445,123 research outputs found

    Named data networking for efficient IoT-based disaster management in a smart campus

    Get PDF
    Disasters are uncertain occasions that can impose a drastic impact on human life and building infrastructures. Information and Communication Technology (ICT) plays a vital role in coping with such situations by enabling and integrating multiple technological resources to develop Disaster Management Systems (DMSs). In this context, a majority of the existing DMSs use networking architectures based upon the Internet Protocol (IP) focusing on location-dependent communications. However, IP-based communications face the limitations of inefficient bandwidth utilization, high processing, data security, and excessive memory intake. To address these issues, Named Data Networking (NDN) has emerged as a promising communication paradigm, which is based on the Information-Centric Networking (ICN) architecture. An NDN is among the self-organizing communication networks that reduces the complexity of networking systems in addition to provide content security. Given this, many NDN-based DMSs have been proposed. The problem with the existing NDN-based DMS is that they use a PULL-based mechanism that ultimately results in higher delay and more energy consumption. In order to cater for time-critical scenarios, emergence-driven network engineering communication and computation models are required. In this paper, a novel DMS is proposed, i.e., Named Data Networking Disaster Management (NDN-DM), where a producer forwards a fire alert message to neighbouring consumers. This makes the nodes converge according to the disaster situation in a more efficient and secure way. Furthermore, we consider a fire scenario in a university campus and mobile nodes in the campus collaborate with each other to manage the fire situation. The proposed framework has been mathematically modeled and formally proved using timed automata-based transition systems and a real-time model checker, respectively. Additionally, the evaluation of the proposed NDM-DM has been performed using NS2. The results prove that the proposed scheme has reduced the end-to-end delay up from 2% to 10% and minimized up to 20% energy consumption, as energy improved from 3% to 20% compared with a state-of-the-art NDN-based DMS

    Smartphone as an Edge for Context-Aware Real-Time Processing for Personal e-Health

    Get PDF
    The medical domain is facing an ongoing challenge of how patients can share their health information and timeline with healthcare providers. This involves secure sharing, diverse data types, and formats reported by healthcare-related devices. A multilayer framework can address these challenges in the context of the Internet of Medical Things (IoMT). This framework utilizes smartphone sensors, external services, and medical devices that measure vital signs and communicate such real-time data with smartphones. The smartphone serves as an “edge device” to visualize, analyze, store, and report context- aware data to the cloud layer. Focusing on medical device connectivity, mobile security, data collection, and interoperability for frictionless data processing allows for building context-aware personal medical records (PMRs). These PMRs are then securely transmitted through a communication protocol, Message Queuing Telemetry Transport (MQTT), to be then utilized by authorized medical staff and healthcare institutions. MQTT is a lightweight, intuitive, and easy-to-use messaging protocol suitable for IoMT systems. Consequently, these PMRs are to be further processed in a cloud computing platform, Amazon Web Services (AWS). Through AWS and its services, architecting a customized data pipeline from the mobile user to the cloud allows displaying of useful analytics to healthcare stakeholders, secure storage, and SMS notifications. Our results demonstrate that this framework preserves the patient’s health-related timeline and shares this information with professionals. Through a serverless Business intelligence interactive dashboard generated from AWS QuickSight, further querying and data filtering techniques are applied to the PMRs which identify key metrics and trends

    Reflections on security options for the real-time transport protocol framework

    Get PDF
    The Real-time Transport Protocol (RTP) supports a range of video conferencing, telephony, and streaming video ap- plications, but offers few native security features. We discuss the problem of securing RTP, considering the range of applications. We outline why this makes RTP a difficult protocol to secure, and describe the approach we have recently proposed in the IETF to provide security for RTP applications. This approach treats RTP as a framework with a set of extensible security building blocks, and prescribes mandatory-to-implement security at the level of different application classes, rather than at the level of the media transport protocol

    Securing the RTP framework: why RTP does not mandate a single media security solution

    Get PDF
    This memo discusses the problem of securing real-time multimedia sessions, and explains why the Real-time Transport Protocol (RTP), and the associated RTP control protocol (RTCP), do not mandate a single media security mechanism. Guidelines for designers and reviewers of future RTP extensions are provided, to ensure that appropriate security mechanisms are mandated, and that any such mechanisms are specified in a manner that conforms with the RTP architecture

    Building a truster environment for e-business : a Malaysian perspective

    Get PDF
    Internet identify ‘security’ as a major concern for businesses. In general, the level of security in any network environment is closely linked to the level of trust assigned to a particular individual or organization within that environment. It is the trust element that is crucial in ensuring a secure environment. Besides physical security, security technology needs to be utilised to provide a trusted environment for e-business. Network security components for perimeter defense, i.e., Virtual Private Networks, firewalls and Intrusion Detection Systems, need to be complemented by security components at the applications and user level, e.g., authentication of user. ID or password security solution may be an option but now with the availability of legally binding digital certificates, security in e-business transactions can be further improved. Time and date stamping of e-business transactions are also of concern to prove at a later date that the transactions took place at the stipulated date and time. Digital certificates are part of a Public Key Infrastructure (PKI) scheme, which is an enabling technology for building a trusted epvironment. PIU comprise policies and procedures for establishing a secure method for exchanging information over a network environment. The Digital Signature Act 1997 (DSA 1997) facilitates the PKI implementation in Malaysia. Following the DSA 1997, Certification Authorities (CAs) were set up in Malaysia. This paper describes a trusted platform for spurring ebusiness and provides a Malaysian perspective of it
    corecore