675,506 research outputs found

    Interacting Components

    Get PDF
    SystemCSP is a graphical modeling language based on both CSP and concepts of component-based software development. The component framework of SystemCSP enables specification of both interaction scenarios and relative execution ordering among components. Specification and implementation of interaction among participating components is formalized via the notion of interaction contract. The used approach enables incremental design of execution diagrams by adding restrictions in different interaction diagrams throughout the process of system design. In this way all different diagrams are related into a single formally verifiable system. The concept of reusable formally verifiable interaction contracts is illustrated by designing set of design patterns for typical fault tolerance interaction scenarios

    Component-Based Development Using UML

    Get PDF
    Component-based software development (CBD) is a potential breakthrough for software engineering. Unified Modeling Language (UML) can potentially facilitate CBD design and modeling. Although many research projects concentrate on the conceptual interrelation of UML and CBD, few incorporate actual component frameworks into the discussion, which is critical for real-world software system design and modeling. This paper reviews component-based development, including the use of UML for modeling CBD. The paper then discusses the means by which UML extension mechanisms can be used to better support the popular component framework -- CORBA. Two other important component frameworks, DCOM and Web Services, are also discussed

    Petri net modules in the transformation-based component framework

    Get PDF
    AbstractComponent-based software engineering needs to be backed by thorough formal concepts and modeling techniques. This paper combines two concepts introduced independently by the two authors in previous papers. On one hand, the concept of Petri net modules introduced at IDPT 2002 in Padberg [J. Padberg, Petri net modules, Journal on Integrated Design and Process Technology 6 (4) (2002) 105–120], and on the other hand a generic component framework for system modeling introduced at FASE 2002 in Ehrig et al. [H. Ehrig, F. Orejas, B. Braatz, M. Klein, M. Piirainen, A generic component concept for system modeling, in: Proceedings of FASE ’02, Lecture Notes in Computer Science, vol. 2306, Springer, 2002]. First we develop a categorical formalization of the transformation based approach to components that is based on pushouts. This is the frame in which we show that Petri net modules can be considered as an instantiation of the generic component framework. This allows applying the transformation based semantics and compositionality result of the generic framework to Petri net modules. In addition to general Petri net modules we introduce Petri net modules preserving safety properties which can be considered as another instantiation of pushout based formalization of the generic framework

    A Methodology and Supporting Tools for the Development of Component-Based Embedded Systems.

    Get PDF
    International audienceThe paper presents a methodology and supporting tools for developing component-based embedded systems running on resource- limited hardware platforms. The methodology combines two complementary component frameworks in an integrated tool chain: BIP and Think. BIP is a framework for model-based development including a language for the description of heterogeneous systems, as well as associated simulation and verification tools. Think is a software component framework for the generation of small-footprint embedded systems. The tool chain allows generation, from system models described in BIP, of a set of func tionally equivalent Think components. From these and libraries including OS services for a given hardware platform, a minimal system can be generated. We illustrate the results by modeling and implementing a software MPEG encoder on an iPod

    Structured Performance Analysis for Component Based Systems

    Get PDF
    International audienceThe Component Based System (CBS) paradigm is now largely used to design software systems. In addition, performance and behavioural analysis remains a required step for the design and the construction of efficient systems. This is especially the case of CBS, which involve interconnected components running concurrent processes. % This paper proposes a compositional method for modeling and structured performance analysis of CBS. Modeling is based on Stochastic Well-formed Nets (SWN), a high level model of Stochastic Petri nets, widely used for dependability analysis of concurrent systems. Starting from the definition of the system given in a suitable Architecture Description Language, and from the definition of the elementary components, we build an SWN of the global system together with a set of SWNs modeling the components of the CBS and their connections. From these models, we derive performances of the system thanks to a structured analysis induced by the structure of the CBS. We describe the application of our method through an example designed in the framework of the CORBA Component Model

    Analyzing a Pattern-Based Model of a Real-Time Turntable System

    Get PDF
    AbstractDesigners of industrial real-time systems are commonly faced with the problem of complex system modeling and analysis, even if a component-based design paradigm is employed. In this paper, we present a case-study in formal modeling and analysis of a turntable system, for which the components are described in the SaveCCM language. The search for general principles underlying the internal structure of our real-time system has motivated us to propose three modeling patterns of common behaviors of real-time components, which can be instantiated in appropriate design contexts. The benefits of such reusable patterns are shown in the case-study, by allowing us to produce easy-to-read and manageable models for the real-time components of the turntable system. Moreover, we believe that the patterns may pave the way toward a generic pattern-based modeling framework targeting real-time systems in particular

    Abridged Petri Nets

    Full text link
    A new graphical framework, Abridged Petri Nets (APNs) is introduced for bottom-up modeling of complex stochastic systems. APNs are similar to Stochastic Petri Nets (SPNs) in as much as they both rely on component-based representation of system state space, in contrast to Markov chains that explicitly model the states of an entire system. In both frameworks, so-called tokens (denoted as small circles) represent individual entities comprising the system; however, SPN graphs contain two distinct types of nodes (called places and transitions) with transitions serving the purpose of routing tokens among places. As a result, a pair of place nodes in SPNs can be linked to each other only via a transient stop, a transition node. In contrast, APN graphs link place nodes directly by arcs (transitions), similar to state space diagrams for Markov chains, and separate transition nodes are not needed. Tokens in APN are distinct and have labels that can assume both discrete values ("colors") and continuous values ("ages"), both of which can change during simulation. Component interactions are modeled in APNs using triggers, which are either inhibitors or enablers (the inhibitors' opposites). Hierarchical construction of APNs rely on using stacks (layers) of submodels with automatically matching color policies. As a result, APNs provide at least the same modeling power as SPNs, but, as demonstrated by means of several examples, the resulting models are often more compact and transparent, therefore facilitating more efficient performance evaluation of complex systems.Comment: 17 figure

    Model-based validation of CANopen systems

    No full text
    International audienceCANopen is an increasingly popular protocol for the design of networked embedded systems. Nonetheless, the large variety of communication and network management functionalities supported in CANopen can increase significantly systems complexity and in turn, the needs for system validation at design time. We present hereafter a rigorous method based on formal modeling and verification techniques, allowing to provide a comprehensive analysis of CANopen systems. Our method uses BIP, a formal framework for modeling, analysis and implementation of real-time, heterogeneous, component-based systems and the associated BIP tools for simulation, performance evaluation and statistical model-checking
    corecore