59 research outputs found

    A Framework for Efficient and Composable Oblivious Transfer

    Get PDF
    We propose a simple and general framework for constructing oblivious transfer (OT) protocols that are \emph{efficient}, \emph{universally composable}, and \emph{generally realizable} from a variety of standard number-theoretic assumptions, including the decisional Diffie-Hellman assumption, the quadratic residuosity assumption, and \emph{worst-case} lattice assumptions. Our OT protocols are round-optimal (one message each way), quite efficient in computation and communication, and can use a single common string for an unbounded number of executions. Furthermore, the protocols can provide \emph{statistical} security to either the sender or receiver, simply by changing the distribution of the common string. For certain instantiations of the protocol, even a common \emph{random} string suffices. Our key technical contribution is a simple abstraction that we call a \emph{dual-mode} cryptosystem. We implement dual-mode cryptosystems by taking a unified view of several cryptosystems that have what we call ``messy\u27\u27 public keys, whose defining property is that a ciphertext encrypted under such a key carries \emph{no information} (statistically) about the encrypted message. As a contribution of independent interest, we also provide a multi-bit version of Regev\u27s lattice-based cryptosystem (STOC 2005) whose time and space efficiency are improved by a linear factor in the security parameter nn. The amortized encryption and decryption time is only O~(n)\tilde{O}(n) bit operations per message bit, and the ciphertext expansion can be made as small as a constant; the public key size and underlying lattice assumption remain essentially the same

    STP-LWE: A Variant of Learning with Error for a Flexible Encryption

    Get PDF
    We construct a flexible lattice based scheme based on semitensor product learning with errors (STP-LWE), which is a variant of learning with errors problem. We have proved that STP-LWE is hard when LWE is hard. Our scheme is proved to be secure against indistinguishable chosen message attacks, and it can achieve a balance between the security and efficiency in the hierarchical encryption systems. In addition, our scheme is almost as efficient as the dual encryption in GPV08

    Protocols for Authenticated Oblivious Transfer

    Get PDF
    Oblivious transfer (OT) is a basic building block in many cryptographic protocols. In this paper, we exploit some well-known authenticated Diffie-Hellman-based key exchange protocols to build three authenticated 1-out-of-2 oblivious transfers. We show that our proposed protocols are secure in the semi-honest model. We also compare our schemes with three similar 1-out-of-2 OT protocols and show that authentication in our schemes costs only up to either two more exponentiations or one message signing, compared to those with no authentication

    Efficient k-out-of-n oblivious transfer protocol

    Get PDF
    A new k-out-of-n oblivious transfer protocol is presented in this paper. The communication cost of our scheme are n+1 messages of sender to receiver and k messages from the receiver to sender. To the best knowledge of the authors, the com-munication complexity of our scheme is the least. Also, our scheme has a lower computation cost with (k+1)n modular ex-ponentiations for sender and 3k modular exponentiations for the receiver. The security of our scheme is only based on the Decision Diffie-Hellman assumption. Further, we proved the sender’s computational security and the receiver’s uncondition-al security under standard model

    Analysis Of The Simulatability Of An Oblivious Transfer

    Get PDF
    In the Journal of Cryptology (25(1): 158-193. 2012), Shai Halevi and Yael Kalai proposed a general framework for constructing two-message oblivious transfer protocols using smooth projective hashing. The authors asserts that this framework gives a simulation-based security guarantee when the sender is corrupted. Later this work has been believed to be half-simulatable in literatures. In this paper, we show that the assertion is not true and present our ideas to construct a fully-simulatable oblivious transfer framework
    • …
    corecore