2 research outputs found

    A Framework for Evaluating Video Object Segmentation Algorithms

    Get PDF
    Segmentation of moving objects in image sequences plays an important role in video processing and analysis. Evaluating the quality of segmentation results is necessary to allow the appropriate selection of segmentation algorithms and to tune their parameters for optimal performance. Many segmentation algorithms have been proposed along with a number of evaluation criteria. Nevertheless, no psychophysical experiments evaluating the quality of different video object segmentation results have been conducted. In this paper, a generic framework for segmentation quality evaluation is presented. A perceptually driven automatic method for segmentation evaluation is proposed and compared against an existing approach. Moreover, on the basis of subjective results, perceptual factors are introduced into the novel objective metric to meet the specificity of different segmentation applications such as video compression. Experimental results confirm the efficiency of the proposed evaluation criteria

    Real-time moving object segmentation in H.264 compressed domain based on approximate reasoning

    Get PDF
    AbstractThis paper presents a real-time segmentation algorithm to obtain moving objects from the H.264 compressed domain. The proposed segmentation works with very little information and is based on two features of the H.264 compressed video: motion vectors associated to the macroblocks and decision modes. The algorithm uses fuzzy logic and allows to describe position, velocity and size of the detected regions in a comprehensive way, so the proposed approach works with low level information but manages highly comprehensive linguistic concepts. The performance of the algorithm is improved using dynamic design of fuzzy sets that avoids merge and split problems. Experimental results for several traffic scenes demonstrate the real-time performance and the encouraging results in diverse situations
    corecore