Modeling Relational Domains

Bayesian networks assume independence between instances, however for many sys-

tems observed in the real world, such as social systems, instances are dependent. This

dependence has been described in a number of fields and is referred to as spillover

effects, SUTVA violations, interference, and relational dependence. In keeping with

existing work within the machine learning community [66, 65, 57, 31], we will use the

phrase relational dependence. Modeling relational dependence requires additional

representational semantics to allow the explicit modeling of dependence between in-

stances, which we will now describe. This extension from traditional Bayesian net-

works to relational domains can often lead to numerous points of confusion. In order

to avoid this, we will build up from a simple i.i.d. example to a fully specified rela-

tional model using an example social network. Consider a group of N people who

are members of a social networking site. For each person, we will assign an (arbi-

trary) index, i = 1, . . . , n. Assume that we have measured three attributes on each

individual: privacy (Priv), social disposition (Disp), and average time on site per

day (ToS ). In addition to the our random variables, we are also given an undirected

network, G =< V,E >, where each individual is represented by a vertex and an edge

between vertexes denotes the presence of “friendship” between them on the site. It

follows that each vertex, vi ∈ V is associated with random variables with the same

index, i.e. xi, yi are associated with vi. Under the assumption that the value of a

person’s attributes are independent from those of their friends G is superfluous for

probabilistic modeling. In this setting, we are assuming that:

1. For each attribute the corresponding random variables have identical marginal

and conditional distributions for all i = 1, . . . , n.
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Figure 2.2: An example Bayesian network representing the joint distribution
P (A,B,C,D) = P (B|A)P (C|A)P (D|B,C).

2. Can display dependence if and only if they have identical indices, i.e. Pr(Privk,Dispk′) 6=

Pr(Privk)P (Dispk′)→ k = k′.

These conditions are commonly referred to as the independent and identically dis-

tributed (i.i.d. ) assumption. However, if a person’s friends affects their behavior,

then the data necessarily violate Assumption 2, i.e. that of independent instances. A

consequence of this is we are no longer able to treat each person’s values as a sample

from an i.i.d. process. Instead, we must consider the interactions between instances

directly. In order to reason probabilistically we introduce the following definition

and impose some accompanying alternative assumptions. These assumptions are far

from novel to this thesis, indeed they are central assumptions in much of the statis-

tical relational learning [43, 65, 72, 58] where they are referred to collectively as the

templating assumption.

Definition 2. A relational dependence is defined as any dependence between nodes

who do not have an identical index.
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Figure 2.3: An example Bayesian network representing the joint distribution
P (A,B,C,D) = P (B|A)P (C|A)P (D|B,C).

A4. G is given a priori and fixed, i.e. the structure of G is not affected by the values

of associated random variables.

A5. All relational dependencies are defined with respect to a path predicate, π, obeying

first order logic. For instance i and predicate π, the set of instances for an attribute,

X, obtained by traversing the G via π from i is denoted as πi(X).

A6. For any relational dependence, f(yi|πi(x)) where Y and X are arbitrary random

variables, the functional relationship is defined with respect to the sufficient statistics,

θ of πi(x). In other words, all relational dependencies are defined with respect to

aspects of the distributions defined by instances reached via the path predicate.

Note that Assumption A6 implies that instances are exchangeable up to a path

constraint, i.e. the position of a node in the network is irrelevant after determining

that it is reachable via the defined path.
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2.3 Relational Causal Models

So far we have considered fairly simple relational models that have a single entity

and relationship type. In practice, many relational systems are significantly more

complex and require reasoning over multiple entity and relationship types. For exam-

ple, we could have a data set that consists of people, their social and work relationships

among each other, as well as information about the city or town they reside in. To

reason over such systems in a clear and concise manner, we will use the framework

of relational causal model (RCM) [57]. RCMs allow for reasoning at multiple levels

of abstraction, while maintaining the causal semantics of Bayesian networks. In this

section, we introduce the key concepts of RCMs, following the notation and termi-

nology of Maier, Marazopoulou, and Jensen [57] that will be used throughout the

dependence testing, and structure learning sections. We will begin with describing

the class dependency graph, which describes a template of a relational system. We

will then introduce abstract ground graphs, an intermediate representation between

the individual level model and the class dependency graph that admits sound and

complete d-separation semantics [57].

2.3.1 Class Dependency Graphs

A relational schema S = (E ,R,A, card) specifies the set of entity, relationship,

and attribute classes of a domain. It includes a cardinality function that imposes

constraints on the number of times an entity instance can participate in a relationship.

A relational schema can be graphically represented with an Entity-Relationship (ER)

diagram. Figure 2.5 shows the ER diagram for the Foursquare domain. Foursquare is

an online social network where users ”check-in” to locations using their mobile phones.

In this example, there are three entity classes (User , Place, Hometown), and three

relationship classes, (Friends , ChecksIn, From). The entity class User has three

attributes: Smokes , Weight , and Drinks . The cardinality constraints are depicted
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Figure 2.4: Example relational skeleton for the Foursquare domain. This could be a
small fragment of a (potentially) larger skeleton.

using crow’s feet notation. For example, the cardinality of the From relationship is

one-to-many, indicating that one user has one hometown, but many users can be from

the same hometown.

A relational skeleton is a partial instantiation of a relational schema that specifies

the set of entity and relationship instances that exist in the domain. Figure 2.4 depicts

an example relational skeleton for the Foursquare domain. The network consists of

two User instances, Alice and Bob, who are friends with each other and come from

the same hometown. There are two Place instances, Hillside Diner and Corner Cafe.

Given a relational schema, one can specify relational paths, which intuitively

correspond to possible ways of traversing the schema (see Maier, et al.[57] for a

formal definition). For the schema shown in Figure 2.5, possible paths include

[User ,Friends ,User ] (a person’s friends), and [User ,Friends ,User ,From,Hometown]

(the hometowns of a person’s friends). Relational variables consist of a relational

path and an attribute that can be reached through that path. For example, the rela-

tional variable [User ,Friends ,User ].Drinks corresponds to the alcohol consumption

of a person’s friends. We briefly note that the logical predicate used to construc-

tion of this set can be defined in a number of ways. For example, we can define

[User ,Friends ,User ] to be the set of friends for an individual either exclusive or in-
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Figure 2.5: Relational model for the Foursquare domain. The underlying relational
schema (ER diagram) is shown in black. The attributes on the entities are fictional.
A relational dependency is shown in gray. The model shown represents the joint
distribution of the domain.

clusive of that individual’s friends. Marazopoulou, Arbour, and Jensen [60] further

details and show the impact of the choice of path predicates on effect estimation.

Probabilistic dependencies can be defined between these relational variables. In this

work, we consider dependencies where the path of the outcome relational variable is

a single item. In this case, the path of the treatment relational variable describes how

dependence is induced. For example, the relational dependency

[User ,Friends ,User ].Drinks → [User ].Weight

states that the alcohol consumption of a user’s friends affects that user’s weight.

A relational model M = (S,D,Θ) is a collection of relational dependencies D

defined over a relational schema along with their parameterizations Θ (a conditional

probability distribution for each attribute given its parents). The structure of a rela-

tional model can be depicted by superimposing the dependencies on the ER diagram

of the relational schema, as shown in Figure 2.5, and labeling each arrow with the

dependency it corresponds to. If labels are omitted, the resulting graphical represen-

tation is known as a class-dependency graph.
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2.3.2 Abstract Ground Graphs

Recent work by Maier, et. al [57] provides a framework that enables reasoning

about d-separation in relational models. Toward that end, they introduce abstract

ground graphs (AGGs), a graphical structure that captures relational dependencies

and can be used to answer relational d-separation queries. Abstract ground graphs

are defined from a given perspective, the base item of the analysis, and include nodes

that correspond to relational variables. Returning to our example, suppose we are

interested in examining the causal structure of our system from the perspective of

a user, i.e. we wish to understand the effects of interventions in the system on

individual users. The construction of these graphs consist of all singleton variables,

i.e. relational variables whose path consists of a single item, and all variables whose

path begins with the same base item. The key innovation of the abstract ground

graph is that, in contrast to the class dependency graph, d-separation semantics can

be applied directly to the graph as they are in the case of Bayesian networks. This has

enabled a number of novel algorithms for causal discovery in relational domains, (e.g.

Marazopoulou, et al. [61], Maier, et al. [55]), as well as a novel method for estimating

causal effects in relational domains which we present as the final contribution of this

thesis.

2.4 Kernel Embeddings

In this section we will review reproducing kernel Hilbert spaces (RKHS), ker-

nel mean embeddings, and the use of kernel mean embeddings as representations of

probability distributions.

2.4.1 Reproducing Kernel Hilbert Space

There are a wealth of provably correct and efficient algorithms for analyzing data

under the assumption of linearity. However, in practice we mostly live in a non-linear
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world. For roughly the past thirty years the field of machine learning has proposed

methods for dealing with non-linear data. For most of the most effective estimators,

such as random forests and neural networks, theoretical analysis proves to be very

difficult. The kernel embedding framework provides a rich set of non-linear estimators

that are considerably more amenable to theoretical analysis, while still providing state

of the art or near state of the art performance. Kernel embeddings work by implicitly

projecting the data into a potentially infinite space, where a linear method can then

be applied.

We will first begin with some definitions.

Definition 3. Given a vector space, H the inner product is a function, 〈·, ·〉H,H ×

H 7→ R with the following properties:

1. Symmetry, i.e. 〈f, f ′〉H = 〈f, f ′〉H

2. Linearity, i.e. 〈αf1 + α′f2, f
′〉H = α〈f1, f

′〉H + α′〈f2, f
′〉H

3. 〈f, f〉H ≥ 0, with 〈f, f ′〉H = 0 ⇐⇒ f = 0

The norm given by an inner product is defined as ‖f‖H =
√
〈f, f〉H.

We callH a Hilbert space if it possesses an inner product and also contains Cauchy

sequence limits3.

Definition 4. Given a non-empty set X , a kernel, k(·, ·), is a function from X×X 7→

R that has a corresponding R-Hilbert space, H, and a mapping function φ : X 7→ H

with the property that for all x, x′ ∈ X , k(x, x′) := 〈φ(x), φ(x′)〉H.

Note that we have not needed to put any restrictions on X itself, other than it

being non-empty.

3Given a metric space, (X, d), with distance function d(·, ·), a cauchy sequence is a sequence
x1, . . . , xn if for any positive real number ε > 0, there exists some integer n such that for all i, j,
where j < n, d(xi, xj) < ε
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Definition 5. We say that a kernel has the reproducing property if for all x ∈ X and

f ∈ H, 〈φ(x), f〉H = f(x).

Within our particular context we see that this implies for any x, x′ ∈ X ,

〈k(x, ·), k(x′, ·)〉H = k(x, x′). A reproducing kernel Hilbert space (RKHS) is a Hilbert

space containing a reproducing kernel.

Thus far we have described kernel embeddings with respect to an explicit mapping

function. However, in practice these mappings can be extremely difficult to define

and infeasible to apply in practice to data. The key insight is that if an algorithm

can be defined with respect to inner products only, it is never necessary to explicitly

create the feature embeddings, only the inner product. There are a large number

of functions that allow for this implicit definition. The most commonly used is the

radial basis function (RBF) kernel which is given by k(x, x′) = exp−‖x−x′‖2
2σ2 , where

‖ · ‖2 is the squared euclidean norm and σ2 is a user defined parameter.

2.4.2 Kernel Mean Embeddings

Definition 6. Let X be a non-empty set, (X ,A) be a measurable space where A is a

σ-algebra on X , and let P be the set of all probability measures, P , on X . H is the

RKHS of the functions f : X → R with the reproducing kernel k : X × X → R. The

mean map is a function µ : P → H that defines a kernel embedding of a distribution

into H:

µP = µ(P ) =

∫

X
k(x, ·)dP (x)

A characteristic kernel is one that defines an injective mapping between a distri-

bution and the kernel mean, i.e. the kernel mean uniquely identifies the underlying

distribution that that data was drawn from. The conditions required for a kernel to

be characteristic are well studied, but beyond the scope of this thesis. We refer the
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Figure 2.6: Illustrative example of kernel embedding. In this case φ(x) defines a
mapping from x ∈ R to R3. In practice this mapping can be to an arbitrary number
of dimensions. The empirical kernel mean, µ̂x, is the mean in the projected, i.e.
feature, space. If the kernel is characteristic the kernel mean, µx, uniquely identifies
the underlying distribution of x, P (X).

reader to Sripumbudur, et al. [85], and Sripumbudur, et al. [84] for a more compre-

hensive treatment of what constitutes a characteristic kernel. For the purposes of this

thesis it suffices to note that many common kernels such as the RBF and Laplacian

kernel are characteristic.

The kernel mean embedding framework enables a number of non-parametric pro-

cedures that reason over the space of distributions. For instance, the maximum mean

discrepancy (MMD) [36] leverages the injective property of kernel mean embeddings

to provide a robust and flexible two sample test of equality between two distributions.

The MMD is the squared norm of the difference of two mean embeddings which can
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be estimated using only inner products, i.e. kernel estimates4:

MMD(X, Y ) = ‖µx − µy‖2
H = ‖ 1

n

n∑

i

φ(xi)−
1

n

n∑

j

φ(yj)‖2
H (2.1)

=
1

n2

n∑

i,j

k(xi, xj) + k(yi, yj) + 2k(xi, yj) (2.2)

2.4.3 Testing Marginal Dependence via Kernel Embeddings

The RKHS framework can also be used to reason about the distributions of random

variables [82]. Given two random variables, X and Y , the joint distribution can be

embedded by considering the kernel mean embedding of the tensor product of the

two embeddings:

P (X, Y ) ≈ 1

n

n∑

i

φ(x)⊗ φ(y)

Similarly, the product distribution, P (X)P (Y ), is approximated by considering the

tensor product of the respective kernel means:

P (X)P (Y ) ≈ µx ⊗ µy =
1

n

n∑

i

φ(x)⊗ 1

n

n∑

i

φ(y)

This embedding of distributions can be used for robust measures of marginal and

conditional dependence between variables, by considering the difference between two

distributions: the joint distribution and the product of the marginals. This intu-

ition leads to the Hilbert-Schmidt independence criterion [34]. The Hilbert-Schmidt

independence criteria is defined as

HSIC(X, Y ) = ‖ 1

N

N∑

i

φ(x)⊗ ψ(y)− µx ⊗ µy‖2
H (2.3)

4For notational convenience, and without loss of generality, we assume that the samples for X
and Y are of equal length
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Figure 2.7: Illustrative example of a joint kernel embedding. Rather than considering
a single projection the operation now considers the tensor product of the embeddings
of instances of X and Y . If characteristic kernels are used for both X and Y , the
empirical mean of this mapping, Ĉxy = 1

n

∑n
i φ(xi)⊗φ(yi) defines an injective mapping

of the joint distribution of X and Y, i.e. P (X, Y ) is uniquely identified by Cxy.

A biased estimate of HSIC can be achieved with

HSIC(X, Y ) = KxHKyH (2.4)

Where H = I − 1
n
11T is a centering matrix, and Kx = φ(x)φ(x)T , Ky = ψ(y)ψ(y)T

are the Gram matrices for X and y, respectively.

A closely related measure is the centered kernel target alignment, which is a

normalized measure of dependence introduced by Cortes, et al. [18] within the context

of multiple kernel learning. The measure is defined as:

KTA(x,y) =
‖ 1
N

∑N
i φ(x)⊗ ψ(y)− µx ⊗ µy‖2

H

‖ 1
N

∑N
i φ(x)− µx‖H‖ 1

N

∑N
i φ(y)− µy‖H

(2.5)

=
〈Kc

x, K
c
y〉H

‖Kc
x‖H‖Kc

y‖H
(2.6)
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Zhang, et al. [95] extend this idea to provide a definition of partial dependence

which can be applied in the kernel setting. To do so, they make use the following

characterization, due to Daudin [20]:

Lemma 1. [20] Let EY Z , EXZ be the space of all functions of X,Z and Y, Z respec-

tively. The following conditions are equivalent:

1. X |= Y |Z

2. E(f̃ g̃) = 0,∀f̃ ∈ EXZ and g̃ ∈ EY Z

3. E((̃f)g) = 0,∀f ∈ EXZ and g ∈ L2
XZ

4. E(f̃ g̃′) = 0,∀f̃ ∈ EXZ and g̃′ ∈ E ′Y Z

5. (f̃ g′) = 0,∀f̃ ∈ EXZ and g′ ∈ L2
Y

Intuitively, the second condition of Lemma 1 says that independence can be as-

serted if any function of the residuals of (X,Z) given Z is uncorrelated with (Y, Z)

given Z. While this provides a more general condition for partial correlation, it is

infeasible in practice, since it requires the ability to reason over all functions of X,Z

and Y, Z, in L2. However, if this requirement is relaxed and the space of functions

are restricted to be those residing in Hilbert spaces, HẌ , HY , where Ẍ = (X,Z),

then the following characterization, due to Fukumizu, et al. [30] provides a definition

which can be practically realized:

Lemma 2. [30] Let kẌ , kXZ . Assuming kẌkY is characteristic w.r.t. (X×Y )×Z,

HX ,HY , and HZ are contained in L2 and HZ + R is dense in L2(PZ), then

ΣẌY |Z = 0 ⇐⇒ X |= Y |Z (2.7)
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This implies that conditional dependence can be determined by constructing the

spaces resulting from the residuals of a nonparametric regression and testing de-

pendence between the kernel matrices the same way that one determines marginal

dependence, i.e. HSICX,Y |Z = 1
n
Tr(K̃Ẍ|ZK̃Y |Z). The key contribution of Zhang, et

al. [95] was to show that after taking the residual of variables in feature space, i.e.

RKHS, the problem of testing conditional dependence reduces to testing the marginal

dependence between the residualized variables.

2.5 Sources of Relational Bias

A large portion of this thesis involves reasoning over the bias that arises from

assuming independence amongst instances in relational domains. Historically, the

entirety of this bias has been attributed to autodependence, i.e., dependence that ex-

ists between individual instances. There are two forms of bias that must be considered

in the context of relational learning. The first is the previously mentioned autode-

pendence, i.e. dependence amongst instances arising from a relational dependence.

The second source of bias is what we will refer to as aggregation-bias. In contrast

to autodependence, aggregation bias is not an inherent property of the underlying

generative model, but rather an artifact of analytic procedure.

As an example of aggregation bias, consider the following simple relational model:

X ∼ N (0, 1)

τ.X , D−1Ax

ε ∼ N (0, 1)

Y ∼ βτ.X + ε

where A is the adjacency matrix of a single entity/single relationship relational model,

D is a diagonal matrix where Di,i is the degree of node i, and β ∈ R is a coefficient

24



of linear dependence. Assume we wish to determine linear dependence between τ.X

and Y .

1. For each node i, collect the set of X instances whose associated node lies in the

terminal set of the path predicate.

2. Create an appropriate set of aggregations for each set of instances.

Bias occurs whenever the terminal sets produced by predicate ξ are non-distinct,

i.e. whenever there exists two nodes i and j such that ξ(i) ∩ ξ(j) 6= ∅.

The population variance, σ2
X of a random variable X with chain structured in-

stance dependence can be written as [22]

σ2
X = Var(X1) + 2

∞∑

k=1

Cov(X1, Xk)

Similarly, it follows that a random variable X with instance dependence structure

given by a d-regular graph, the variance, σ2
X is given as

σ2
X = Var(Xπ1(1)) + 2

∑

k∈π1(2,...,∞)

Cov(Xπ1(1), Xk) (2.8)

Now consider the relational variable defined by considering the mean of neighboring

instances, i.e., X = 1
d
AX. Assume that the instances of X are independent, i.e.

Var(X) = Var(X1). The population variance of the relational variable, σ2
X, is

σ2
X = Var(Xπ1(1)) + 2

∑

k∈π1(2,...,∞)

Cov(Xπ1(1),Xk) (2.9)

=
1

d2

d∑

i=1

Var(Xπ1(1)) + 2
∑

k∈π1(2,...,∞)

Cov(Xπ1(1),Xk) (2.10)

=
1

d
Var(Xπ1(1)) +

2

d2

∑

k∈π1(2,...,∞)

|Xπ1(1) ∩Xk|Var(Xπ1(1)) (2.11)
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The important take away here is that even in the case where instances are truly

independent, bias is induced by simply by casting the problem as relational and

considering relational aggregates.
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CHAPTER 3

DETECTING DEPENDENCE IN RELATIONAL
DOMAINS

Hypothesis tests based on kernel mean embeddings have been successfully used

for a number of applications such as two sample testing [36], marginal and conditional

independence testing [35, 95], and detecting three variable interactions [78]. A central

assumption to much of the theoretical results supporting these methods is that of

independent and identically distributed (i.i.d.) instances. In practice, however, many

modern phenomena are relational, i.e., occur in networks. For example, testing peer

dependence in social networks and deciding whether metrics of a computer network

are drawn from the same distribution. A common trait of relational data is auto-

dependence, i.e., values of instances of a random variable are correlated with the

values of neighboring instances in the network, which violates the i.i.d. assumption.

Previously, [98] studied the problem of dependence testing in graph-structured do-

mains requiring the graph-structure to be decomposed into cliques, which is not possi-

ble for many structures such as lattices. More recent work developing methods for ker-

nel hypothesis testing for non-i.i.d. domains have largely focused on time series. [14]

presented a permutation procedure for dependence testing between time-series con-

sisting of shifting one time series relative to another. Noting that many kernel-based

hypothesis tests, such as the Hilbert-Schmidt independence criterion (HSIC) [35], and

maximum mean discrepancy (MMD) [36] are degenerate V -statistics, [15] showed the

dependent wild bootstrap of [50] can be used to provide a consistent estimate of the

null distribution under weak dependence.
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In this work, we study the problem of dependent testing in relational domains.

Toward this end, we present three contributions. First, we provide a proof of con-

sistency for kernel based hypothesis tests in relational domains. This is achieved

by extending previous proofs of consistency in the presence of auto-dependent time

series [50, 15] for degenerate V -statistics to the relational setting. 1

The second contribution of this work is a modification of dependent Wild boot-

strap for degenerate kernel statistics [50, 14] to relational domains to assess depen-

dence in finite samples. The wild bootstrap is a method of external randomization,

which allows for creation of pseudosamples that explicitly take into account the de-

pendence structure of a given domain. In addition to showing this is a consistent

procedure, we show empirically that it leads to a much smaller number of type I er-

rors, i.e., conclusions of false dependence. This represents the first provably consistent

bootstrapping procedure for relational domains.

The third contribution of this work addresses a practical concern. As described

later, the wild bootstrap requires the generation of an auxiliary variable that possesses

the same auto-dependence structure as the original data. Within the literature of de-

pendent wild-bootstraps, it is assumed that this can be correctly specified manually.

This assumption is unlikely to hold in the relational setting, due to the complex-

ity of relational domains. To remedy this, we provide an efficient non-parametric

optimization procedure for inferring the covariance matrix from observed data.

The remainder of this work is structured as follows. In section 2, we provide the

problem setting and necessary background. Section 3, presents a proof of consistency

of degenerate V -statistics for weakly dependent data in relational domains. In section

4, we show that the dependent wild bootstrap provides a consistent etimate of the

null distribution for such statistics. A procedure for inferring the correct covariance

1This result improves on the previous result from [98], which assumes a stronger condition of
ϑ-mixing and restricts the form of dependence to clique structures.
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structure of the wild bootstrap is presented in section 5. The final sections provide

related work, synthetic experiments, and conclusions and directions for future work.

3.1 Problem Setup and Background

The contributions of this work rely on the notions of relational data, kernels,

V -statistics, and weak dependence which we will now introduce.

3.1.1 Relational Structure

The relational structure refers to a graph, where each node is associated with

instances of a random variable. For example, in a social network, the ndoes are

individuals and edges between them denote the presence of a ”friendship”. More

formally, we assume an undirected graph, G = 〈V,E〉 For every random variable X,

each vertex vi is associated with unique instances of X, i.e. instance xi is associated

with vertex vi. We will also assume the following throughout the work regarding the

structure of the graph and its relationship to the random variables.:

A7. Each node v ∈ V has degree of at least 1.

A8. The adjacency matrix of G is jointly exchangeable, i.e., binary and symmetric.

A9. As the number of nodes in the network grows to infinity, the maximum degree of

any node is bounded by a real constant.

A10. Dependence between two instances i and j implies the existence of a path in the

graph between vi and vj.

Assumptions A8 and A9 represent sufficient, but not strictly necessary conditions.

We conjecture that the assumption of finite degree may be exchanged for a condition

on the growth rate of the maximum degree of the network with respect to the number

of nodes, and that the requirement of uniform edge weights may be replaced with an

assumption of finite edge weights. The requirement of symmetric networks provide
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convenience, allowing for the specification of the covariance matrix for the wild boot-

strap in terms of the combinatorial Laplacian, but is not necessary to assume in order

for the proofs of consistency to hold.

3.1.2 V -Statistics

Let X = {X1, . . . Xn} be the set of given observations. Define h to be a symmetric

function, taking m arguments. A V -statistic is a function defined with respect to h

taking the form

V (h,X)n =
1

nm

∑

i∈i1...im∈Nm

h(Xi1 , . . . ZXm)

where Nm is defined as the Cartesian product of the set 1, . . . , n and n is the total

number of observations. In the sequel, we will write V (h,X) as V (X) to reduce

notational clutter. Following [15], we will refer to h as the core2.

We say that a core h is j-degenerate if for every x1, . . . , zj,

E[h(X1, . . . , Xj, X
∗
j+1, . . . , X

∗
m)] = 0

where X∗j+1, . . . , X
∗
m are independent samples drawn from the same distribution as

X1. A core is called canonical if for all j ≤ m− 1 it is j-degenerate. Finally, we call

a V -statistic with a 1-degenerate core a degenerate V -statistic.

In this work, our empirical evaluation will focus on the Hilbert-Schmidt indepen-

dence criterion 3. As described in the background, the Hilbert-Schmidt independence

criterion (HSIC) is a test of dependence, i.e. a hypothesis test of paired samples where

the null hypothesis is that the two samples are generated independently, Px,y = PxPy.

2In order to prevent confusion, we do not follow the canonical convention of calling h the kernel.

3The resulst presented are applicable to a larger set of degenerate V -statistics as well
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In this work, we focus on the empirical estimator of HSIC, which can be written as

degree-four V -statistic with a core defined by:

h(x1, x2, x3, x4) =
1

4!

∑

π∈S4

k(xπ(1), xπ(2))k(yπ(1), yπ(2))+ k(yπ(3), yπ(4))− 2k(yπ(2), yπ(3))

where Sn is the set of permutations over a set of n elements.

3.1.3 Weak Dependence

In order to reason about the behavior of test statistics under non-independent

samples we necessarily need to reason about the behavior of dependence amongst

instances. To understand asymptotic behavior, we need to be able to characterize

this behavior as a function of some notion of distance between instances. There

are a number of formalisms for reasoning about dependent data (c.f. [22]). In this

work we will focus on weak dependence [22], which we now describe. Within this

work we will make use of the notion of weak dependence, i.e. τ -dependence. As we

shall shortly, weak dependence provides a flexible notion of dependence that requires

only the definition of distance between instances and the presence of a measurable

probability space.

Definition 7. [22] Let (Ω,A,P) be a probability space, and M a σ-algebra of A,

and δ a distance metric. For any Lp-integrable X -valued random variable X, the

coefficient τp is defined as:

τp(M) =
∥∥∥∥∥ sup
g∈Λ(1)(δ)

{∫
g(x)PX|M(dx)−

∫
g(x)PX(dx)

}∥∥∥∥∥
p

letting PX be the distribution of X and PX|M be the conditional distribution of X

given M. defining the sequence of coefficients τp,r(k) as
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τp,r(k) = max
`≤r

1

`
sup

(i,j)∈Γ(1,`,k)

τp(Mi(Xj1 , . . . , Xj1))

Perhaps the most important aspect of τ(M) is that it provides the minimum L1

distance between a random vector X and another random vector Y drawn from the

same process. We call a process weakly dependent if τ(r) −→
r→0

0, i.e. dependence tends

to zero as a as the distance grows to infinity.

Within this setting we will define our distance of interest to be the shortest path

distance between two nodes in a graph. Thus, the role of τ as a measure of the decay

of dependence between instances as a function of graph distance. A process is said to

be weakly dependent if τ(k)→n→∞ 0, where n is the number of nodes in the network.

More formally, we will employ the following assumption:

A11. (Xt)t∈π is a strictly stationary τ -dependent process with
∑∞

r=1 r
2√τr ≤ ∞ for

some filtration π, where r is shortest-path graph distance.

Where a filtration is an ordering of a set such that for any two subsets, S1,...,j, S1,...,k,

i ≤ k → S1,...,j ⊆ S1,...,k. Less formally this assumption states that as the distance

between any two nodes in the network tends to infinity, the dependence between them

converges to zero.

The notion of weak dependence within the network setting is not novel to this

work, [94] make use of the τ -coefficient in the context of deriving asymptotic con-

sistency for transductive learning with an assumption of linear dependence amongst

instances. However, to our knowledge, this is the first to consider weak dependence

with arbitrary dependence for hypothesis testing of relational data.

3.2 Consistency of Dependence Testing Under Weak Depen-

dence

We now provide a proof of consistency of degenerate V -statistics for relational

data under weak dependence. The strategy of this proof is to first approximate the
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V statistic with weighted sums of squares, and then apply the central limit theorem

to this approximation. The approximation used is the spectral decomposition of the

core

h(x, y) =
∑

k

λkΦ(x)Φ(y)

where λk are the nonzero eigenvalues of E[h(x,X0)Φ(X0)] = λΦ(x), and Φ(x) are the

associated eigenvectors. This strategy largely mirrors what is found in both Leucht

and Neumann [50]. However, in that case, the approximations are constructed as a

function of distance in time. Our contribution is a generalization of the approxima-

tions to network domains that follow the aformentioned assumptions. This is done

by considering sets of instances separated by shortest path distance of k, rather than

assuming that there is always at single instance at distance k, and adapting results

accordingly.

Theorem 1. Let (Zk)k be centered, jointly normal random variables with Cov(Zj, Zk) =
∑∞

r=−∞Cov(Φj(X0),Φk(Xr)), and (λk)k, (Φk)k be the sequence of non-zero eigenval-

ues and corresponding eigenfunctions of E [h(x,X0)Φ(X0)] = λΦ(x). Under the afore-

mentioned assumptions, Vn
d−→ Z :=

∑
k λkZ

2
k , as n→∞, and

EZ =
∑

r∈ZEh(X0, Xr) <∞ i.e., the infinite series that defines Z converges in L1.

Proof. Let (λk)k be an enumeration of the positive eigenvalues of Eh(x,X0)Φ(X0) =

λΦ(x) sorted in decreasing order, and (Φk)k be the corresponding eigenfunctions.

Following Leucht and Neumann [50], we set λk := 0,Φk ≡ 0,∀k > L, when the

number L of non-zeros eigenvalues is finite. We are given from a version of Mercer’s

theorem (given by Theorem 2 of Sun [87]) that

h(K)(x, y) =
K∑

k=1

λkΦk(x)Φk(y) −→
K→∞

h(x, y),∀x, h ∈ supp(PX0) (3.1)
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Leucht and Neumann [50] provide the prerequisites necessary for equation 3.1 con-

verges absolutely and uniform on compact subsets of supp(PX0), which apply directly

in our setting as well. We will consider an approximation of Vn by a V -statistic

with a kernel with finite spectral decomposition given by V
(K)
n = 1

n

∑n
s,t h

(K)(Xs, Xt).

Because h is positive semi-definite by definition, all eigenvalues are non-negative,

implying Vn − V (K)
n ≥ 0. This implies

E
∣∣Vn − V (K)

n

∣∣ = E
[
Vn − V (K)

n

]

= E
[
h(X0, X0)− h(K)(X0, X0)

]
+

n−1∑

r=1

2(1− r/n)E
[
h(X0, Xr)− h(K)(X0, Xr)

]

By majorized convergence the first term converges to zero as K →∞. For the second

term, repeated application of Cauchy-Schwarz gives

n−1∑

r=1

2(1− r/n)E
[
h(X0, Xr)− h(K)(X0, Xr)

]

≤ 2
∞∑

r=1

∣∣∣∣∣
∑

j∈∆r

E

[
∞∑

k=K+1

λkΦk(X0)Φk(Xj)

]∣∣∣∣∣

= 2
∞∑

r=1

∣∣∣∣∣E
[∑

j∈∆r

∞∑

k=K+1

λkΦk(X0)(Φk(Xj)− Φk(X̃j))

]∣∣∣∣∣

≤ 2
∞∑

r=1

√√√√E

[∑

j∈∆r

∞∑

k=K+1

λkΦ2
k(X0)

]√√√√E

[∑

j∈∆r

∞∑

k=K+1

λk

(
Φk(Xr)− Φk(X̃j)

)2
]

≤ 2

√√√√
∞∑

r=1

λk

∞∑

r=1

√√√√E

[∑

j∈∆r

∞∑

k=1

λk

(
Φk(Xj)− Φk(X̃j)

)2
]

≤ 2

√√√√
∞∑

k=K+1

λk

∞∑

r=1

√∑

j∈∆r

E
[
h(Xj, Xj)− h(Xj, X̃j)− h(X̃j, Xj) + h(X̃j, X̃j)

]

≤ 2

√√√√
∞∑

k=K+1

∞∑

r=1

√
2 max(deg)rLip(h)

√
τ(r)
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Where ∆r is the set of nodes whose shortest path distance from X0 is r, max(deg) is

the largest degree in the network, and X̃r denotes a copy of Xr that is independent of

X0 and satisfies E‖Xr − X̃r‖1 ≤ τ(r). Because
∑∞

k=1 λK = Eh(X0, X0) < ∞), thus
∑∞

k=K+1 λk → 0 as K →∞ we arrive at sup
n
E
∣∣∣Vn − V (K)

n

∣∣∣ −→
K→∞

0.

The proof of the central limit theorem for for partial sums, i.e., for K ≤ L

V (K)
n =

K∑

k=1

λk

(
n−1/2

n∑

t=1

Φk(Xt)

)2

d−→
K∑

k=1

λkZ
2
k (3.2)

follows a direct application of Leucht and Neumann [50] Theorem 2.1 proof part (ii).

Combining these two results, to satisfy the requirements of Theorem 2 of Dehling, et

al. [23] we arrive at Vn
d−→ Z :=

∑
k λkZ

2
k . The only item remaining to be shown is

EX <∞, which follows from a direct application of part (iv) of the proof of Theorem

2 provided by Leucht and Neumann [50].

3.2.1 The Dependent Wild Bootstrap

Bootstrap methods are a collection of techniques that create pseudo-samples from

an initial data set by performing a randomization that preserves the statistical prop-

erties of the initial sample. The most well known bootstrap method was first put

forth by [26]. In Efron’s version of the bootstrap, each pseudo-sample is created by

sampling with replacement from the data set until the pseudo-sample has the same

number of data points as the original sample. While this method has shown consid-

erable utility and robustness throughout statistics, its correctness relies on the ex-

changeability, i.e., independence, of instances. One alternative to Efron’s bootstrap is

the the wild bootstrap [93]. Rather than rely on resampling from the original data set

with replacement, the wild bootstrap performs external randomization by multiply-

ing by an external bootstrap process. The dependent wild bootstrap [79, 50] provides

an extension of the wild bootstrap to dependent time series samples by replacing

N (0, 1) with a sample from a process that mimics the inter-instance dependence of
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the original sample. This strategy has been successfully used previously by [15] for

applying HSIC in time series. We now present an extension of the dependent wild

bootstrap [50, 79, 15] to relational domains.

We impose the following assumptions on the bootstrap process:

A12. The row-wise strictly stationary triangular array (W ∗
t )nt=1 = (W ∗

t,n)nt=1 with

ordering following a given filtration π is independent of X1, . . . , Xn.

A13. E∗W ∗
1 = 0 and Cov(W ∗

s ,W
∗
t ) = ρ(d(s, t)/ln), where d(s, t) is the shortest path

graph distance between s and t, ρ(u)→0 1,
∑n−1

i ρ(|r|)/ln = (O)(ln) with ln →n→∞ ∞

and ln = o(n).

A14. The variables (W ∗
t,n)nt=1 are τ weakly dependent with coefficients τ ∗(r) ≤ Kζr/ln

for r = 1, . . . , n some ζ ∈ (0, 1) and K <∞.

We note that these are a generalization of the assumption imposed by prior

work [50, 15] to allow for processes operating over general graph structures.

With the proper assumptions in place, we now present a proof of consistency for

the wild bootstrap on network-structured domains. As with our prior proof, the core

contribution is a generalization of the strategy of Leucht and Neumann [50] from

the time-series setting to networks where it is possible to reach a set of instances at

distance k.

Theorem 2. Under the aforementioned assumptions, for i = 1, . . . , 4, V ∗n,1
d→ Z in

probability. Further, if the limiting distribution function is continuous then

supx∈R |P ∗(V ∗n,i ≤ x)− P (Vn ≤ x)| P−→ 0.

Proof. Leucht and Neumann [50], and Chwialkowski, et al. [15] have shown that

V ∗1,n, . . . , V
∗

1,n are asymptotically equivalent. Thus, without loss of generality we will

focus on the case of V1,n. There are two intermediate results that are needed in order

to prove our final result, the correctness of the approximation of the V -statistic by
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V ∗, and asymptotic normality. We will address these two in order.

Approximation of the V -statistic:

Following Leucht and Neumann [50], let

V
(K)∗
n,1 :=

1

n

n∑

s,t=1

h(K)(Xs, Xt)W
∗
sW

∗
t =

K∑

k=1

λk

(
1√
n

n∑

s=1

Φk(Xs)W
∗
s

)2

We are given that V ∗n,1 ≥ V
(K)∗
n,1 for all K due to the fact that h(·, ·) − h(K)(·, ·) is a

positive semi-definite kernel. We will now show

lim sup
n→∞

P
(
P ∗(|V ∗n,1 − V (K)∗

n,1 | > ε) > δ
)
−→
K→∞

0 (3.3)

∀δ, ε > 0 (3.4)

after applying Markov’s inequality we apply the following approximation, which holds

under the assumption of bounded degree of all nodes in the graph:

EE∗(V ∗n,1 − V (K)∗
n,1 )

=
1

n

∞∑

k=K+1

λk

n∑

s,t=1

E [Φk(Xs)Φk(Xt)] ρ(d(s, t)/ln)

≤
∞∑

k=K+1

λk



1 +

max(d)∑

r=1

2(n− |d = r|)
n

∣∣∣E
[
Φk(X0)

(
Φk(Xr)− Φk(X̃r)

)]∣∣∣ |ρ(r/ln)|





≤
∞∑

k=K+1

λk + 2

max(d)∑

r=1

|d = r|

√√√√
∞∑

k=K+1

λk

√√√√E
∞∑

k=K+1

λk

[
Φk(Xr)− Φk(X̃r)

]2

≤
∞∑

k=K+1

λk + 2

√√√√
∞∑

k=K+1

λk
√

2Lip(h)
∞∑

r=1

|d = r|
√
τ(r)

Where d(s, t) is the shortest path graph distance between nodes s and t,max(d)

the maximum distance in the graph, |d = r| is the number of nodes with shortest

path distance of r from node 0, and X̃ is a copy of Xr that is independent of X0
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satisfying E‖Xr − X̃r‖1 ≤ τ(r). Because
∑∞

k=1 λk = Eh(X0, X0) < ∞ implying

λk=K+1∞λk → 0 as K →∞, we arrive at supnE
∣∣∣Vn − V (K)

n

∣∣∣ −→
K→∞

0.

Central limit theorem for partial sums:

It remains to show that 1√
n

∑n
t=1 Y

∗
t

d−→ (Z1, . . . , ZK)′ ∼ N (0K ,ΣK) in probability,

where (ΣK)j,k) = Σ∞r=−∞Cov(Φj(X0),Φk(Xr)). Assuming there exists a filtration, π,

such that for indices in the sequence i, j = 1, . . . , n ∈ π, ρ(|i− j|/ln) ≤ cρ(d(i, j)/ln),

with c <∞4, the proof provided by Leucht and Neumann [50] may be applied directly.

We can now apply Corollary 6.1 of Leucht and Neumann [50], which implies

V
(K∗)
n,1

d−→ ∑K
k=1 λkZ

2
k , combining this with equation 3.3 we arrive at V ∗n,1

d−→ Z in

probability by Theorem 2 of Dehling, et al. [23].

3.3 Specifying the Covariance Matrix

A core assumption of the wild bootstrap procedure is a faithful model of the co-

variance structure between instances. So far it has been assumed throughout that we

are given access to the true covariance matrix for the bootstrap process. However, in

practice this assumption is rarely realistic. Mis-specification of the covariance matrix

may lead to increased levels of either type I (if instance dependence is underesti-

mated), or type II (if instance dependence is overestimated) errors. Since we do not

assume to have access to the true covariance function amongst instances, we must find

a suitable approximation. We will now describe two heuristics. Both methods center

around constructing the bootstrap process (W ∗
t,n)nt=1 by sampling from a Gaussian

process with mean zero, unit variance, and l-dependence, i.e., all nodes separated by

shortest path graph distance of at least l are independent.

4Under our assumption of bounded degree, one such filtration is an ordering defined by a breadth
first search beginning at X0.

38



3.3.1 Construction of Covariance via Graph Kernels

We first consider the covariance defined by normalized version of the random

walk kernel [81] or a diffusion kernel [44]. These are widely used kernels for graph

structured data defined respectively as:

Cdiff = exp

(
σ2

2
L̃

)

Crw = (αI − L̃)p, α ≥ 2, p ≥ 0

with L̃ being the normalized Laplacian, L̃ = D−1/2(D−A)D−1/2, D being a diagonal

degree matrix and A an adjacency matrix. Note that exp in this context is the

matrix exponential, not element-wise exponentiation of the matrix. The random

walk kernel is an approximation of the diffusion kernel with p
α

= σ2 [81]. To see why

these obey l-dependence, consider the random walk kernel where, by definition, the

covariance between two nodes with shortest path distance length greater than p is

zero. It follows directly that the resulting process displays l-dependence with l = p
α

.

Finally, in order to ensure unit variance local normalization [90] can be employed,

i.e., Ci,j =
Ci,j√

Ci,i
√
Cj,j

.

The main drawback of this approach is the specification of hyper-parameters.

Throughout the experiments we will use the following heuristic for the random walk

Laplacian. We fix α to a constant, and then iterate over p = 1, . . . , k, choosing the

p that maximizes dependence between the graph kernel and the observed values of

(X, Y ).

3.3.2 Inferring via Eigenvalue Optimization

We now present a non-parametric procedure for inferring the covariance matrix.

This formulation allows us to learn the covariance matrix without needing to specify

the hyperparmeters of the underlying diffusion process a priori. As an objective,

we seek to maximize the dependence between the observed values of the random
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variables, and the relative position of their corresponding graph-nodes in latent space

as given by the inferred graph kernel.

More concretely, Let U, λ be the eigenvectors and values of the normalized graph

Laplacian, L̃ = I − D− 1
2AD−

1
2 . Further define Ui = UiU

T
i , and let the subscript c

denote centering, i.e. Kx,yc = HKx,yH, where H = I − 1
n
11T is a centering matrix.

max
λ

〈∑i λiUc, Kx,yc〉F
‖∑i λiUc‖F‖Kx,yc‖F

+ γ‖λ‖1

, M be a matrix where Mij = 〈UicUT
ic , UjcU

T
jc〉F , and

a =
(
〈U1cU

T
1c , Kx,yc〉F , . . . , UncUT

nc , Kx,yc〉F
)

Allowing v = λ
‖λ‖ , we recover λ as the solution to the following optimization problem

min
vi>vi−1≥0

vTMvT − 2vTa + γ‖v‖1 (3.5)

This problem is equivalent to solving an L1 regularized hard SVM, and can easily

be solved with off-the-shelf optimization software. The inclusion of centering, order

constraints, and sparsity via the L1 norm are important aspects of a complete solution:

• Centering provides a correspondence to dependence maximization and has been

shown to be superior to the uncentered kernel target alignment empirically [18].

• The ordering constraint ensures that the learned dependence function is

smooth [99]. This is required to satisfy the assumptions made earlier when

defining the wild bootstrap procedure.

• The L1 penalty imposes sparsity on the eigenvalues. By observing that these

eigenvalues correspond to edge weights in the original graph [10], we see that

this sparsity corresponds to preferring quickly decaying dependence functions.
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We note that this problem shows more than a passing resemblance to prior work

in (multiple) kernel learning. [18] showed a variant of this problem without the

ordering constraint and L1 penalty is equivalent to a hard margin SVM maximizing

the centered kernel target alignment for multiple kernel learning. [99] proposed a

semi-definite program for learning the eigenvalues of a graph kernel without either

centering or the L1 penalty. However, the combination of these aspects into an

optimization problem for learning a bootstrap process is novel to this work.

3.4 Related Work

Chwialkowski, et al. [14] provide a permutation based procedure for simulating

the null distribution of HSIC for weakly-dependent temporal data by considering

random shifts of each time series. While effective for dependence testing, permuta-

tion via random shifts is not applicable to two-sample tests, or relational domains

where there is no corresponding ”shifting procedure”. Chwialkowski, et al. [15] pro-

vide a wild bootstrap for simulating the null distribution of kernel based hypothesis

tests in temporal domains. The proofs of consistency in this work are an extension

of those results to structured domains under weak dependence. Zhang, et al. [98]

provided extensions to the Hilbert-Schmidt independence criterion to structured do-

mains. This work differs from [98] in two important aspects. First, this work only

imposes an assumption of sparsity, i.e. finite degree distributions, while [98] require

structures that can be decomposed into cliques 5. The second difference are the mix-

ing assumptions used. Zhang, et al. [98] imposes an assumption of strong dependence,

which states that instances sufficiently distant from each other are statistically inde-

pendent. Flaxman, et al. [28] assume an additive structure and remove effects from

non-i.i.d. by considering the residuals after a Gaussian process regression. Finally,

5For intuition of this difference consider a lattice, this fails to decompose as required by Zhang,
e t al. [98], but can easily be seen to be a sparse network.
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Rattigan [75] provides a permutation test for assessing independence, and relies on

empirical evaluation for evidence of correctness. In contrast, this work assumes weak

dependence which, as described earlier, only assumes that the dependence tends to

zero as distance increases.

3.5 Evaluation

To test the utility of the structured wild bootstrap we performed a series of exper-

iments. Network structure was generated using the Barabasi-Albert, i.e., scale-free

network model, and Watts-Strogatz, i.e., small-world network model, algorithms.

Two independent draws were then made from a multivariate normal distribution,

with the means drawn from N (0, 1), and covariance set using a random-walk kernel

with α set to 2 which was then normalized using the procedure of Urry, et al. [90],

outlined previously in this work. We then compared the following methods for testing

dependence, using the proportion of type I errors at a 0.01 significance level by each

of the following methods:

• HSIC with the wild bootstrap, as described in this work, using a random walk

kernel as covariance

• HSIC with the wild bootstrap, as described in this work, using the eigenvalue

optimization approach to infer the covariance

• HSIC with significance determined via permutation testing

• Pearson’s correlation with asymptotic approximation of significance

Figure 3.2 show the type I errors with the number of nodes fixed to 300 as the

autodependence varies. For both small-world and scale-free networsk, we can see that

both Pearson and HSIC incur a large number of type I errors as the autodependence

becomes more severe. In contrast the wild bootstrap based approach is fairly well
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Figure 3.1: Scale-free network
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Figure 3.2: Small-world network
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Figure 3.3: Type I errors for graphs with varying number of nodes and fixed auto
dependence using the Barabasi-Albert model.

calibrated. At its most extreme the wild bootstrap approach shows a type I error

of 10%, which is roughly 2.5 times smaller than Pearson’s at the same level of auto-

dependence. The optimization based method is more robust, with a type I error

of 3%. When interpreting these results it is important to remember that while the

total number of nodes stays fixed, the effective sample size is much smaller since the

autodependence increases the inherent variability and creates uncertainty that are

closer to an i.i.d. problem with a smaller number of samples [41].

Figure 3.3 shows the performance of each method with auto-dependence fixed at

the largest value used in the prior experimental setting, with results pooled across

small-world and scale-free networks. Once again, we see that the error rate for the

wild bootstrap approach is much lower than the others. We can also see that the wild

bootstrap approach shows less variability across sample sizes.
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3.6 Conclusion

In this work we studied the problem of measuring dependence between variables

in relational domains. We showed that the Hilbert-Schmidt independence criterion is

consistent when relational autodependence is present in the data. We also showed that

the null distribution can be efficiently simulated using a relational extension of the

wild bootstrap for degenerate kernels. This is the first provably consistent bootstrap

method for relational domains. We showed via a set of synthetic experiments that

this procedure can yield a substantially lower type I error rate than the non-bootstrap

counterparts. While we have focused on HSIC, our results are more general, covering

all V -statistics with degree less than or equal to 4. Future work will focus on the

extension to U -statistics, a broad class of commonly used statistics that includes

absolute differences in means and rank-correlation measures.
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CHAPTER 4

INFERRING CAUSAL DIRECTION OF RELATIONAL
DEPENDENCE

Inferring1 the direction of causal dependence between two random variables from

observational data is a fundamental problem in statistical reasoning. There have

been many advances in this area for data sets that are independent and identically

distributed (i.i.d. ) [39, 86, 53]. For relational data, recent work has studied the

problem of inferring the effects of peers via experimentation [64, 7, 88]. However, the

problem of identifying causal direction from observational relational data has yet to

receive the same focus. In this work, we study the problem of inferring the causal

direction of peer dependence from observational relational data. We provide theoret-

ical and experimental results to show that the causal direction of peer dependence

can be robustly inferred from observational data by comparing the magnitude of two

similarity measures (one for each candidate direction).

For example, consider a study on the causes of personal debt. Data consist of

the net worth and the average monthly discretionary spending of a large set of in-

dividuals, along with the position of each individual within a social network. One

reasonable question is whether a person’s friends influence his or her spending habits.

If a person’s spending and wealth are correlated with the wealth and spending of

their friends, what can be inferred about the causal dependence among these quan-

tities? A person’s spending could be caused by their friends’ wealth or vice versa

1Portions of this chapter previously appeared in UAI 2016 as Arbour, et al., ”Inferring Causal
Direction from Relational Data.”[4].
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(direct dependence), or both quantities could be caused by an unobserved variable

(confounding).

This chapter examines when and how it is possible to differentiate among these

scenarios. Specifically, we:

1. Identify a set of conditions under which the causal direction of relational de-

pendence can be consistently inferred.

2. Investigate the effect of unobserved confounding on this approach to causal

inference, and provide a simple test of relational confounding.

3. Provide an extension of our method to the case of non-linear dependence via

kernel embeddings.

4. Show that the proposed measures are robust to both the magnitude of the noise

and the functional form of the true dependence, through a set of simulations

under a variety of graph structures and functional forms.

The rest of the chapter is structured as follows. Section 4.1 describes the problem

setting. Section 4.2 presents a test of causal direction under deterministic linear

dependence. Section 4.3 considers a relaxation of the assumptions by allowing for

latent confounding and discusses the conditions under which latent confounding can

be identified. Section 4.4 generalizes these results to the case where the similarity

is measured by embedding the data in a reproducing kernel Hilbert space (RKHS).

Section 4.5 presents experimental evaluation of these results using synthetic data and

a variety of marginal and conditional distributions, as well as networks generated from

the Erdős-Rényi, Watts-Strogatz, and Barabási-Albert models. Section 4.6 presents

a demonstration of our method on Stack Overflow, a large online community where

users ask and answer computer science related questions.
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4.1 Problem Setting

Relational domains consist of multiple types of entities that interact with each

other through multiple types of relationships. Consider, for example, the domain

of academic publishing: authors write chapters, chapters cite other chapters and so

on. In this work, for clarity of exposition and without loss of generality, we focus

on networks, a specific type of relational domains with a single type of entity (e.g.,

people) and a single type of relationship (e.g., friendship)2. An instantiation of a

network consists of a set of people and a set of friendships among these people. This

can be represented with an undirected graph G = 〈V,E〉 with n vertices. Nodes

correspond to people and an edge denotes friendship between the nodes it connects.

Every node of the graph vi ∈ V is associated with a pair of random variables, Xi

and Yi. These correspond to attributes of a person, for example wealth and spending

habits. For every node, we can define a new random variable as a function of the

random variables of its neighboring nodes. Specifically, in this section, we define a

new random variable Xi
′ as the sum of Xj over vi’s neighbors:

Xi
′ =

∑

{vj |〈vi,vj〉∈E}

Xj

Similarly,

Yi
′ =

∑

{vj |〈vi,vj〉∈E}

Yj.

For the remainder of the chapter, we refer to functions of random variables of neigh-

boring nodes, such as Xi
′ and Yi

′, as relational variables and to random variables of

the node, such as Xi and Yi, as propositional variables. To avoid ambiguity, we refer

to dependence between a relational variable and a propositional variable as relational

dependence.

2The extension to the more general multi-entity/multi-relationship case is straightforward. We
provide the necessary details for this extension in the supplement.
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A very common assumption in relational domains is that of templating, i.e., ran-

dom variables in different nodes follow the same distribution [43]. In our case, this

would imply that the distribution of Xi is the same for all i (and the same for Yi, Xi
′,

and Yi
′). This allows us to reason about four random variables on a model level: X,

Y , X ′, and Y ′.

Since we are reasoning over random variables across all nodes of the network, it is

convenient to represent them as vectors. Let x = 〈X1, . . . , Xn〉 be a vector with the

random variables Xi for every node and, similarly, x′ = 〈X1
′, . . . , Xn

′〉. Let A denote

the adjacency matrix of the graph defined as:

Aij =





1, if (vi, vj) ∈ E.

0, otherwise.

We note that A is a symmetric matrix since G is an undirected graph. We can write

the vector of the sum of the friends (i.e., the vector x′) as x′ = Ax. Similarly, y′ = Ay.

We use D to denote the degree matrix of the graph:

Dij =





di, if i = j.

0, otherwise.

4.1.1 Assumptions

Throughout this chapter, we make the following assumptions:

A15. G is an undirected graph.

A16. Each node v ∈ V has degree of at least 1.

A17. The distribution of Xi and Yi is the same for all vi ∈ V (templating).

A18. There are no feedback cycles, i.e. Y → X ⇒ X 6→ Y for any two (relational

or propositional) variables.
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Further, we initially assume (and later relax that assumption) that:

A19. There are no confounding variables, i.e., unobserved variables that are common

causes of the observed attributes.

Section 4.3 is devoted to examining under which conditions this assumption can

be loosened, while maintaining the ability to identify causal direction. Moreover,

assumptions A18 and A19 mirror those found in the literature on determining causal

direction between two propositional variables [86, 39, 53].

4.2 Direction Under Linear Dependence

In this section we show that, under the assumptions of linearity and a small

amount of noise, peer dependence is asymmetric and the true causal direction can

be consistently inferred. This is an inherent property of relational domains. The

extension to non-linear dependencies is provided in Section 4.4.

To measure dependence between variables, we consider the square of Pearson’s

correlation, a common and widely employed measure of linear correlation between

variables. Pearson’s correlation between two variables X and Y can be computed

from a sample x, y as follows:

ρ(x,y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
,

where x̄ and ȳ are the means of x and y respectively. We consider the square of the

correlation to restrict the range of the metric to [0,1], rather than [-1,1].

Given a measure of dependence, a reasonable question is whether the measure is

symmetric for relational data. Surprisingly, it is not. Given this, another reason-

able question is what can be inferred by examining the dependence values in both

directions. Surprisingly, the causal direction of dependence can be inferred from the

resulting asymmetry.
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We begin by handling a simplified case: Y is a deterministic function of the X

values of related nodes. Specifically, we assume that Yi is the scaled mean of the Xj

variables of the related instances:

Yi =
β

di

di∑

i=1

Xj

Or, in matrix notation: y = βD−1Ax.

Under certain assumptions about the structure of the graph and the form of the

dependence, the squared correlation in the causal direction will be greater that the

squared correlation in the opposite direction.

Proposition 1. Assume that G is a d-regular graph3, the true generative process is

y = βD−1Ax for some constant β, and assumptions A1-A5 hold. Then, ρ2(x′,y) >

ρ2(y′,x).

Proof. The left-hand-side of the inequality, given that by definition x′ = Ax, can be

written as:

ρ2(x′,y) = ρ2(Ax, βD−1Ax)

= ρ2(Ax,
β

d
Ax) = 1

It remains to show that 1 > ρ2(y′,x) which holds, unless ρ2(y′,x) = 1. Equality

holds only when y′ = βAD−1Ax is a linear combination of x, or in words, when the

values of a node’s friends of friends are a linear combination of that node’s value.

For random values of X, that happens for a degenerate network structure where

every node has one friend of a friend and is the exact same starting node. This would

happen, for example, in the case of a regular graph with degree 1 (pairs of nodes).

3A graph is d-regular if every vertex has degree d.
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In the case where Y is a noisy function of X, a similar inequality holds.

Proposition 2. Assume that the true generative process is y = βD−1Ax + ε for

some constant β, where ε is a vector with the noise terms. Moreover, assume that

assumptions A1-A5 hold and X and Y are scaled to mean 0. Then the following

holds:

ρ2(x′,y) > ρ2(y′,x)⇔
Var(AD−1Ax) + Var(Aε)

Var(D−1Ax) + Var(ε)
>

Var(Ax)

Var(x)
.

Proof.

ρ(x′,y) =ρ(Ax, D−1Ax + ε) (4.1)

=
Cov(Ax, D−1Ax) + Cov(Ax, ε)

Var(Ax)
(
Var(D−1Ax) + Var(ε)

)

=
Cov(Ax, D−1Ax)

Var(Ax)
(
Var(D−1Ax) + Var(ε)

) (4.2)

ρ(y′,x) =ρ(AD−1Ax +D−1Aε,x) (4.3)

=
Cov(AD−1Ax,x) + Cov(x, D−1Aε)

Var(x)
(
Var(AD−1Ax) + Var(D−1Aε)

)

=
Cov(AD−1Ax,x)

Var(x)
(
Var(AD−1Ax) + Var(D−1Aε)

) (4.4)

The covariance, given that the mean of X and Y is 0, is equal to the inner product

of the variables.
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Cov(Ax, D−1Ax) = 〈Ax, D−1Ax〉 (4.5)

= x>A>D−1Ax (4.6)

= x>AD−1Ax (4.7)

Cov(AD−1Ax,x) = 〈AD−1Ax,x〉 (4.8)

= x>AD−1Ax (4.9)

Therefore, for the square of the correlations we can write:

ρ(x′,y) > ρ(y′,x)⇔
1

Var(Ax)
(
Var(D−1Ax) + Var(ε)

) >

1

Var(x)
(
Var(AD−1Ax) + Var(Aε)

) ⇔

Var(AD−1Ax) + Var(Aε

Var(D−1Ax) + Var(ε)
>

Var(Ax)

Var(x)

The implication of proposition 2 is that the causal direction can be accurately

inferred, as long as the relative influence of the noise distribution is small in compar-

ison to the relationship between AD−1x and y. As we show during our experimental

evaluation in Section 4.5, the method is quite robust to the effect of noise in practice.

4.3 Reasoning About Confounding

Throughout Section 4.1 we assumed the absence of confounding influences (as-

sumption A19). However, in many real-world settings, this proves to be an unrealistic

assumption. Within the relational setting, there are two distinct ways in which the

relationship between variables can be confounded:

1. x and y may share a common relational cause, Az, i.e., Az→ x and Az→ y.
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2. There is a variable z that is a non-relational cause of x and a relational cause

of y, i.e., z→ x and Az→ y.

In what follows, we show that the first scenario is identifiable from data, while the

second one is not.

Proposition 3. If Cov(Ax, Ay) ≥ Cov(Ax,y) and Cov(Ax, Ay) ≥ Cov(Ax,y),

then there exists a relational variable which is a common cause of x and y.

Proof. Assume that the true generative structure is:

y ∼ D−1Az + εy

x ∼ D−1Az + εx

The covariance between Ax and Ay is then given by

Cov(Ax,Ay)

=Cov(AD−1Az + Aεy, AD
−1Az + Aεx)

=Cov(AD−1Az + Aεy, AD
−1Az)+

Cov(AD−1Az + Aεy, Aεx)

=Cov(AD−1Az, AD−1Az) + Cov(AD−1Az, Aεx)

=Cov(AD−1Az, AD−1Az)

The covariance between Ax and y, is given by:
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Cov(Ax, y)

=Cov(AD−1Az + Aεx, D
−1Az + εy)

=Cov(AD−1Az, D−1Az + εy)+

Cov(Aεx, D
−1Az + εy)

=Cov(AD−1Az, D−1Az) + Cov(D−1Az, εy)

=Cov(AD−1Az, D−1Az)

≤Cov(AD−1Az, AD−1Az)

AD−1Az and D−1Az are bounded by the size of the intersection between the set

of a node’s immediate neighbors and the set of its two-hop neighbors, since we have

assumed z are marginally independent by construction. Each pair of one hop and two

hop neighborhoods will diverge for at least the degree of the node for each node, since

the two hop walk beginning from node i will return to that node an equal number of

its degree, which implies the final inequality.

Proposition 3 implies a very simple procedure for ruling out the presence of mu-

tual relational confounding between two variables. First, the relative dependence is

measured between Ax,y and Ay,x respectively. Then, these two values are com-

pared against the measured dependence between Ay, Ax. If neither are larger than

the between-relational variable dependence no determination of direction is made,

since observed dependence is likely due to confounding.

We now turn to scenario two, which yields the following negative result:

Corollary 1. Under confounding scenario 2, in the absence of noise, a false conclu-

sion of dependence Ax→ y will be made.

Proof. Assume the generative structure is given by:

55



x ∼ z

y ∼ D−1Az

It can be immediately seen that the form of this dependence is identical to the form

of proposition 1, where we substituted z for the x. It follows that, in the no-noise

setting, an incorrect determination of direct causation will be made.

Note that this also applies in the case of a small amount of noise, as implied

by proposition 2. This result shows that without the assumption of no-confounding

a determination of non-causation can be reliably implied, but the converse is not

necessarily true.

4.4 An Extension To Non-Linear Dependence

In the previous section, we showcased the applicability of our method for detecting

linear dependence in relational data using correlation. An extension to more complex

variables and non-linear dependence functions can be achieved by applying the kernel

trick.

The centered kernel target alignment (KTA) is a normalized measure of depen-

dence introduced by Cortes, et al. [18] within the context of multiple kernel learning.

The measure is defined as:

KTA(x,y) =
〈Kc

x, K
c
y〉H

‖Kc
x‖H‖Kc

y‖H
(4.10)

Where ‖ · ‖H is the Frobenius norm, 〈Kc
x, K

c
y〉H is the Frobenius norm of the inner

product between Kc
x and Kc

y which is calculated by taking the trace of the inner

product. Kc
x is a centered kernel matrix, defined as:

Kc
x =

[
I− 1

m
11T

]
Kx

[
I− 1

m
11T

]
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where I is the identity matrix and 1 is a column vector of ones with length m. If

a linear kernel is used, KTA reduces to squared Pearson’s correlation, which has

been our measure of focus thus far. Using this connection, the following corollary

provides for consistent estimation of causal direction under the deterministic case

with arbitrary functional dependence.

Corollary 2. Under assumptions A15, A16, A17, A18, A19, and further assum-

ing that the generative structure is given by y = D−1Aφ(x)β, then KTA(Ax,y) ≥

KTA(Ay,x).

This follows as a straightforward extension of proposition 1. Because we are given

by assumption that KTA(Ax,y) = 1 and KTA is bounded from above by one, the

inequality holds. Equality occurs only when the values of each node’s friends of friends

can be expressed as a sum of (feature-space embedded) values. For random values of

X, this is reduced to the degenerate case of a graph of degree 1, as in proposition 1.

In practice, we note that the KTA based comparison relies on a number of hyper-

parameters. The difficulty in choosing these parameters can result in poorer empirical

performance. This problem has also been observed for other kernel-based approaches

for causal inference [96]. We leave the investigation of hyper-parameter selection as

future work.

4.5 Experiments

Our theoretical results focus on regular graphs, linear dependence, and absence of

noise. In this section, we examine the effect that the network structure, the functional

form of the dependence, and the presence of noise have on the efficacy of the linear

and kernel based methods. 4

4Code is available at https://github.com/darbour/RelationalCausalDirection.git.
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4.5.1 Regular Networks

(a) cε = 0 (b) cε = 0.25 (c) cε = 0.5 (d) cε = 1 (e) cε = 2

Figure 4.1: Scatterplots for the sum of X values of related nodes (x-axis) vs. the
sum of X values of related nodes with additive Gaussian noise (y-axis). The noise
coefficient (cε) varies from 0 to 2. The underlying network structure is a regular
network of degree 10 with 500 nodes.

We first considered regular graphs with linear dependence—a setting that matches

our theoretical analysis—and we examined the effect of noise. We considered networks

with the total number of nodes ranging from 100 to 500 and varied the degree between

2 and 22 by increments of 5. For every graph structure, we generated data as follows:

x ∼ N (0, 1)

ε ∼ N (0, 1)

y ∼ D−1Ax + βε

where β is the coefficient of the noise and was varied between 0 and 2.

Figure 4.1 shows the relationship between D−1Ax and y for varying values of β.

In the noiseless case (Figure 4.1a), D−1Ax and y are perfectly linearly correlated, as

expected from the generating process. However, as the noise increases, the correlation

between D−1Ax and y decays very quickly, approaching an adversarial case by the

time the noise coefficient is β = 1.0.

We then measured dependence in each direction (x and Ay, y and Ax). The

direction that produced the higher value for dependence was recorded as the inferred

causal direction. To measure dependence, we used
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Figure 4.2: Orientation accuracy for regular graphs for varying degree (4.6a), size of
network (4.6b), and noise coefficient (4.6c).

1. the square of Pearson’s correlation, and

2. KTA using RBF kernels with a fixed bandwidth of 1.0 for all kernel calculations.

Figure 4.6c shows the accuracy of both methods for a graph with 500 nodes and degree

7, while varying β. As expected from the our earlier theoretical results, both methods

perform perfectly in the noise-less case, and continue to do so through β = 0.5. The

linear method is significantly more robust to noise, remaining nearly perfect until

β = 1.0.

We also examined the interplay between the graph structure (degree and number of

nodes) and and the performance of each method. Figure 4.6a shows the performance

for the case of a 500-node graph with noise coefficient of 1.0 with the degree varied

between 2 and 22. Both methods become systematically worse as the degree (and thus

the density of the network) increases. This is expected behaviour since an increase in

the degree results in a lower effective sample size [40], which will reduce the expected

efficacy of both methods. The converse of this effect can be seen in Figure 4.6b,

where the accuracy of the linear based approach improves significantly as the size of
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the network increases while the degree is kept constant (and thus the density of the

network decreases).

4.5.2 Non-Regular Networks

We next compared the performance of both methods to a departure from the

assumption of network regularity. We considered the three most common genera-

tive models of graphs. The Erdős-Rényi model creates networks where two nodes

are connected with a given probability. Throughout the experiments, we considered

a fixed connection probability equal to 0.2. The Watts-Strogatz model generates

“small-world networks”. It begins with a lattice with a given neighborhood size and

randomly rewires edges according to a fixed probability. For our experiments, we

used neighborhood size 5 and rewiring probability equal to 0.2. The final generative

model we considered was the Barabási-Albert model. This model generates graphs

that display preferential attachment. For our experiments the power of preferential

attachment was set to 1.0. For each network we considered sizes between 100 and

1000, by increments of 100, with 20 graphs being drawn for each size.

We then considered the following data generation scenarios for all graph types:

x ∼ N (0, 1)

ε ∼ N (0, 1)

y ∼ f(D−1Ax) + βε

where f(·) is a function of D−1Ax. We considered three functional forms:

• f(·) is a simple linear function (linear)

• f(D−1Ax) = tan(D−1Ax) (nonlinear)

• f(D−1Ax) =
(
D−1Ax

)4
(quad)
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For each setting, β was varied between 0 and 2 by increments of 0.25.

The performance of both the linear and KTA method for fixed network size of 1000

nodes with the magnitude of noise varied is shown in Figure 4.4. For the Barabási

model under linear dependence, both the linear and kernel methods appear to be

very robust up until a noise coefficient of 2.0. The KTA based method generally

outperforms the linear dependence method for non-linear dependencies. This is to be

expected, as Pearson’s correlation is a measure of linear dependence.

The performance in the case where β is held to 0.5 and the size of the network is

varied from 100 to 1000 can be seen in Figure 4.3. Here we can see that in both the

Barabási-Albert and Watts-Strogatz graph models, Pearson’s correlation and KTA

achieve better performance under linear dependence as the size of the network in-

creases. However, for in the case of the Erdős-Rényi models both methods perform

poorly consistently as the size of the network increases. This is due to the nature of

the graph-generation process. Both the Barabási-Albert and Watts-Strogatz models

become increasingly sparse as the size of the network is increased. However, in the

case of Erdős-Rényi, the probability connection is constant. As a result, the effective

sample size remains low when the number of nodes increases. This likely accounts for

the poor performance of the linear estimator. The opposite effect is seen in the case

of the Barabási-Albert model. In nearly all cases the performance of the estimators

is highest in the case of the Barabási-Albert networks.

4.5.3 A Comparison to Relational Bivariate Edge Orientation

We also compared our results to the relational bivariate edge orientation (RBO) [56],

the only other known method for testing causal direction in relational data. Maier

et al. [56] introduced the relational bivariate edge orientation (RBO) as an edge-

orientation procedure within the context of learning causal models of relational do-

mains. RBO is defined with respect to conditional independence properties of rela-
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Figure 4.3: Orientation accuracy for various network types and functional forms, as
the size of the graph increases. The noise coefficient is set to 0.5.

tional models. Specifically, rephrasing the definition of Maier et al. [56] for single-

entity/single-relationship networks, for a relational dependence between Y ′ and X,

RBO checks if Y ′ is in the separating set of X and X ′. If not, then Y ′ is effectively

a “relational” collider and is oriented as such: Y ′ ← X. Otherwise, the only alter-

native model is Y ′ → X, given that dependencies that induce feedback cycles (such

as X → X ′) are excluded by assumption. The correctness of RBO is defined with

respect to a conditional dependence oracle. In practice, Maier et al.[56] follow the

following procedure to infer causal direction between two relational variables:

1. Learn a linear model x ∼ D−1Ax+D−1Ay to determine if x |= D−1Ax | D−1Ay

2. If x 6⊥⊥ D−1Ax | D−1Ay, then return D−1Ax→ y, otherwise return D−1Ay →

x

We applied this procedure to the linear data-generating scenarios used in the previous

two subsections, with one modification. Rather than testing a single perspective, we

explicitly tested the conditional independence facts from the perspective of both x
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Figure 4.4: Orientation accuracy for various network types and functional forms, as
the coefficient of the noise increases. The network size was kept constant at 1000
nodes.

and y. We found that between all scenarios, RBO failed to induce dependence in

80-90% of cases. This has important ramifications for the RCD algorithm of Maier et

al. [56]. As currently implemented, the RBO rule would have produced approximately

%50 error rate, since it does not explicitly check both directions. Using our more

conservative method, RBO would fire less frequently. In contrast, by incorporating

the findings of the more direct marginal comparison presented here, vast numbers of

edges would be accurately oriented. We plan on examining further integration of our

findings into joint causal structure learning algorithms in future work.

4.5.4 Confounding Experiments

In addition to the experiments presented in the main text for determining the

direction of dependence, we also empirically evaluated the efficacy of confounding

detection. We replicated the experimental settings described in sections 6.1 and

6.2, except in this case both x and y are drawn using a direct dependence on a

third variable z. We then determined confounding by testing whether the covariance
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Figure 4.5: Accuracy detecting confounding for regular graphs for varying de-
gree (4.6a), size of network (4.6b), and noise coefficient (4.6c).

between Ax and Ay was greater than both Cov(Ax,y) and Cov(Ay,x). The results

for regular graphs can be seen in Figure 4.5. The confounding test is very robust

across all of these dimensions. There is only a slight decrease in accuracy in even the

most adversarial settings of large degree and high-noise generating scenarios. Figure

4.6 shows performance as the noise level is increased, across three non-regular graph

generation algorithms. For two of the three graph generation procedures (Watts-

Strogatz and Barabasi-Albert), there is near perfect performance. The Erdos-Renyi

graph performance is considerably poorer. We conjecture that this is due to the high

connectivity (each node is connected to approximately 20% of its neighbors), which

greatly reduces the effective sample size. We plan on investigating methods to address

causal inference on high-connectivity graphs as future work.

4.6 Real World Demonstration

In contrast to the propositional setting, where there is a number of labeled ground-

truth data sets for testing novel methods of causal inference (e.g. [51]), to our knowl-

edge, there are no known publicly available data sets which contain ground-truth

relational causal relationships. In the absence of the ability to verify the relative

efficacy of our findings on real-world data sets, we provide a demonstration of our
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Figure 4.6: Accuracy detecting confounding for different types of networks graphs
with varying noise.

method on a real-world data set. Specifically, we considered Stack Overflow, an online

community where users pose and answer questions regarding software development.

A user can post a question, which can be answered by anyone else within the com-

munity. Other users can then up/down vote questions and the given answers. These

votes are tracked and the accrual of achieved points is displayed as the “reputation”

of a user on the site. Moreover, users can comment on a question. Comments receive

votes as well, but do not affect the reputation of a user. The data set consists of all

users, questions, answers, comments, and votes from the inception of the site to 2014.

We tested three questions about user behavior on Stack Overflow. For every

question we consider 100 sub-samples of 1000 data points. We computed KTA and

Pearson’s correlation in each direction. Significance of dependence was determined

by performing permutation tests with 1000 permutations5. For all tests we set the

significance threshold to be 0.01. When dependence was determined to be statistically

significant, we also recorded how many times each direction was chosen by comparing

test statistics in both directions.

5The consistency of dependence testing under these set of assumptions is provided as a chapter
in the Appendix
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The first question was: “Is there a relationship between the quality of a ques-

tion and the quality of its subsequent answers?” To answer this, we used the scores

of the questions and answers as proxies for their quality. All methods determined

significance in both directions across all trials. However, the normalized statis-

tics consistently determined the direction of dependence to be Question Quality →

Answer Quality, while both of the un-normalized statistics consistently determined

the direction of dependence to be Question Quality ← Answer Quality. Clearly, the

former conclusion matches intuition and temporal ordering far better than the latter.

The second question we considered was whether users with high reputation receive

higher quality answers. This was quantified by using the reputation of a user and

the score of the answers as a proxy for quality. In this case, we found that KTA and

Pearson both detected significance for both directions. For direction, we found that

both KTA and Pearson determined direction to be Reputation→ Answer Quality for

over 90% of the cases. This indicates that there may be bias in the Stack Overflow

community towards questions asked by high reputation users. We caution that this

does not take into account the possible latent confounder of question quality, i.e.,

higher reputation users may simply ask higher quality questions.

Finally, we looked at the efficacy of comments as a quality improvement mech-

anism, i.e., whether allowing users to comment on a question causes the poster to

improve or clarify her post. We constructed this test with the comments posted for a

question and whether revisions were subsequently made to the question. In this case

we found that all of the methods inferred that there was not a significant relationship

between the score of the comments and subsequent revisions to posts. This negative

result indicates that the commenting system provided by Stack Overflow is not an

effective mechanism for improving the quality of questions on the site.
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4.7 Related Work

Relevant work to our investigation of methods for determining peer dependence

in relational data falls into four basic categories. The most closely related work

examines versions of this specific task with alternative methods. For example, Maier

et al. [56], Rattigan [75], and Poole and Crowley [74] provide scenarios in which an

asymmetry may arise similar to that observed in our tests for direction. However, in

contrast to prior work, we study the phenomenon of asymmetric dependence directly

and provide a formal examination which provides guarantees to the circumstances

under which this asymmetry can be reliably leveraged. Further, we provide extensive

simulation experiments that further show conditions under which direction can be

found by considering the difference in dependence in both directions.

A second category of related work focuses on measuring causal dependence in

non-relational (i.i.d. ) data. For example, Peters , et al. [73] examine the problem

of determining the direction of dependence with i.i.d. data by either assuming non-

Gaussian noise and linear dependence or non-linear dependence and Gaussian noise.

The problem of identifying causal direction in the case of deterministic, i.e., non-noisy

data, was studied by Daniusis, et al. [19]. The setting considered was propositional

data, and the proposed solution leverages properties of information geometry in order

to find asymmetries between the conditional distributions of the two variables. In

contrast, the relational setting considered provides a much more direct mechanism

for determining direction.

A third thread of related work aims to detect non-causal dependence in relational

data. This task has attracted attention in both statistical relational learning (SRL)

community and in multiple areas of the social sciences. In SRL, Jensen and Neville [40]

use a χ2 test to detect autodependence in relational data and show its effect for feature

selection. Angin, et al. [1] introduce a shrinkage estimator for autodependence in the

presence of varying dependence strength. However, both of these rely on empirical
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evaluation as evidence of correctness. Dhurandhar, et al. [24] and London, et al. [52]

provide theoretical analysis for the inductive error of classification and regression in

the relational setting.

In the social sciences, relational dependence has been examined under the monikers

of peer influence, spillover, and interference. In the experimental setting, Eckles, et

al. [25] characterize the threat to validity arising from the bias induced by relational

dependence and provide experimental designs to reduce these effects. Manski [59],

Vanderweele [91], and Samii and Aronow [6] examine methods for removing the bias

associated with relational dependence, assuming discrete or linearly dependent data.

Toulis, et al. [88] provide conditions for experimental design with binary treatments to

identify peer influence. Ogburn and Vanderweele [68] characterize relational depen-

dence in terms of graphical models, but do not present an explicit testing procedure.

Work studying homophily and contagion (e.g., Christakis and Fowler [12], LaFonde,

et al. [46]) is related but distinct in the task setup, as we do not assume the availability

of temporal information.

Finally, our work is strongly connected and can serve as a complement to existing

work on causal learning of relational domains. Maier, et al. [56] and Marazopoulou, et

al. [62] present constraint-based algorithms to learn the structure of relational models

from data. However, for their experiments they either rely on a d-separation oracle

(without actual data), or use linear regression with mean-aggregation on synthetically

generated data. As we showed in our synthetic experiments, these choices can lead

to a large number of type II errors. This is especially troublesome for constraint-

based structure learning algorithms where type II errors can lead to large deviations

from the true causal model [16]. Such algorithms could leverage our test in order to

improve results reported on data. Additionally, the directionality results presented

in this chapter have implications for future work in constraint-based structure learn-
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ing algorithms, since they imply a smaller Markov-equivalence class than what is

commonly assumed.

4.8 Conclusions and Future Work

Inferring relational dependence is a task of general interest in a wide number

of fields, from statistical relational learning to the social sciences. In this work,

we have studied the problem of inferring causal direction in relational data. We

have shown that, in contrast to the propositional setting, causal direction can be

accurately inferred in relational data under the simplest functional forms such as

linear deterministic dependence, without additional assumptions on the distribution

of the underlying data. We then studied the problem of identifying confounding,

showing the conditions when the presence of a relational confounding variable can

be identified. Our experimental evaluation shows that these measures are robust,

providing accurate inference under model and network mis-specification.

There are several promising avenues for future research. For causal learning, the

ability to detect the direction of dependence in relational data implies that a different

Markov equivalence class [83] holds for the relational setting than what is commonly

assumed. Integration of the findings of this work into a causal learning algorithm

could substantially improve the efficacy of existing methods such as RCD [56]. Fur-

ther analysis of the interaction between the network structure and inference may

further strengthen the robustness of the methods discussed here. Finally, the asym-

metries shown to be inherent to relational data here may result in significant bias

of conditional independence testing procedures. Incorporating this additional infor-

mation is a first step in developing robust measures of conditional dependence in

relational data to help determine causation, a problem which has broad application

in both the statistical learning and social science communities.
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CHAPTER 5

ESTIMATING EFFECTS

1 A variety of methods have been devised for inferring causal effects from obser-

vational data. Classical methods for causal inference from observational data consist

of two steps. First, an adjustment set [71] is identified, which consists of variables

that are causally related to both the prospective cause variable (termed a treatment)

and the potential effect variable (termed an outcome). Second, a procedure such as

regression [70] or matching [76] is used to estimate the direct effect of treatment on

outcome, correcting for the effects of the adjustment set. Extending this classical

framework of estimation to relational data requires: (1) identifying adjustment sets

in relational data, and (2) adjusting for the full range of the effects of those variables.

Item 1 is primarily a structural question, and item 2 concerns estimation.

As a motivating example, consider the problem of estimating how a user-selected

privacy setting influences the time that users spend interacting with an online social

network. The privacy setting either requires users to explicitly approve others’ posts

to their page or it allows posting without such an approval process. Site administra-

tors may be interested in changing the default privacy setting but want to ensure that

such a change would not adversely affect site usage. Randomized experimentation

on privacy settings may be controversial. Further, the propensity of users to share

their posts with their friends could be influenced by characteristics of those friends.

Figure 5.1 illustrates this example by indicating an implied correlation between so-

1Portions of this chapter previously appeared in KDD 2016 as Arbour, et al., ”Inferring Network
Effects from Observational Data.”[3].
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Figure 5.1: Social Network Privacy Example

cial disposition and use of the privacy setting as well as a correlation between social

disposition and time spent on site.

The task of adjusting for this confounding is particularly challenging because some

confounding variables can be properties of neighbors in the friendship network. In

Figure 5.1, the social disposition and privacy settings of Lucy, Sue, John, and Fred

could affect both the privacy settings of Carl and the amount of time he spends

on the site. The task of deciding how to set privacy policy is an intrinsically causal

question because it requires reasoning about the effect that intervening on the privacy

setting would have on site usage. Additionally, modeling network effects is of central

importance—time on site is a function of the privacy settings of an entire sub-network

of friends rather than the privacy setting of an individual.

In this chapter, we present Relational Covariate Adjustment (RCA), the first reli-

able method for inferring arbitrary causal effects in networks from observational data.

RCA uses a two-stage procedure. The first stage automatically identifies the set of

variables that must be adjusted for. This stage uses relational d-separation [58], an

extension of d-separation [71] to relational data. The second stage performs regression

adjustment using relational non-parametric estimators. This adjustment procedure
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makes limited assumptions about the nature of the causal relationship between treat-

ment and outcome. We provide theoretical guarantees showing that RCA produces

a consistent estimate of causal effect.

The rest of the chapter is structured as follows. Section 5.1 provides background

for causal effect estimation and relational d-separation. Sections 5.2 and 5.3 intro-

duce Relational Covariate Adjustment and discuss practical issues of implementation.

Section 5.4 compares the estimates of RCA to estimates obtained via experimenta-

tion using multiple graph structures with data simulated under multiple functional

forms, and shows that the performance of RCA can be competitive with experimental

results.

5.1 Problem Setup

We assume that we are given an undirected graph G = 〈V,E〉. Let N = |V |,

the number of vertices in the graph. Let T be a random variable composed of the

treatment variables ti of each node i in the network, so that T = 〈t1, t2, . . . , tN〉. Let

π be an assignment to T , that is, π = 〈π1, π2, . . . , πN〉, where πi is an assignment to

ti. The average causal effect (ACE) is defined as the expected difference in outcome

Y under treatment π, contrasted with an alternate treatment π′:

ACE(π,π′) = E[Y |do(T = π)]− E[Y |do(T = π′)]. (5.1)

Throughout the chapter, we use the do operator [71] to refer to the interventional

distribution, that is, the distribution that would arise due to manipulation of T

rather than passive observation. Equation 5.1 may also be expressed in the potential

outcomes framework [77] by regarding Y as a node-specific function of treatment.

Ugander et al. [89] consider a special case of equation 5.1 where π = ~1 and π′ = ~0.

Hudgens and Halloran [38] refer to the above quantity as the population average

overall causal effect.
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Expressed directly in equation 5.1 is the notion that the outcome of subject i is

a function of the entire treatment assignment vector, not only πi. This distinction is

critical for estimating network effects, as we now have a language to express interven-

tions on multiple subjects. When dealing with causal quantities as in equation 5.1, it

is common to assume that E[Y |do(T = π)] is invariant with respect to treatment as-

signments to nodes which do not neighbor i. Let Tnbr i denote the treatment variables

of i’s neighbors, and let πnbr i = {πj|{i, j} ∈ E} and π′
nbr i

be multisets representing

assignments to Tnbr i . The neighborhood invariance assumption leads to the following

reformulation of the average causal effect:

ACE(π,π′) =
1

N

N∑

i=1

E[Y |do(ti = πi, Tnbr i = π′
nbr i

)]

−E[Y |do(ti = π′i, Tnbr i = π′
nbr i

)]. (5.2)

Equation 5.2 is consistent with the peer exposure models considered by Aronow et

al. [5], Toulis and Kao [88], and the notion of effective treatments considered by Man-

ski [59]. These causal quantities facilitate answering questions about interventional

strategies including:

1. E[Y |do(ti = 1, Tnbr i =~1)] − E[Y |do(ti = 0, Tnbr i =~0)]: How would individual i’s

outcome change if i and its neighborhood were to be treated, as opposed to

untreated? This quantity is the basis of ACE(~1,~0), the quantity considered by

Ugander et al. [89] and Gui et al. [37].

2. E[Y |do(ti = 1, Tnbr i = ~0)] − E[Y |do(ti = 0, Tnbr i = ~0)]: How does subject i’s

expected outcome change if i is treated but no neighbors are treated? We

might think of this effect as an “insulated” individual effect.

3. E[Y |do(ti = 0, Tnbr i = ~1)] − E[Y |do(ti = 0, Tnbr i = ~0)]: How does subject i’s

expected outcome change if i is left untreated but all neighbors are treated?
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Time 

on Site

Figure 5.2: ER Diagram for Social Network Example

By considering different settings of π and π′, we can examine a large number of

possible intervention strategies, without being restricted to applying the same “type”

of intervention to each node in the network. In practice, no single value of π could be

used to apply interventions (2) and (3) in the list above to all nodes in the network.

However, we can consider targeted interventions on specific individuals in the network,

so it is useful to consider these effects.

5.2 Relational Adjustment Sets

We now briefly review the relational concepts necessary to describe Relational

Covariate Adjustment, a more thorough explanation can be found in the background

chapter.

5.2.1 Relational Causal Graphical Models

Let a relational schema S = (E ,R,A, card) be the set of entity, relationship,

and attribute classes of a domain. It includes a cardinality function that imposes

constraints on the number of times an entity instance can participate in a relationship.

Without loss of generality, we will focus our presentation on the case of a simple

network, where there is a single entity, and a single many-to-many relationship, e.g.

a social network. Continuing the example of Figure 5.1:
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E = {Users},

R = {Friend},

A = {time on site, disposition, privacy setting},

card(Connected) = Many.

Users are connected to potentially many other users, each of which has a time on site,

disposition, and privacy setting attribute. Relational schemas are often visualized

with entity-relationship diagrams as in Figure 5.2.

A relational skeleton is a partial instantiation of a relational schema that speci-

fies the set of entity and relationship instances that exist in the domain. Using our

online social network example, this corresponds to specific users and the friends that

they connect to through the site. With a given schema, a relational path can be

defined, which is a predicate that defines a path with respect to a schema. In our

example, relational paths correspond to friendship paths, defined through the connec-

tivity properties of the online social network. We will refer to variables with a trivial

relational path (e.g., the immediate attributes of individuals), as propositional vari-

ables. Relational variables consist of a relational path and an attribute that can be

reached through that path. For instance, the multiset of privacy settings for friends

adjacent to user i is a relational variable. Relational variables can have causal de-

pendencies defined between them, specified by a relational model M = (S,D). This

model consists of a collection of relational dependencies (D) defined over a relational

schema (S). The relational model represents, as one example, the property that

a user’s time on site is affected by the privacy settings of adjacent users. M also

specifies a parametrized conditional distribution of each relational variable given its

parents. In the context of this work, we do not have access to these distributions and

must estimate them from data.
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Notation Meaning
U0
i .T oS The value of variable ToS for instance i of entity U . For in-

stance, this could represent the time on site of user i.
U1
i .ToS A multiset representing the value of variable ToS on instances

related to instance i of entity U through a path of length 1.
For instance, this could represent the time that friends of user
i spend on the site. We can represent users that are friends
with i’s friends with the notation U2

i , and so on.

Table 5.1: Relational Notation

U0.P rvU1.P rvU2.P rv

U0.DU1.DU2.D

U0.T oSU1.T oSU2.T oS

Figure 5.3: Abstract Ground Graph for the Social Network Example. In this example,
each user’s disposition (U0.D) affects that user’s privacy settings (U0.P rv) and time
on site (U0.T oS). Further, the dispositions and privacy settings of a user’s immediate
peers (U1.D and U1.D, respectively) affect that user’s time on site. A user’s privacy
settings are also influenced by their peers’ privacy settings. This structure repeats
for U2, representing friends of friends. Higher orders of Up can be considered, but are
not shown here.

To evaluate conditional independence queries on a model M, we first construct

an abstract ground graph (AGG) [58], a lifted representation that admits the compu-

tation of d-separation queries on multi-relational domains. Abstract ground graphs

are defined from a given perspective, specifying a base item of the analysis, and in-

clude nodes that correspond to relational variables. In general, the construction of an

AGG can involve creating auxiliary “intersection” variables. However, for the case of

single-entity, single-relationship networks (e.g. social networks or simple communica-

tion networks) there exists a single AGG that can be represented without the use of

auxiliary variables. That is:
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Proposition 4. Given a model with a single entity single, relationship schema, the

complete set of d-separation facts can be determined by considering only propositional

variables and relational variables.

Proof. In constructing a conditional independence query with relational d-separation [56],

paths composed of propositional variables, relational variables, and intersection vari-

ables must be considered. The set of propositional and relational variables to be

considered for a perspective is directly identifiable from the relational model. In-

tersection variables, as defined by Maier et al. [56], are required for sound and com-

plete reasoning of d-separation in relational domains whenever there exists two paths,

P1 = [A, . . . , B], P2 = [A′, . . . , B′] that are not subsets of each other and whose be-

ginning and ending entity are the same, i.e., A = A′ and B = B′. We consider the

case of the single entity, single relationship graph. Denote E to be the entity and R

to be the relationship. Without loss of generality, we consider paths that begin at

the entity. All possible path specifications then must be of the form [A(BA)∗], where

∗ is the Kleene star. It follows directly that any two path specifications are either

identical, or the shorter path is a sub-path of the other. This implies that for single

entity, single relationship networks, intersection variables do not exist.

Within our running example there is a single perspective (person) and relational

variables are defined with respect to the relative distance to an individual (e.g. friends

and friends of friends). One plausible abstract ground graph for this example is shown

in Figure 5.3, in which the disposition and privacy settings of a person and her friends

affect her time spent on site. Note that in Figure 5.3 there are two different types of

variables present. Propositional variables are those preceded by U0, and are measured

on a single instance. Relational variables are named as U i, for i > 0. These variables

representing the values of a person’s friends and the friends of her friends, respectively.

Given the AGG, conditional independence facts can be computed directly using the

same rules of d-separation used for Bayesian networks. For instance, from Figure 5.3,
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we can see that U2.Prv ⊥⊥ U0.Prv |U1.Prv , because U1.Prv blocks all d -connecting

pathways between the privacy settings of friends of friends and a user’s time spent

on site. These d -separation properties are essential to identifying a sufficient set

of conditioning variables for a given causal query, discussed in more detail in the

following section.

5.2.2 Relational Backdoor Criterion

With a suitable representation in hand, we now turn to the core aim of this

work: identifying interventional distributions. The approach taken here is to use an

extension of the back-door criterion [71] to relational domains:

Definition 8. (Relational Back-Door Criterion) A set of variables C satisfies the

relational back-door criterion with respect to variable sets (X1, X2) in an AGG G if:

1. No node in C is a descendant of any node in X1 in the AGG (equivalently, no

node in C is a post-treatment variable); and

2. C blocks every back-door path between X1 and X2 in the AGG

Note that here a back-door path refers to a path with an arrow into a member

of X1. Definition 8 is a direct extension to relational data of the back-door criterion

presented by Pearl [71]. In the case of a single entity with no relationships, the

definition reduces to the propositional case.

When such a set C can be identified, an estimate of the interventional distribution

can be obtained through a simple application of the adjustment formula:

P (X2|do(X1 =x)) =

∫

c

P (Y |X1 =x,C=c)dP (C=c) (5.3)
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Then, average causal effects can be computed as follows:

ACE = E[X2|do(X1 = x)]− E[X2|do(X1 = x′)] (5.4)

=

∫

c

yP (X2|X1 = x,C = c)dP (C = c)

−
∫

c

yP (X2|X1 = x′,C = c)dP (C = c), (5.5)

where P represent either a probability density or probability mass function. Se-

mantically, because relational variables take on values that may be multisets, there

is a notion of exhangeability encoded in this estimation framework. Consider once

again the example of Figure 5.1. In this case, Sue has three neighbors, John, Bob

and Carl. Let U1
Sue.Prv represent the multiset of time on site values of these neigh-

bors (see Table 5.1). As presented, U1
Sue.Prv takes on the value {On, On, Off}.

Intervention on Carl or Bob’s privacy setting would yield the interventional regime

do(U 1
Sue.Prv = {On, Off, Off}). As such, our interventional language is invariant

with respect to the identities of the instances under intervention, and focuses strictly

on the variables measurable on those entities.

5.2.2.1 Connection to Network Experimentation

There is a close relationship between Relational Covariate Adjustment and the ad-

justments performed for peer-effects in the network experimentation literature (c.f.,

[5, 89, 37]). Given this connection, we discuss this relationship for readers familiar

with network experimentation. Current work in network experimentation are de-

scribed within the potential-outcomes framework and assume strong ignorability, i.e.,

that (1) the outcome is rendered independent of treatment given treatment status and

(2) that all instances have a treatment probability, p ∈ (0, 1). Within non-network

experiments condition (1) is trivially satisfied via randomization. However, even in

the simple network setting there is dependence between other treatments and an indi-

vidual’s outcome. Further, by virtue of network randomization designs (i.e., [89, 37]),
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U0.P rvU2.P rv

U0.T oSU1.T oSU2.T oS

D

U1.P rvU1.P rv

Figure 5.4: An abstract ground graph representing the dependence structure under
network experiment. This structure is similar to 5.3, except that disposition no
longer influences privacy settings, and is excluded from the diagram. A variable
D representing the experimental design may induce marginal dependence between
treatments. It is possible that the outcome of peers (U1.T oS) affects U0.T oS, but
including U1.P rv in a conditioning set is sufficient to satisfy the back-door criterion
for treatment U0.P rv.

dependence is induced between the treatment status of instances. This dependence is

depicted in Figure 5.4. The graphical view shows that simple use of Relational Covari-

ate Adjustment can be applied to adjust for network bias, with U1.P rv constituting

the adjustment set. Thus, the estimator of Gui et al. [37] can be seen as a special case

of Relational Covariate Adjustment, with an assumed dependence structure of Figure

5.4 and adjustment performed with a linear model. However, in contrast to current

network experimentation estimation methods, Relational Covariate Adjustment can

be applied easily to observational data with multi-valued and continuous treatments

and an arbitrary number of confounders without modification.

5.3 Empirical Estimation

We now discuss how to practically estimate the effects of interventions in relational

domains. In contrast to the non-relational setting, computing the adjustment formula

in equation 5.5 is not straightforward because the hypothetical values of X1 could be

multisets. We present a strategy for conditioning on multisets that does not make

strong assumptions about functional form. Algorithm 1 presents the procedure. Step
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1 identifies the adjustment set by using relational d-seperation to find the necessary

set of variables C to block all back-door paths between T and Y .

The causal effect is then estimated as

E[Y |do(T = t)] =

∫

C

yP (Y = y|T = t,C = c)dP (C = c) (5.6)

≈ 1

N

N∑

i=1

yiP (Y = yi|T = t,C = ci) (5.7)

=
1

N

N∑

i=1

E[Y |T = t,C = ci], (5.8)

where equation 5.7 is a Monte-Carlo approximation to the integral. E[Y |T = t,C =

ci] can be estimated from a regression of y on features T and C.

Algorithm 1: RelationalAdjustment

Input: Relational model M, outcome Y , treatment(s) X
Output: h(x) =

∑N
i=1 E[Y |do(X = x)]

1 Use relational d-separation to identify adjustment set C for causal effect of X
on Y

2 Estimate E[Y |X,C] via regression or classification

3 h(x) =
∑N

i=1E[Y |X = x,C = ci]
4 return h(x)

5.3.1 Calculating Network Effects

Algorithm 1 can be applied to estimate a variety of causal effects derived from

the definition presented in equation 5.2. In what follows, U0.T refers to a subject’s

treatment and U1.T refers to the treatments of immediate neighbors.

Marginal Individual Effect

h = RelationalAdjustment(M, U0.Y, U0.T )

h(1)−h(0) = E[U0.Y |do(U0.T =1)]

− E[U0.Y |do(U0.T =0)] (5.9)
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This effect represents the expected change in an arbitrary subject’s outcome, U0.Y ,

when considering two alternate settings of that subject’s treatment, U0.T (1 and

0). The function h represents the expected outcome when applying a hypothetical

intervention to U0.T , conditioning on C. Additionally, the treatment assignment

of peers, U1.T , can influence both U0.T and U0.Y , which requires including peer

treatment values in the set of confounders, i.e, U1.T ∈ C.

Marginal Peer Effect

h = RelationalAdjustment(M, Y, U1.T )

h(θ)−h(θ′) = E[U0.Y |do(U1.T =θ)]

− E[U0.Y |do(U0.T =θ′)] (5.10)

The above case concerns the causal effect of settings of the treatment assignments of

peers, U1.T . θ and θ′ are multisets consisting of the treatment values of neighbors.

For instance, in the context of Figure 5.1, θSue = {On,On,Off}. We could consider

altering the treatment of Sue’s neighborhood to θ′Sue = {Off,Off,On}. The effect

of the intervention is given by h(θSue) − h(θ′Sue). This formulation facilitates the

estimation of arbitrary treatment settings of a node’s neighborhood.

Total Effect

h = RelationalAdjustment
(
M, Y, (U0.T, U1.T )

)

h(1,~1)− h(0,~0) = E[U0.Y |do(U0.T =1, U1.T =~1)]

− E[U0.Y |do(U0.T =0, U1.T =~0)] (5.11)

This effect represents an intervention on both U0.T and U1.T . The adjustment proce-

dure is valid for simultaneous interventions on these variables because the back-door
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criterion (Definition 8) applies to sets of variables. Now, h is a function of two

variables, the hypothetical intervention to U0.T and the hypothetical intervention to

U1.T . The first argument to h is, in the case of binary treatments, 0 or 1. The second

argument to h is a multiset. This class of effects is most applicable to estimation

of applying an intervention to all individuals on a network, e.g., a site-wide feature

roll-out.
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5.3.2 Summarizing Relational Features

When any term in the adjustment equation is a relational variable, E[Y |T,C]

cannot be directly estimated using regression or classification estimators designed for

independent and identically distributed data because relational variables’ instances

consist of multisets rather than single observations. A common approach to address

this is to create aggregations to succinctly represent the sets with a small number

of real-valued features. There is a long history in statistical relational learning of

using user-specified aggregation functions to model the distribution of a relational

variable [43, 72]. While these approaches have yielded impressive results for the

task of prediction, causal inference requires stronger guarantees about what is being

captured by the aggregation functions. The aggregation function should be a sufficient

statistic of the underlying distribution of the variable, rendering model parameters

independent of the data. For instance, specifying the mean aggregation would be

sufficient if the values of a relational variable are Poisson distributed, and in the

case of a normal distribution, the variance aggregation must also be present. When

sufficient statistics are employed, then we can be confident that all relevant aspects

of the distribution of a set have been accounted for when marginalizing to compute

the interventional distribution. When assumptions can be made about the marginal

distribution of relational variables, a set of features can be constructed for regression

by taking the sufficient statistics for each instance of a relational variable. Once

this set is constructed, any consistent regression or classification model can be used

to estimate E[Y |T,C]. In the absence of known sufficient statistics, estimates of a

number of the moments of a distribution can be used as an approximate solution. We

assume that the sufficient statistics Sx of the true distribution can be described as a

function of its k-th order moments:

Sx = f(M1(X), . . . ,Mk(X))
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where Mk(X) =
∑N
i Xk

i

N
≈
∫
xkp̂(x)dx is the empirical estimate of the k-th moment

of X. This implies the following procedure: (1) for each relational variable generate

a set of k aggregates of the 1, . . . , k moments of the set, (2) use this new data set as

the features to a non-linear regression or classification model to estimate E[Y |T,C].

5.4 Experiments

In this section we evaluate whether, and under which circumstances, Relational

Covariate Adjustment can serve as a feasible alternative to experimentation for causal

inference. To that end, we constructed an evaluation suite to compare RCA to state-

of-the-art techniques for estimating causal effects from experiments. We provided

experimental techniques with experimental data, and we provided RCAdata with

more challenging data sets in which relational confounding variables are present. We

examined a variety of real and synthetic networks, using simulated data with multiple

functional relationships between treatment and outcome.

5.4.1 Synthetic Data Generation

Data generation process was performed as follows:

1. Generate a random network

2. Sample treatment using one of two regimes:

(a) Exp: Sample treatment from an experimental context, in which treatment

is assigned using a graph clustering technique

(b) Obs: Sample treatment as a function of confounding variables and possibly

treatments of neighbors in the network

3. Sample outcome according to the treatment assigned in step (2). In the Obs

regime, outcome is a function of confounding variables and treatment. In the

Exp regime, outcome is a function of treatment assignments.
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In both the Obs regime and the Exp regime, the task is identical: estimate the

relationship between treatments (individual and those of peers) and outcomes. We

compared the performance of models learned from the observational data to estimates

obtained by experimentation2.

(a) Sigmoid, βP = 10 (b) Linear, βP = 5 (c) RBF, βP = 5

Figure 5.5: Examples of outcome models considered in this work, shown here as a
function of the proportion of treated friends.

5.4.1.1 Synthetic networks

We considered two network structures in our synthetic experiments: small-world

networks and preferential attachment networks. For small-world networks, each node

has degree (in+out) of 10 in the initial lattice. We varied the rewiring probability

in {0, 0.01, 0.1, 0.15}. A rewiring probability of 0 results in a regular lattice, and a

rewiring probability of 1 results in a random (Erdős-Rényi) network. For preferential

attachment networks, we varied the power of the attachment in {0.1, 0.5, 1}. In all

cases, the synthetic networks we consider have 1024 nodes.

Each network has a simple relational model consisting of a single entity (U) and

relationship (adjacency). Each instance of U (i.e., a node in the network) has four

2Code used to reproduce these experiments is available at
https://github.com/darbour/RelationalAdjustment
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attributes, C1, C2, T , and Y . We are interested in estimating the effects of U0.T

(intrinsic treatment) and U1.T (treatment of peers) on U0.Y (intrinsic outcome).

5.4.1.2 Treatment Models

In the Obs regime, propensity for treatment can be caused by intrinsic covariates,

covariates of peers, and treatments of peers. To simulate data from that regime, we

first constructed a confounding term Li which is a linear combination of:
• U0.C1

• U0.C2

• mean(U1.C1)

• mean(U1.C2)

• var(U1.C1)

• var(U1.C2)

• mean(U1.C1) ∗ var(U1.C1)

• mean(U1.C2) ∗ var(U1.C2)

Then, treatment is sampled as a binomial random variable with success probability

that is a logistic function of Li. To simulate influence between the treatments of

subject i and its neighbors, we use a Gibbs sampling technique inspired by Manski

[59]. After initially assigning treatment, we resample treatment with an additional

parameter θnbr i,s−1, the proportion of i’s neighbors that are treated at the previous

iteration. This process is repeated until s = 3.

Ti,0 ∼ Binom (logistic (βLLi + ε)) (5.12)

Ti,s ∼ Binom (logistic (βLLi + βT θnbr i,s−1 + ε)) (5.13)

Here, ε ∼ N (0, 1). We vary the strength of the confounding coefficient, βL, from

0 to 3. We vary the strength of dependence on peers’ treatments, βT , from 0 to 10.

When βT = 2, we find that the distribution of peer treatment proportions, θnbr i , is

roughly uniform. When βT = 10, this distribution is bi-modal with peaks at 0 and 1.

In the Exp regime, treatment was assigned randomly (with probability 0.5) at the

level of graph clusters rather than individuals using a technique outlined by Ugander

et al. [89]. This clustering technique assigns treatment in such a way that nodes
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are more likely to have completely treated or completely untreated neighborhoods.

In other words, graph cluster randomization leads to bi-modal distributions of θnbr i

with peaks at 0 and 1. This randomization technique is employed by experimental

estimators to estimate the total effect of equation 5.11.

5.4.1.3 Outcome Models

We explored the use of three distinct outcome forms. In the first case, outcome

is a linear function of individual treatment, the proportion of treated peers, θadji ,

confounding variables Li, with noise that is distributed as a standard normal. The

general form of this function is shown below in equation 5.14. The relationship

between the θadji and outcome is shown in Figure 5.5b for a specific parameter setting.

Yi ∼ βITi + βP θnbr i + βLLi + ε (5.14)

We also considered non-linear functions of treatment and covariates. The first of these

is shown in equation 5.15, and is a sigmoid function of Ti, θnbr i , and Li. Figure 5.5a

shows one instance of this function class. This function is bounded in the range (0, 1).

As βI and βP grow, the outcome approaches 1 more sharply.

Yi ∼ (1 + exp (− (2βITi + 2βP θnbr i + βLLi + ε)))−1 (5.15)

The final outcome model we use is linear in Ti and Li, but depends on θnbr i through a

radial basis function about 0.5. An instance of this function can be seen in Figure 5.5c.

In this case, the outcome peaks when θnbr i = 0.5.

Yi ∼ βITi + exp
(
− (βP θnbr i − 0.5)2)+ βLLi + ε (5.16)

In what follows, we refer to the functions outlined in equations 5.14, 5.15, and 5.16

as linear, sigmoid, and RBF, respectively.
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Figure 5.6: Accuracy of experimental and observational effect estimates across various
outcome models as confounding strength is varied.

5.4.2 Estimators

In practice, any consistent conditional estimator of

E[Y |T, θnbr i ,C] will satisfy the requirements of the relational adjustment technique,

provided C satisfies the relational back-door criterion. For our experiments, we used

gradient boosted trees (GBMs) to model this expectation, where C consists of the

means and variances of U1.C1 and U1.C2.

Gradient boosted trees [29] are a nonparametric ensemble where each base learner

is a low-depth decision tree. At each iteration training samples are reweighted ac-

cording to their predictive error on the previous iteration. The boosting procedure

has been shown to be consistent [29], and provides near state-of-the-art results on a

variety of tasks.

We employed two experimental effect estimators within the Exp regime, Horvitz-

Thompson estimation [89] and a linear additive model [37]. The Horvitz-Thompson

estimator can be written as a weighted sum of outcomes of nodes which fall into

two distinct exposure categories. We defined a node i as “exposed” if Ti = 1 and

θnbr i > 0.75. We defined a node as “non-exposed” if Ti = 0 and θnbr i < 0.25. Nodes

which do not fall into one of these categories are not used in the estimation process.
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1

N

N∑

i=1

YiI(θnbr i > 0.75, Ti = 1)

P (θnbr i > 0.75, Ti = 1)
− YiI(θnbr i < 0.25, Ti = 0)

P (θnbr i < 0.25, Ti = 0)
.

The probabilities in the denominator are estimated using the dynamic programming

algorithm introduced by Ugander et al. [89]. This method is useful primarily when

the effect of interest is the total effect and the distribution of θnbr i is bimodal with

peaks at 0 and 1. We refer to this estimation strategy as ExpHT.

The linear additive model introduced by Gui et al. [37] fits the conditional expec-

tation E[Y |T, θnbr i ], which is appropriate when treatment is assigned experimentally

and outcome is a linear model. We refer to this model as ExpLM.

It is important to note that, for both ExpHT and ExpLM, the results reported are

with respect to a performed experiment. This is contrast to the setting of Relational

Covariate Adjustment, which is given access only to observational data, without the

benefit of randomization.

5.4.3 Findings

For each combination of parameter settings, spanning rewiring probability, βI

(individual effect), βP (peer effect), βL (confounding strength), and βT (treatment

autodependence), we performed 25 trials to assess variance. This resulted in 2269×

25 = 56,725 data sets, some belonging to the experimental regime (Exp) and some

belonging to the observational regime (Obs). Within the experimental regime, we

estimated total effect using ExpHT and ExpLM, the current state-of-the-art techniques

for effect estimation on networks. Within the observational regime, we used the

Relational Covariate Adjustment procedure with gradient boosted trees. This is

referred to as ObsGBM in what follows. We also include results for an unadjusted

GBM which does not include any relational covariates. We refer to this model as

ObsGBM-U.
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Figure 5.7: Comparison of estimates obtained from retrospective, confounded, obser-
vational data (left) and those from experimentation (right). An overestimated effect
results in positive error, and an underestimated effect results in negative error. These
methods almost always overestimate the true global effect.

Accuracy of the total causal effect estimates for the linear outcome model are

shown in Figure 5.7. Each box in this figure represents the distribution of performance

values across all network settings and model parameterizations. These results indicate

that the ExpLM model performs best in this context, with ExpHT yielding slightly more

bias and significantly more variance. However, in the observational case, which is a

more complex estimation task, the Relational Covariate Adjustment implementation,

ObsGBM is competitive with the linear model in terms of bias, and yields only slightly

more variance than the HT estimator.

We also examined the performance of these models across a variety of outcome

functions. The error in total causal effect estimates are shown in Figure 5.6. This

demonstrates two dimensions of variability in our simulations. First, different func-

tional forms lead to more or less challenging estimation tasks. Most significantly, as

the strength of confounding (βL) is increased from 1 to 3, the observational regime

becomes more challenging. This matches intuition—in the extreme, where βL = 0,

any confounding between treatment and outcome disappears.

91



Exp. LM Obs. GLM
Linear 0.0869 (0.0752) 0.6527 (0.5936)
RBF 0.102 (0.0877) 0.2342 (0.1687)
Sigmoid 0.0178 (0.0158) 0.0269 (0.0157)

Table 5.2: Root mean squared error for marginal individual effects. One standard
error is shown in parentheses.

Exp. LM Obs. GBM
Linear 0.0535 (0.021) 0.6241 (0.485)
RBF 0.4476 (0.248) 0.403 (0.264)
Sigmoid 0.0661 (0.015) 0.0391 (0.027)

Table 5.3: Root mean squared error for marginal peer effects. One standard error is
shown in parentheses.

While the ExpHT model is specifically designed to estimate only total effects, ExpLM

and ObsGBM can also compute marginal individual effects and marginal peer effects.

We computed the root mean squared error between estimated individual effects and

actual individual effects—this error is shown in Table 5.2. ObsGBM is competitive with

ExpLM primarily for non-linear functional forms.

Finally, we examined the ability of the ExpLM and ObsGBM to model marginal peer

effects. Unlike the total effect and the marginal individual effect, there is a spectrum

of peer effects induced by varying θnbr i . The possible functional relationships between

θnbr i and Yi are shown in Figure 5.5. Figure 5.8 provides another concrete example

of such a function along with the models estimated by ExpLM and ObsGBM. Table 5.3

shows the root mean squared error for peer effects θnbr i ∈ {0, 0.1, . . . , 0.9, 1}. In the

linear case, the ExpLM model has an advantage over ObsGBM. However, the importance

of modeling non-linearity becomes clear in the RBF and sigmoid examples, for which

the observational estimator is superior to the experimental estimator.
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Figure 5.8: An example of the sigmoid outcome model. In this case, a model of the
marginal peer effect is estimated from observational data using a boosted model and
from experimental data with a linear model, with βI = βP = 5 and βL = 1.

Figure 5.9: Estimated Total Effects in the Enron Data

5.4.4 Real Networks

To demonstrate the applicability of RCA to large networks for which the edge

generation process is unknown, we also compared the performance of ObsGBM and

ExpLM on the Enron graph [49]. The nodes of the Enron network are individuals, with

an edge between them if either of them have sent an email to the other. The network

is contains 36,692 nodes and 183,831 edges in total, with a clustering coefficient of

approximately 0.5 and diameter of 11. In the absence of ground truth measures, we

generated synthetic random variables following the procedure of Section 5.4.1, and
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ExpLM ObsGBM
Linear 0.0399 (0.0279) 1.4038 (0.3772)
RBF 0.6242 (0.2571) 1.2883 (0.3778)
Sigmoid 0.3439 (0.2113) 0.0561 (0.0101)

Table 5.4: Root mean squared error for marginal individual effects in Enron data.

ExpLM ObsGBM

Linear 0.0213 (0.007) 0.4855 (0.195)
RBF 0.5255 (0.148) 0.2278 (0.112)
Sigmoid 0.2703 (0.14) 0.0266 (0.025)

Table 5.5: Root mean squared error for marginal peer effects in Enron data.

use the real graph topology to test scalability and efficacy. The form of the generative

functions were identical to those used in the observational setting. We then measured

the estimates of the total effect, marginal peer effects, marginal individual effects for

each method.

Figure 5.9 shows the quality of estimated total effects across each outcome model.

While the results from a synthesized network experiment are superior to the estimates

from ObsGBM, the results are on comparable scales. Table 5.4 and Table 5.5 show

the error in estimated individual and peer effects, respectively. Again, the results

from ObsGBM are similar to ExpLM. ExpLM performs exceptionally well at experimental

data with a linear outcome. However, ObsGBM has a clear advantage in estimating

marginal peer effects under the RBF and Sigmoid models. We conjecture that the

scale-free nature of the Enron network leads to particularly favorable circumstances

for experimental approaches such as ExpLM. Scale-free networks have many nodes with

only one or two neighbors, thus the probability that an entire neighborhood will be

completely treated or completely untreated is relatively high.
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5.5 Related Work

Ugander et al. [89] and Gui et al. [37] present methods which aim to measure the

effect of placing the entire network under treatment versus control. In both cases,

this is achieved by partitioning the graph into clusters, treating each cluster randomly

and estimating the the average causal effect after adjustment for peer confounding.

Toulis and Kao [88] consider experimental design and estimation to measure average

peer effect as a quantity of interest. In both cases, the methods discussed within

this chapter can be seen as complimentary work, providing interpretation within the

causal graphical models framework. This interpretation aids the identification of

threats to validity and provides a unified framework for estimation of a variety of

causal effects. Importantly, the causal graphical model view of this work also admits

inference in the non-experimental setting.

There have been numerous applications in recent year that seek to measure causal

effects in real relational domains. Bakshy et al. [7] performed large scale experiments

to understand the effect of social cues on consumers’ receptiveness to advertisements.

Aral and Walker [2] used experimentation to understand the process of social diffusion,

or “virality” in large-scale social systems.

Within the observational setting, researchers have applied quasi-experimental de-

signs (QEDs) to perform causal inference in relational data. QEDs exploit fortuitous

circumstances in data that allow for the approximation of an experimental design

post-hoc. For example, Oktay et al. [69] apply QEDs to Stack Overflow, an online

question and answer site for programming, to understand the dynamics of users’ be-

havior on the site. Krishnan and Sitaraman [45] consider a quasi-experimental design

to determine the relationship between network quality and user engagement with on-

line content. Kearns et al. [42] study patterns of network formation by performing an

experiment where subjects were anonymously paired, and subsequently were asked

to interactively complete a graph-coloring video game.

95



Manski [59] considers the problem of identifiability in the potential-outcomes

framework in the presence of peer influence. Ogburn and VanderWheele [67] enu-

merate configurations of causal graphs that result in bias from social effects on single

entity, single relationship networks. Maier et al. [58] considers the more general case

of d-separation for multi-relational domains. Maier et al. [56] apply the rules implied

by Maier et al. [58] to learn the causal structure of relational domains, but explicitly

do not consider inference of individual causal effects.

5.6 Conclusion and Future Work

We have described and evaluated Relational Covariate Adjustment, an extension

of nonparametric adjustment to relational data. Through the use of nonparametric

regression estimators, RCA allows for estimation of a wide range of functional de-

pendencies without modification. We showed the efficacy of this approach to causal

inference with a set of experiments that examine Relational Covariate Adjustment and

other experimental adjustment methods over a range of graph topologies.

This work represents one step toward a much larger goal of general causal inference

in relational domains. Toward that end, we plan to extend RCA to the case of multiple

entities and relationships and to extend the calculus of interventions by developing

techniques that can estimate the effects of interventions that add or remove nodes or

edges from the network.
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CHAPTER 6

SUMMARY AND FUTURE DIRECTIONS

Systems that contain relational effects are ubiquitous in modern society from social

networks, to transportation and the internet. The ability to reliably reason over these

systems is critical for enabling better planning and policy for modern decision makers.

Despite this, relatively little work exists which examine the statistical underpinnings

of dependence and causation in relational domain. This thesis is one step towards

closing this gap.

We have introduced methods for principled detection of autodependence in net-

works, as well as bivariate and conditional dependence. Previous work which ad-

dressed these problems relies on parametric assumptions [94, 75], discrete data [41,

75], or restricts the relational structure to automorphisms [98] which is known to not

hold in the case of random graphs. With the exception of Zhang, et al. [98], these

approaches have used measures of dependence as a heuristic in service of empirical

evaluation, rather than as a theoretical focus. However, there are a number of tasks

which require well developed statistical theory for dependence testing. For exam-

ple, causal structure learning [83], relies on conditional independence tests in order

to constrain the space of possible causal structures. Because of a lack of developed

theory, existing work [55, 61] has relied on an conditional independence oracle. By

providing this grounding we hope to enable further theoretical and empirical work in

causal learning.

In order to reliably approximate the null distribution in domains that exhibit

relational autodependence, we have introduced the first bootstrap for relational data.
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This is accomplished by extending the dependent wild bootstrap for degenerate U

and V statistics of Leuchte and Neumann [50] to relational domains. We believe

that this same methodology can be extended for estimating confidence intervals and

p-values for causal effects in networsk.

We then showed that relational dependence is inherently asymmetric, and that

the asymmetry can be leveraged to provide a simple test of causal direction from

observational relational data.

Finally, we introduced a general procedure for estimating causal effects in rela-

tional data by presenting an extension of Pearl’s backdoor criterion to relational do-

mains. There are a number of promising future directions along this line of research.

These include reasoning about the effect of intervening on the network structure itself,

i.e. adding or removing an edge, adapting to dynamic network structures, as well as

considering more complicated intervention strategies.
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APPENDIX

RELATIONAL DEPENDENCE TESTING IN THE
ABSENCE OF AUTO DEPENDENCE

The chapter on relational dependence makes use of a kernelized measure of re-

lational dependence. In this chapter, we will show that this measure is consistent,

assuming ϑ-mixing, and that a simple test of permutation of values with respect to

their node indices may be used to assess significance. While not a central contribution

of this thesis, we believe these accompanying results may be of independent interest.

We will make use of the following definitions in order to provide guarantees re-

garding the convergence of the kernel mean.

Theorem 3. (Generalized McDiarmid’s Inequality)[52] Let f : X 7→ R be a mea-

surable function with a constant c such that ∀x,x′ ∈ X that differ only at a single

coordinate, |f(x)− f(x′)| ≤ c
n

. Then for all ε > 0:

P{f(X )− E[f(X )] ≥ ε} ≤ exp

(
−2nε2

c2‖Θπ
n‖2
∞

)

We refer the reader to London et al. [52] for the proof.

A.0.1 Kernel Embeddings of Relational Data and Dependence Testing

Recall from the Background chapter that the mean map is a function µ : P → H

that defines a kernel embedding of a distribution into H:

µP = µ(P ) =

∫

X
k(x, ·)dP (x)
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In this work, the purpose of kernel mean is twofold. For propositional variables,

it is used to represent the underlying distribution and, as we shall see, can be used

directly in a test for dependence. For relational variables, the mean embedding serves

as an aggregation function for observations. The advantage of using the kernel mean

embedding is that, under the assumption that the underlying distribution belongs to

the exponential family, the underlying distributions are represented completely.

To reason over the distance between distributions, we define a second kernel, K,

over the kernel means. Christmann and Steinwart [13] showed that if the kernel

inducing µ (k) is characteristic and K is the Gaussian kernel, then K is universal and

thus, characteristic. This kernel is defined as:

K(µx, µ
′
x) = e

‖µx−µ′x‖
2
H

2θ (A.1)

where
√
θ is the bandwidth of the kernel.

Lemma 3. Under the assumptions that each kernel mean, µ̂, is close to their pop-

ulation values, and the degree of the network is bounded by some constant, d, and

the random variable that gives rise to µ is independently distributed, the estimate

M̂ = 1
N

∑N
i µ̂i is a consistent estimator of the true embedded mean, M.

Lemma 4. Under the assumptions that each kernel mean, µ̂, is close to their pop-

ulation values, and the degree of the network is bounded by some constant, d, and

the random variable that gives rise to µ is independently distributed, the estimate

M̂ = 1
N

∑N
i µ̂i is a consistent estimator of the true embedded mean, M.

Let the mean of second-level mean embedding of µ ∈ M(Ω) into the RKHS

provided by the kernel, k·). We will assume k(·) is bounded by k(µ, µ) ≤ Bk(∀µ ∈ Ω).

We are given N samples, mu1, . . . , µN , from a weakly dependent process, whose

covariance matrix is given by Θ. Further, define the empirical mean embedding as

µµ̂ = 1
N

∑N
n=1 k(·, µn). Then P(‖Mµ̂ −Mµ‖H ≥ ε) ≤ e

− ε2N
2Bk‖Θ‖∞
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Proof. Let φ(µ) = k(·, µ), and by extension k(µ, µ) = ‖φ(µ)‖2
H . Let g(S) = ‖Mµ̂ −

Mµ‖H = ‖ 1
N

∑N
n=1 φ(µn) − Mx)‖H , with S being the set of samples, i.e., S =

{µ1 . . .muN}. Also let S ′ = {µ1, . . . , µj−1, µ
′
j, xj+1, . . . , µN}. We have

|g(S)− g(S ′)| =
∣∣∣
∥∥ 1

N

N∑

i=1

φ(mun)−Mµ

∥∥
H
−
∥∥ 1

N

N∑

i=1

φ(µn) +
1

N
φ(µ′j)−Mµ

∥∥
H

∣∣∣

≤ 1

N
‖φ(µj)− φ(µ′j)‖H ≤

1

N
(‖φ(µj)‖H) + ‖φ(µ′j)‖H)

≤ 1

N

[√
k(µj, µj) +

√
k(µ′j, µ

′
j)
]
≤ 2
√
Bk

N

We can now use the generalized version of McDiarmid’s inequality, yielding

P(g(S)− E[g(S)] ≥ ε) ≤ exp

(
− 2ε2
∑N

n=1

(
2
√
Bk
N

)
‖Θ‖∞

)

= exp

(
− 2ε2

N 4Bk
N2 ‖Θ‖∞

)

= exp

(
− ε2N

2Bk‖Θ‖∞

)

Where ‖Θ‖∞ is the L∞ norm of the covariance matrix between nodes as described

earlier. We see now that convergence is governed not only by the maximum value

of the kernel, but also the dependence amongst instances. Because we have assumed

that the data from which each µ has arisen is i.i.d. the only source of bias is due to the

overlap in nodes. This implies that if the degree is bounded by some finite constant,

d as the network grows to infinity, there will be a maximum value of ‖Θ‖∞ < ∞,

which implies convergence.

The Hilbert-Schmidt independence criterion [34] provides a test of dependence

between two random variables, X and Y . Recall from previous chapter that HSIC is

defined as

HSIC (X, Y ) = ‖PXY − PXPY ‖2
H = ‖E[φ(x)⊗ ψ(y)]− E[φ(x)]E[ψ(y)]‖2

101



Consistency is provided by the following theorem:

Theorem 4. [33] Let k and l be characteristic kernels for the respective RKHSs F

on X and G on Y, with feature maps φ and ψ, respectively. Define the finite signed

measure θ := PXY − PXPY . Then, CYX =
∫
X×Y ψ(y) ⊗ φ(x)dθ(x, y) = 0 if and only

if θ = 0.

The proof is given by Gretton [33]. The implication of Theorem 4 is that given

marginal embeddings of PX and PY that are characteristic, the statistic provided by

HSIC is consistent, i.e., HSIC (PX , PY )→ 0 if and only if PX |= PY as n→∞.

Given Lemma 4, HSIC is readily extended to the relational case. We do so with

the following definition:

Definition 9 (Relational HSIC). In the relational setting, the test statistic is defined

between a relational variable C.τ.X and a propositional variable C.Y as:

HSIC (C.τ.X,C.Y ) = ‖PC.τ.X,C.Y − PC.τ.XPC.Y ‖2
H = ‖E[µx ⊗ ψ(y)]−Mx ⊗ µy‖2

Note that the estimated statistic is now given by T = 1
n2 trK̃xK̃y, where K is the

two-stage kernel defined in equation A.1, with each instance defined as the neighbors

of node i. While this statistic is very similar to the traditional HSIC measure, it

is worth taking a moment to clarify the difference in what is being tested. In the

relational setting, rather than testing the joint distribution of a set of pairs against

a null of the product of their marginals, we assess the relationship between a set of

distributions and the marginal of a random variable. To demonstrate this, consider

the more explicit definition of relational HSIC.
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HSIC (C.τ.X,C.Y ) =

‖ 1

N

N∑

i

1

mi

m1∑

j

φ(xi,j)⊗ ψ(y)− 1

N

N∑

i

1

mi

m1∑

j

φ(xi,j)⊗
1

N

N∑

i

ψ(yi)‖2
H

(A.2)

Here we can see that what is being considered is the average of the joint embeddings

of y and each x which is contained in the set constituting µx.

Corollary 3 (Consistency of relational HSIC). Assume that (1) the kernel k(C.Y, ·) is

characteristic, (2) the kernel k′(C.τ.X, ·) is characteristic, (3) each µ̂ ∈ C.τ.X is close

to its population counterpart, (4) the second-level kernel K(µC.τ.X , ·) is Gaussian,

and (5) the degree of the relational structure is bounded by some constant, d. Then,

HSIC (C.τ.X,C.Y ) provides a consistent test of dependence.

Proof. This is a direct consequence of Theorem 4 and Lemma 4. Lemma 4 is required

in order to ensure convergence to the kernel mean, and by extension injectivity.

While convergence is guaranteed, the asymptotic approximations provided for the

propositional version of HSIC are no longer appropriate. However, the null distribu-

tion can easily be simulated via permutation.

Outside of the additional considerations necessary to the relational version, HSIC

thus far looks very similar to its propositional counterpart. However, as we have shown

in the previous section, relational dependence is inherently asymmetric. Because

HSIC is the covariance of the data in feature space, simple extension provides that

it will be symmetric in the case of regular network structure. We will investigate

under which conditions asymmetry occurs in non-regular network structure, and the

implications for both direction and dependence testing as part of this thesis.
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(a) Original network (b) Permuted network

Figure A.1: An example of a network with data generated from an autodependent
process and its permutation. On the left is the original network, where color represents
the value of interest. On the right is a permutation of that network that preserves
the structure while permuting the values. Shading of each node represents the value
of the variable on that node.

A.0.1.1 Significance Testing

In this setting a simple approximation of the null distribution can be obtained

empirical via Monte Carlo methods. The simplest of these methods is to permute

the values of X by randomly reassigning each instance to a different node. For an

intuition of the procedure, consider Figure A.1. On the left is our graph G and the

values of a variable shown via the coloring of each vertex. The test is to determine

whether the values of X depend on the structure of G. By permuting the values (the

result of one permutation is shown on the right), both the marginal distribution of X

and all properties of G are preserved while ensuring independence between them. At

each iteration, the bias induced from the graph structure remains constant as we have

not altered it at all, but only the labels, or values, assigned to each node. However,

any dependence between the values of X on neighboring nodes and an instance not

due to aggregation bias will be destroyed. This is exactly the null distribution we
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seek to simulate. Note that the naive procedure of permuting the values, treating the

aggregates as fixed values will return a null distribution that represents the hypothesis

of both no autodependence and no aggregation bias, and is likely to return a high

number of type I errors.
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