
Northeastern Illinois University Northeastern Illinois University

NEIU Digital Commons NEIU Digital Commons

University Honors Program Senior Projects Student Theses and Projects

12-2022

Smartphone as an Edge for Context-Aware Real-Time Processing Smartphone as an Edge for Context-Aware Real-Time Processing

for Personal e-Health for Personal e-Health

Muhammad Bangash

Follow this and additional works at: https://neiudc.neiu.edu/uhp-projects

 Part of the Computer Sciences Commons, and the Health Information Technology Commons

https://neiudc.neiu.edu/
https://neiudc.neiu.edu/uhp-projects
https://neiudc.neiu.edu/students
https://neiudc.neiu.edu/uhp-projects?utm_source=neiudc.neiu.edu%2Fuhp-projects%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=neiudc.neiu.edu%2Fuhp-projects%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1239?utm_source=neiudc.neiu.edu%2Fuhp-projects%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages

SMARTPHONE AS AN EDGE FOR CONTEXT-AWARE REAL-TIME

PROCESSING FOR PERSONAL E-HEALTH

A Thesis Project Presented to

the Faculty of the University Honors Program

Northeastern Illinois University

In Partial Fulfillment of the Requirements

of the NEIU Honors Program

for Graduation with Honors

Muhammad Bangash

November 2022

HONORS SENIOR PROJECT

ACCEPTANCE AND APPROVAL FORM

Muhammad Bangash

Smartphone as an Edge for Context-Aware Real-time Processing for Personal e-Health

This senior project has been reviewed by the faculty of the NEIU Honors Program and is

found to be in good order in content, style, and mechanical accuracy. It is accepted in

partial fulfillment of the requirements of the NEIU Honors Program and graduation with

honors.

__

Dr. Ahmed Khaled, Department of Computer Science Date

Faculty Advisor

__

Dr. Xiwei Wang, Department of Computer Science Date

Faculty Reader

__

Dr. Nadja Insel, Department of Earth Science Date

Honors Curriculum & Standards Board

__

Dr. Jon Hageman, Department of Computer Science Date

Coordinator, University Honors Program

12/1/2022

12/2/2022

12/6/2022

6 Dec 2022

iii

ABSTRACT

The medical domain is facing an ongoing challenge of how patients can share their health

information and timeline with healthcare providers. This involves secure sharing, diverse

data types, and formats reported by healthcare-related devices. A multilayer framework

can address these challenges in the context of the Internet of Medical Things (IoMT).

This framework utilizes smartphone sensors, external services, and medical devices that

measure vital signs and communicate such real-time data with smartphones. The

smartphone serves as an “edge device” to visualize, analyze, store, and report context-

aware data to the cloud layer. Focusing on medical device connectivity, mobile security,

data collection, and interoperability for frictionless data processing allows for building

context-aware personal medical records (PMRs). These PMRs are then securely

transmitted through a communication protocol, Message Queuing Telemetry Transport

(MQTT), to be then utilized by authorized medical staff and healthcare institutions.

MQTT is a lightweight, intuitive, and easy-to-use messaging protocol suitable for IoMT

systems. Consequently, these PMRs are to be further processed in a cloud computing

platform, Amazon Web Services (AWS). Through AWS and its services, architecting a

customized data pipeline from the mobile user to the cloud allows displaying of useful

analytics to healthcare stakeholders, secure storage, and SMS notifications. Our results

demonstrate that this framework preserves the patient’s health-related timeline and shares

this information with professionals. Through a serverless Business intelligence interactive

dashboard generated from AWS QuickSight, further querying and data filtering

techniques are applied to the PMRs which identify key metrics and trends.

Keywords: IoMT, AWS, Android, Context-aware, Personal Medical Record, Real-time

iv

ACKNOWLEDGEMENTS

My sincerest appreciation to Dr. Ahmed Khaled, for the continued direction throughout

the timeline of this Honors Senior Project. For the invaluable feedback and comments

that have contributed to a quality piece of work, thank you, Dr. Xiwei Wang and Dr.

Nadja Insel.

My sincerest gratitude is extended to Dr. Jon Hageman for helping pave an educational

pathway that includes participating in the University Honors Program (UHP) and

presenting this work in the 2022 John Sargon Albazi Research & Creative Activities

Student Symposium.

I want to acknowledge the financial support I received from UHP and the Honors Council

of the Illinois Region (HCIR) through their Margaret Messer Student Research Grant.

Additionally, for allowing me to participate in their Spring 2022 symposium and received

an award as 2nd place from the overall 60-plus presentations across the Illinois region.

I would like to acknowledge the Society for the Advancement of Chicanos/Hispanics and

Native Americans in Science (SACNAS) for accepting this work and inviting me to

present at the National Diversity In 2022 STEM Conference, the nation's largest

multidisciplinary and multicultural STEM diversity conference.

My deepest appreciation to Northeastern Illinois University (NEIU), a public university

in Chicago, that recognizes the potential I have and continues to give students numerous

opportunities to succeed both academically and professionally.

v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

TABLE OF CONTENTS .. v

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

LIST OF ABBREVIATIONS .. xi

INTRODUCTION .. 1

LITERATURE REVIEW ... 7

MAIN STUDY.. 16

FUTURE WORK .. 55

SUMMARY AND CONCLUSIONS ... 58

BIBLIOGRAPHY ... 59

vi

LIST OF TABLES

TABLE 1. CAPTURING REAL-TIME DATA VIA INTERNAL SENSORS. 22

TABLE 2. CAPTURING REAL-TIME DATA VIA MEDICAL SENSORS. 22

TABLE 3. CAPTURING REAL-TIME DATA VIA EXTERNAL SERVICES. 23

TABLE 4. CAPTURING REAL-TIME DATA VIA WEARABLE DEVICES. 23

TABLE 5. CAPTURING REAL-TIME DATA VIA WEARABLE DEVICES. 24

TABLE 6. WEATHER API SURVEY FOR EXTERNAL SERVICES. 37

vii

LIST OF FIGURES

FIGURE 1. A REPORT ON THE GROWTH OF IOT SECTOR 3

FIGURE 2. AN EXAMPLE OF AN IOMT-BASED HEALTHCARE SYSTEM 4

FIGURE 3. PROJECT SCOPE ... 4

FIGURE 4. ELECTRONIC HEALTH RECORD ADOPTION BETWEEN 2008-2017 .. 7

FIGURE 5. GENERAL IMPLEMENTATION OF AN IOMT SYSTEM 10

FIGURE 6. AN EXAMPLE OF AN MQTT SYSTEM ... 12

FIGURE 7. MONGODB DOCUMENT STRUCTURE .. 14

FIGURE 8. HOW EDGE COMPUTING WORKS .. 18

FIGURE 9. IOMT FRAMEWORK, MOBILE ARCHITECTURE VERSION ONE...... 18

FIGURE 10. IOMT FRAMEWORK, MOBILE ARCHITECTURE VERSION TWO ... 19

FIGURE 11. IOMT FRAMEWORK, CLOUD ARCHITECTURE 19

FIGURE 12. PROTOTYPE, LANDING PAGE .. 24

FIGURE 13. PROTOTYPE, USER REGISTRATION PAGE .. 24

FIGURE 14. PROTOTYPE, HOME PAGE ... 25

FIGURE 15. PROTOTYPE, INTERNAL SENSORS ... 25

FIGURE 16. PROTOTYPE, SCAN SENSORS ... 25

FIGURE 17. PROTOTYPE, GET USER LOCATION.. 25

FIGURE 18. PROTOTYPE, MEASURE USER PULSE .. 26

FIGURE 19. PROTOTYPE, EXTERNAL MEDICAL SENSORS 26

FIGURE 20. PROTOTYPE, STORE USER RECORDS ... 26

FIGURE 21. PROTOTYPE, VIEW A USER RECORD ... 26

FIGURE 22. PROTOTYPE, USER ANALYTICS .. 27

file:///D:/Symposium/ThesisV3.docx%23_Toc120089584
file:///D:/Symposium/ThesisV3.docx%23_Toc120089586
file:///D:/Symposium/ThesisV3.docx%23_Toc120089596
file:///D:/Symposium/ThesisV3.docx%23_Toc120089597
file:///D:/Symposium/ThesisV3.docx%23_Toc120089598
file:///D:/Symposium/ThesisV3.docx%23_Toc120089599
file:///D:/Symposium/ThesisV3.docx%23_Toc120089600
file:///D:/Symposium/ThesisV3.docx%23_Toc120089601
file:///D:/Symposium/ThesisV3.docx%23_Toc120089602
file:///D:/Symposium/ThesisV3.docx%23_Toc120089603
file:///D:/Symposium/ThesisV3.docx%23_Toc120089604
file:///D:/Symposium/ThesisV3.docx%23_Toc120089605

viii

FIGURE 23. PROTOTYPE, PUSH USER RECORD TO BROKER 27

FIGURE 24. ENABLING MOBILE AUTHENTICATION WITH FIREBASE 28

FIGURE 25. USER REGISTRATION VERSION 1 ... 28

FIGURE 26. USER REGISTRATION VERSION 2 ... 28

FIGURE 27. USER INPUT OF BIRTHDATE .. 29

FIGURE 28. USER LOGIN PAGE .. 29

FIGURE 29. FIREBASE AUTHENTICATION AND REAL TIME DATABASE 29

FIGURE 30. OBSERVE AUTHENTICATED USERS OVER FIREBASE CONSOLE 29

FIGURE 31. OBSERVE DAILY USERS OVER FIREBASE CONSOLE 29

FIGURE 32. OBSERVE FIREBASE REAL-TIME DATABASE 30

FIGURE 33. VIEW USER PROFILE AND CURRENT RECORD 31

FIGURE 34. CLICK HISTORY BUTTON.. 31

FIGURE 35. VIEW HISTORY RECORDS ... 32

FIGURE 36. VIEW HISTORY .. 32

FIGURE 37. SMARTPHONE ENVIRONMENTAL SENSORS 33

FIGURE 38. TYPE TEMPERATURE SENSOR IS DEPRECATED 33

FIGURE 39. SCAN SMARTPHONE ENVIRONMENTAL SENSORS 34

FIGURE 40. RETRIEVE USER LOCATION, GPS DISABLED 35

FIGURE 41. RETRIEVE USER LOCATION, GPS ENABLED 35

FIGURE 42. CAMERA SENSOR HOMEPAGE .. 36

FIGURE 43. CAMERA SENSOR INTEGRATION RESULTS 36

FIGURE 44. API CLIENT REQUEST AND SERVER RESPONSE 37

FIGURE 45. RETRIEVE WEATHER INFO TEST 1 ... 38

file:///D:/Symposium/ThesisV3.docx%23_Toc120089606
file:///D:/Symposium/ThesisV3.docx%23_Toc120089607
file:///D:/Symposium/ThesisV3.docx%23_Toc120089608
file:///D:/Symposium/ThesisV3.docx%23_Toc120089609
file:///D:/Symposium/ThesisV3.docx%23_Toc120089610
file:///D:/Symposium/ThesisV3.docx%23_Toc120089611
file:///D:/Symposium/ThesisV3.docx%23_Toc120089616
file:///D:/Symposium/ThesisV3.docx%23_Toc120089617
file:///D:/Symposium/ThesisV3.docx%23_Toc120089618
file:///D:/Symposium/ThesisV3.docx%23_Toc120089619
file:///D:/Symposium/ThesisV3.docx%23_Toc120089620
file:///D:/Symposium/ThesisV3.docx%23_Toc120089621
file:///D:/Symposium/ThesisV3.docx%23_Toc120089622

ix

FIGURE 46. RETRIEVE WEATHER INFO TEST 2 ... 38

FIGURE 47. EXTERNAL MEDICAL SENSORS BUNDLE, BITALINO 39

FIGURE 48. BITALINO ORIGINAL API .. 40

FIGURE 49. BITALINO ITERATION #1 ... 40

FIGURE 50. BITALINO ITERATION #2 ... 41

FIGURE 51. BITALINO ITERATION #3 ... 41

FIGURE 52. BITALINO ITERATION #4 ... 41

FIGURE 53. BITALINO ITERATION #5 ... 41

FIGURE 54. BITALINO ECG SENSOR FINAL ITERATION 42

FIGURE 55. BITALINO PPG SENSOR FINAL ITERATION 42

FIGURE 56. PERSONAL MEDICAL RECORD JSON SCHEMA 42

FIGURE 57. PERSONAL MEDICAL RECORD JSON VALIDATION........................ 44

FIGURE 58. FEATURES OF MODIFIED PAHO MQTT ANDROID SERVICE 45

FIGURE 59. PATIENT CONNECTED TO CLOUD .. 45

FIGURE 60. PATIENT PUBLISHED PMR TO CLOUD ... 45

FIGURE 61. AWS EC2 INSTANCE RUNNING FOR HIVEMQ BROKER 47

FIGURE 62. AWS EC2 SECURELY CONNECTS WITH A UNIQUE KEY PAIR 47

FIGURE 63. EDITING EC2 INBOUND RULES FOR INCOMING TRAFFIC 47

FIGURE 64. EDITING HIVEMQ BROKER CONFIG TO BRIDGE TO IOT CORE ... 47

FIGURE 65. AWS EC2 INSTANCE RUNNING FOR MOSQUITO BROKER 48

FIGURE 66. EDITING EC2 INBOUND RULES FOR INCOMING TRAFFIC 48

FIGURE 67. GENERATING AWS SECURITY CERTIFICATES FROM IOT CORE 49

FIGURE 68. RULES TO ROUTE TRAFFIC FROM TOPIC TO IOT ANALYTICS 49

file:///D:/Symposium/ThesisV3.docx%23_Toc120089630
file:///D:/Symposium/ThesisV3.docx%23_Toc120089631
file:///D:/Symposium/ThesisV3.docx%23_Toc120089632
file:///D:/Symposium/ThesisV3.docx%23_Toc120089633
file:///D:/Symposium/ThesisV3.docx%23_Toc120089634
file:///D:/Symposium/ThesisV3.docx%23_Toc120089635
file:///D:/Symposium/ThesisV3.docx%23_Toc120089636
file:///D:/Symposium/ThesisV3.docx%23_Toc120089637
file:///D:/Symposium/ThesisV3.docx%23_Toc120089638
file:///D:/Symposium/ThesisV3.docx%23_Toc120089642
file:///D:/Symposium/ThesisV3.docx%23_Toc120089643

x

FIGURE 69. ADDING AWS CERTIFICATES TO MOSQUITO BROKER 49

FIGURE 70. CUSTOM MOSQUITO BROKER CONFIGURATION 49

FIGURE 71. THE FOLLOWING GRAPHIC SHOWS AN OVERVIEW OF HOW YOU

CAN USE AWS IOT ANALYTICS .. 50

FIGURE 72. CREATING A HEALTHCARE CHANNEL IN AWS IOT ANALYTICS 51

FIGURE 73. CREATING AN SQL QUERY JOB FOR THE HEALTH DATASET 51

FIGURE 74. CREATING A CRON EXPRESSION FOR THE SQL QUERY JOB 51

FIGURE 75. RESULT OVERVIEW OF RECORDS AFTER QUERY IS RUN 51

FIGURE 76. CONNECTING HEALTHCARE DATASET WITH QUICKSIGHT 52

FIGURE 77. FILTERING VALUES IN QUICKSIGHT ... 52

FIGURE 78. ORGANIZING DASHBOARD .. 53

FIGURE 79. DISPLAYING PERSONAL MEDICAL RECORDS 53

FIGURE 80. DISPLAYING PATIENT LOCATION IN A REAL-TIME MAP 53

FIGURE 81. DISPLAYING PATIENT LOCATION IN A REAL-TIME MAP 54

FIGURE 82. REAL-TIME INTERACTIVE DASHBOARD FOR HEALTHCARE

STAKEHOLDERS AND PROFESSIONALS ... 54

FIGURE 83. ONE SINGLE CODE BASE, MULTIPLE PLATFORMS 55

FIGURE 84. EXPANDING OUTREACH BY COMMUNICATING WITH SMART

WEARABLE DEVICES .. 56

xi

LIST OF ABBREVIATIONS

API Application Programming Interface

AWS Amazon Web Services

BI Business Intelligence

EC2 Elastic Compute Cloud

ECG Electrocardiogram

EHRs Electronic Health Records

GCP Google Cloud Platform

GDP Gross Domestic Product

GPS Global Positioning System

ICT Information and Communication Technology

IoMT Internet of Medical Things

IoT Internet of Things

MQTT Message Queuing Telemetry Transport

PMR Personal Medical Record

PPG Photoplethysmography

QoS Quality of Service

SNS Simple Notification Service

SMS Short Message Service

SDGs Sustainable Development Goals

UN United Nations

UUID Universally Unique Identifier

WHO World Health Organization

1

INTRODUCTION

The United Nations (UN) assembled in 2015 to introduce globally the 17

Sustainable Development Goals (SDGs) and believes by bringing awareness to these

inclusive goals, will allow communities across the world to put forward collective effort

in mitigating problems such as improving infrastructure, poverty, hunger, and unhealthy

lifestyles. Each of these goals has a role to play, significance, and an impact. The UN has

set the deadline to reach them by 2030. Under the umbrella of SDGs, the project is in

alignment with the vision of these goals by providing the groundwork capabilities to

improve infrastructure for personalized healthcare.

Long-term planning is essential for organizations to keep their mission afloat.

Strategic decisions by stakeholders ensure employees continue being employed and the

organization reaches quarterly initiatives. When organizations create quarterly roadmaps,

data-driven decisions can play a critical role in these high-stake meetings. In addition to

data, rapport-building with clients and customers is one of the approaches businesses and

corporations utilize to increase trustworthiness and create profitable relationships. The

Four Ps’, Patients, Providers, Payors, and Policymakers are the key stakeholders who

shape the direction of healthcare institutions.

One of the strategic goals that can benefit these stakeholders is frameworks for

increasing meaningful relationships between caregiver and their patients. Unlike non-

essential organizations, the institutions that make up the medical domain are vital for

keeping the population healthy, which results in a more productive economy.

As the COVID-19 pandemic ravaged communities, we witnessed the ripple

effects it had. For example, medical institutions were heavily strained as COVID-19

2

cases doubled, tripled, quadrupled, and exponentially increased in a gradual manner. The

precedence in checkups was given to patients diagnosed or having pre-COVID-19

symptoms. However, the patients who needed general checkups for their vital

information (i.e., pulse and oxygen levels) were not given the same precedence. These

issues have called for an acceleration to integrate cloud services, real-time mobile

applications, and new frameworks for personalized healthcare.

In 2015, according to the Economic Strategy Institute, a nonprofit that tracks the

US market, reports industry spending in the cloud services sector continues to increase.

At the current time, the economy will add three trillion in the gross domestic product

(GDP), which will create eight million new jobs by 2025. Cloud services include data

analysis, the Internet of Things (IoT), and cloud computing. The properties of IoT are as

follows: they need a unique identity, the ability to capture data, the ability to be

accessible and programmable by users, and most importantly, the ability to communicate

with other devices. A “Thing” can be any device that provides service, offers

functionality, and forms the network of IoT. A “Thing” can offer more than one service!

“The internet will disappear. There will be so many…devices, sensors, things that

you are wearing, things that you are interacting with, that you won’t even sense it. It will

be part of your presence all the time.”

-Eric Schmidt, Google Chairman

A Gartner report explains that the number of connected Things will reach 14.2

billion in 2019 and top 25 billion by 2021 (Fig. 1). In the healthcare industry, these

internet-connected devices and applications play a vital role for medical personnel such

as remote health monitoring and smart alert systems.

3

Note. Retrieved from Salesforce. The Internet of Things Connects Customers to Their World. Accessed 10

Nov. 2021.

In the healthcare industry, the collection and storage of personal medical data are

becoming increasingly dependent on the use of cloud computing and secure

communication. Information and Communication Technology (ICT) allows the

Figure 1. A report on the growth of IoT sector

4

healthcare industry to access, store, modify, and relay information. For example,

“identifying health symptoms, locating health-care providers, and storing personal health

information is now (sic) more common among the general population and is critical for

improving quality of life for many individuals” (Harrington et al., 2020). These

healthcare services are also called mHealth or eHealth.

Under the umbrella of IoT is the Internet of Medical Things (IoMT). In the

healthcare industry connected devices play a big role for medical personnel such as

tracking patient blood sugar levels through remote health monitoring and smart alert

systems for notifying professionals. Figure 2 illustrates an example of the typical IoMT

architecture of a healthcare system.

Figure 2. An example of an IoMT-based healthcare system

Note. Retrieved from (Alam et al., 2018). A Survey on the Roles of Communication Technologies in IoT

Based Personalized Healthcare Applications. Accessed 15 Nov. 2021.

Project Scope and Proposal

The scope of this project falls under the umbrella of the Internet of Things as the

Internet of Medical Things with a focus on personal e-Health, as illustrated in Figure 3.

Figure 3. Project scope

5

The medical domain is facing ongoing challenges such as retrieving a clear

picture of the patient, essential health timeline is lost, real-time capabilities, and

implementing security. The traditional medical record includes information such as the

patient’s name, heart rate, blood pressure, and electrocardiogram (ECG). For a doctor,

such a record does not give a full picture of the medical status and the patient’s living

environment. Therefore, in this project, we will create context-aware personal medical

records (PMRs) that capture the user environment such as the current date, city, state, and

weather.

A multilayer framework can address these healthcare challenges through a

physical layer, an edge layer, and a cloud layer. The physical layer consists of the

hardware utilized such as medical sensors. The edge layer consists of a mobile device

being used to communicate with the physical layer. The cloud layer consists of utilizing

multiple cloud platforms to give the framework user security, real-time cloud capabilities,

an MQTT broker, a gateway to cloud services, and an interactive dashboard for

healthcare stakeholders and professionals.

In this project, the focus is on: 1) device connectivity, where we connect

smartphone sensors and medical Bluetooth sensors to smartphones; 2) data collection,

where medical sensors and services collect and report to smartphones; 3) interoperability,

where the smartphone performs local real-time processing and protocol-independent data

for friction-less data processin2g and analysis (through a communication broker and the

internal database); 4) Building context-aware personal medical records or PMRs, to be

securely stored and further processed by a cloud platform and utilized by authorized

users, medical staff, applications, and medical institutions.

6

In this project, we are building real-time context-aware PMRs through mobile

security services from Google Cloud, internal sensors of a smartphone, two external

Bluetooth medical sensors, external services (weather, humidity), and a local database

that reports such collected data to an Android-based smartphone. We are utilizing the

MQTT protocol and a customized bridge between the broker and gateway that will allow

the patient to share their PMRs securely with the second cloud provider. These PMRs

will then be processed by a cloud platform (AWS) to be further queried, filtered, and

visualized in an interactive real-time dashboard for authorized medical staff and

institutions. Furthermore, the cloud providers have built-in firewall protections and

follow popular compliances which will offer this IoMT framework, a multi-layer security

protection.

The thesis is structured as follows. Chapter 1 (Literature Review) will be on

healthcare challenges and related IoMT frameworks. Chapter 2 (Main Study) will address

the multilayer framework more deeply, implementation challenges, findings, and results.

Chapter 3 (Future Work) will address a direction to expand and improve the implemented

framework. Chapter 4 (Summary and Conclusions) will be a summary of the thesis.

7

LITERATURE REVIEW

To create a context-aware medical record, we need to first understand the history

and challenges in the field of healthcare. The translations of Egyptian medical papyri

writings (1,600-3,000 BC) demonstrate the usage of writing a patient's medical history, or

as we call it today a medical record (Evans, 2016). Millennia later, in February 2009,

President Barack Obama signed the American Recovery and Reinvestment Act, which

included shifting medical records from the traditional file-based system to a more modern

digitized system of electronic health records (EHRs). A decade later, in 2019, the Office

of the National Coordinator for Health Information, which oversees the development of

national health technology infrastructure and is part of the U.S. Department of Health &

Human Services, reported “EHRs (sic) adoption has more than doubled since 2008 from

42% to 86%” (Fig. 4).

Figure 4. Electronic health record adoption between 2008-2017

Note. Retrieved from Office of the National Coordinator for Health Information. Accessed 20 Nov. 2021.

However, new issues regarding EHRs have emerged. As the COVID-19 pandemic

emerged worldwide, the traffic of patients increased, and a report by STAT, a trusted and

authoritative journal about health, medicine, and the life sciences.

“Because of the way most modern electronic health record systems are built, it

can take a clinician a long time to get a clear picture of the patient in front of him

8

or her. That’s because a patient’s electronic health record is split into many tabs.

Some information is under the problem list, some under medications, some under

imaging, and so on. The essential timeline of health data is lost. This may mask

underlying vulnerabilities because it is difficult to reassemble a patient’s data into

a cohesive narrative, causing an incorrect view of the patient’s risk for Covid-19”

(Perakslis & Huang, 2020).

A recent study published in the Journal of Medical Internet Research, states “The

EHR’s function will be more optimal if patients can share their health data with

healthcare providers. Personal health records can help patients share their data with

healthcare providers and provide useful information during health emergencies”

(Harrington et al., 2020). In this project we will focus on addressing these problems and

issues by creating an IoMT framework such as an implementation of a cloud dashboard

which can be accessible through multiple healthcare providers. Additionally, a set of

features that demonstrate[s] real-time processing and a complex data flow among an

interface, cloud platforms, Bluetooth medical sensors and a smartphone device.

Related work

This section will address related studies that help support the proposed IoMT

framework. In “Using Vital Sensors in Mobile Healthcare Business Applications:

Challenges, Examples, Lessons Learned,” a conference paper explains a sensor

framework that shows different ways of mobile business application development with

the integration of external sensors (Schobel et al., 2013). A part of the paper consists of

developing a mobile fitness application “XFitXtreme” and using external sensors to

provide relevant data such as vital signs for athletes during their workout sessions. The

9

authors mentioned there is an increasing trend of external sensors being used for data

collection in the field of healthcare. In the field of healthcare, these external sensors can

be utilized to measure a patient’s data such as their vital signs (pulse and oxygen levels).

The study explains mobile applications on smartphones and tablets are continuing to play

a role in the medical domain. Additionally, research on personalized healthcare and IoMT

frameworks which utilize smartphones as an edge layer continues to hold value and

popularity in the medical domain.

The XFitExtreme is based on an Android framework. The application establishes

and communicates with external sensors using Bluetooth (2.4GHz frequency). The

application uses the SQLite database to store user data locally such as recorded vital

signs. The first external sensor tested was the Polar WearLink+ Heart Rate Monitor. The

second external sensor tested was the MedChoice Oximeter MD300C318T, providing

both heart rate and oxygen saturation values. In this study, a limitation was found that

there can be an interruption in the connection between the external sensors and the

application (Schobel et al., 2013). It is important to note that in the medical domain stable

connectivity holds significance and importance as professionals are dependent on

accurate data for a proper diagnosis.

In an article published in the Journal of Medical Internet Research, which

includes a section on an IoMT system for patient monitoring, the authors state, “Over the

last years, different types of IoMT architectures were proposed and investigated. These

are generally multilayer systems that intend to assure safe data transmission and

communication. Recent implementations generally propose three main layers, a wearable

sensing layer, an intermediary data acquisition and transmission layer and a cloud

10

computing layer” (Silva & Tavakoli, 2020). Similarly, this project framework is based on

a multi-layer system (Fig. 5).

Figure 5. General implementation of an IoMT system

Note. Retrieved from Journal of Medical Internet Research. Domiciliary Hospitalization through Wearable

Biomonitoring Patches: Recent Advances, Technical Challenges, and the Relation to Covid-19. Accessed

20 Dec. 2021.

Previously implemented middleware telemonitoring healthcare system monitors,

such as Raspberry Pi boards, have been used to collect body sensors' data for patients’

healthcare parameters. However, the Raspberry Pi board displays patient information on

a webpage supported by HTTP, where patients and doctors can communicate without a

physical presence (Verma et al., 2022). So far, physicians and family members can access

patients' health parameters using the body wireless sensor network (BWSN). Other

developments, such as the Ciphertext-policy-attribute-based encryption, have been

utilized with the webserver to alarm ambulances when the patient's health is at risk (Tsao

et al., 2022). A significant challenge with these developments is that it is difficult to

equip the elderly with the growing new technologies since they are limited from reality

with smartphones and computing. Smart healthcare based on IoT reduces the complexity

11

and complications by ensuring intelligent data integration and maintaining such

information through cloud service. The MQTT protocol has its significance in monitoring

people at risk. It ensures patients and physicians to act in time for disease prevention and

early professional intervention in case of a medical emergency.

Real-Time Health Monitoring with MQTT

This section will address MQTT systems serving as healthcare middleware.

Healthcare challenges such as speed, price, and complexity will ease over time with the

implementation of systems supported by the IoT. There is numerous open and standard

middleware, such as MQTT based on IoT, which is easily deployable in healthcare

systems. MQTT protocol services are open and standard middleware for outer

connections supported by IoT technology. For computer science professionals, other

popular middleware outer connections that are easily deployable include representational

state transfer (REST), API, data distribution service (DDS), advanced message queuing

protocol (AMQP), extensible messaging and presence protocol (XMPP), java message

service (JMS), and simple object access protocol (SOAP) (IJCSMC Journal & Hasan,

2018). MQTT protocols have high ability and low power consumption, making them the

best choice for IoT networks (Masykur et al., 2020). It is a lightweight messaging

protocol that enhances the transformation and distribution of data. It is distinct from the

HTTP report/request model since it transmits data from one machine to another (as

illustrated below in Figure 6). It can also reduce network bandwidth issues. Thus, making

it highly reliable even when using a reliable connection with the assurance of message

delivery even with disconnection. MQTT has an information-flow approach that

simplifies data sensing, analysis, visualization, and user profile. IBM created the MQTT

12

protocol in the 1990s, which is an advanced and convenient technology for healthcare

systems. With limited technology in the 1990s, IBM implemented the asynchronous

messaging protocol connecting message senders and receivers in space and time (Tsao et

al., 2022).

Figure 6. An example of an MQTT system

Note. Retrieved from (Saminathan & Geetha, 2018). Real Time Health Monitoring System Using IoT.

Accessed 20 May. 2022.

A significant aspect of MQTT is the scalable and reliable network environments

with the global guarantee of sending and receiving simple commands in different quality

of service (QoS). Technology advancement requires MQTT to undergo modification for

its future ability.

Relational Database

This section will address the historical advancement of the database. In previous

decades, when databases did not exist, all the information was documented on paper and

stored in archives. Organizations would use physical files for a product, employee, or

client. This was a manual file system that performed well if the content was small but not

applicable for scaled applications. Commercial organizations faced the issue of easy

accessibility and other limitations such as loss of records which continued until the birth

13

of the relational database. In 1970, a scientist from the International Business Machines

Research Laboratory, Edgar Frank "Ted", released a paper “A Relational Model of Data

for Large Shared Banks” (2001). This paper “introduced a new way to model data. It

elaborated a way of building a bunch of cross-linked tables that would allow you to store

any piece of data just once” (Kelly, 2020). Nine years later, in 1979, Oracle, a technology

corporation, pushed to the market a commercial relational database (Kelly, 2020). Further

advancements were made to the relational database.

NoSQL and Cloud Computing

This section will address the historical advancement of relational databases and

the era of cloud computing platforms. In the late 2000s, as the prices of computer storage

declined, NoSQL databases were introduced. Some examples of NoSQL databases were

Google BigTable and Cassandra. The earlier relational databases were designed to

compute and store onto a single system (server). As internet usage increased, there was a

need for a more scalable database across multiple servers. Multiple servers connected to

the internet are called the cloud.

The concept of cloud computing means a group of thousands of computers

connected by a network, providing users with cloud applications and storage. The current

popular cloud providers are Amazon Web Services (AWS), Azure from Microsoft, and

Google Cloud Platform (GCP). The goal of these cloud providers is to allow small

businesses or big organizations to grow and succeed in real-world usages such as your

local shop or Netflix streaming. Further, if your local shop has forty customers daily,

only that amount of cloud storage will be used. However, if the local shop grows to two

hundred customers daily, the owner does not need to worry about a storage deficiency,

14

the cloud will scale as appropriate. NoSQL databases over the cloud are now used across

the healthcare and financial industries to store sensitive data.

MongoDB and DynamoDB

This section will address two current popular NoSQL databases. NoSQL

databases have garnered attention and have become popular. There are two market

leading NoSQL databases; the first being MongoDB, a document-oriented database

program, in which data is distributed effectively and scaled using either of the cloud

providers. In MongoDB, you also do not need to join the data as a table as compared to

the traditional relational database. MongoDB stores data in documents which results in

faster queries. “No, Clippy, I'm not talking about Microsoft Word Documents. I'm talking

about BSON documents. Figure 7 illustrates that “BSON is a binary representation of

JSON (JavaScript Object Notation) documents” (Schaefer, 2020). In contrast, JSON

depicts organized data in a way that is easily compatible with the conceptual world that

most developers inhabit. The JSON format is used for serializing and transmitting

structured data over a network connection. It is primarily used to transmit data between a

server and web applications. Web services and APIs use JSON format to provide public

data. JSON can be used with modern programming languages.

Figure 7. MongoDB document structure

Note. Retrieved from MongoDB. Documents. Accessed 10 Nov. 2021.

15

The second NoSQL database is DynamoDB, which is limited to AWS. One of the

key differences between these two is that DynamoDB’s infrastructure scalability is fully

managed by AWS and can be available with a few clicks while MongoDB requires

manual configuration (Wickramasinghe, 2021). As the choice of cloud provider is AWS,

we choose DynamoDB for the proposed framework.

16

MAIN STUDY

Context-aware Healthcare System

This section addresses the proposed IoMT framework and its components. The

goal of the project is to design, implement, and test a framework consisting of three

layers for an edge-based IoMT context-aware healthcare system that demonstrates a set

of mobile features with real-time processing capabilities. Figures 8-11 illustrates the

project’s tools, components, and three layers:

The first layer, the physical layer, captures vital signs and information about the

user’s environment before transmitting such collected data to the second layer. The

second layer, the edge layer, provides real-time processing with edge devices. The second

layer consists of a smartphone being utilized as an “edge computing device” to visualize,

analyze, and store medical records in a local database and then report these stored

medical records by first going through a secure middleware - an MQTT broker. The

mobile application for personal healthcare is developed for an Android ecosystem.

For Android developers, the popular way of programming applications is with

languages such as Flutter, Kotlin, and Java. This project is written in Java. For mobile

security, user registration, and data synchronization, Firebase Authentication and Real

Time Database from Google Cloud were utilized. For retrieving the current location of

the mobile user, we utilized Geocoder, an API service that takes advantage of internal

GPS sensors. For retrieving the weather, there is a survey done in the External Weather

Services section for the different APIs (Bush, 2019). We utilized Openweathermap API.

There were two external medical sensors utilized, ECG and PPG, purchased from a

company called BITalino. We utilized their provided API to communicate with these

17

sensors and further optimized it by visualizing the retrieved data frames through a library

called Androidplot. For the local database in the Android application, there were two

options either Room or SQLite. We utilized SQLite.

The MQTT broker allows for further communication with the third layer that

hosts cloud services for further data processing. The third layer, the cloud layer, utilizes a

gateway to bridge the medical information that is published to the broker to the on-cloud

microservices. For the MQTT broker library, the middleware, we utilized and optimized

the open-source Mosquito library from Eclipse to bridge communication with AWS IoT

Core. For configuring the Mosquito library and hosting it as the MQTT broker, AWS

Elastic Compute Cloud (EC2) was utilized. With EC2 a cloud developer can setup up an

instance or server. For communicating from the Android device to the MQTT broker, a

library called Paho MQTT Android Service was utilized. AWS IoT Core was utilized to

generate security certificates and create IoT rules which serve as the gateway from the

broker to the cloud services.

AWS IoT Analytics, a cloud service, was utilized to create a healthcare dataset

from the retrieved records and to further process them by querying. A daily scheduler

(cron) is applied over AWS to query records every minute. AWS QuickSight, a cloud

service, was utilized to interact with the healthcare dataset and to publish a real-time

interactive dashboard. Chapter 4 (Future Work) will also address SMS notifications for

important medical alerts through AWS SNS. Additionally, a secure cloud database

through AWS DynamoDB can be utilized to develop a medical portal.

18

Figure 8. How edge computing works

Note. Retrieved from (Gold & Shaw, 2022). What is edge computing and why does it matter? Accessed 10

Nov. 2021.

Figure 9. IoMT framework, mobile architecture version one

19

Figure 10. IoMT framework, mobile architecture version two

Figure 11. IoMT framework, cloud architecture

Project Lifecycle

This section addresses the project lifecycle. Before discussing the project

lifecycle, this project follows a hybrid management approach by combining waterfall and

agile practices. In an agile practice, the project phases overlap, and tasks are completed in

iterations, which are called sprints. The timeline of sprints can range from two to four

weeks and the goal is to focus on delivering value quickly to stakeholders and clients. In

20

the waterfall practice, is a sequential order of project phases linked to clearly defined

expectations and goals, which is a linear approach.

In phase one, initiating the project: this is the launchpad for the entire process of

the project. In this phase, we define project goals and deliverables, identify the budget

and resources, and any other details that can impact the successful completion of the

project (Google Project Management:, 2021a). Consequently, I will write a detailed set

of instructions, consisting of defining the smartphone application features and each

component of the project. By documenting all this information in one place such as a

proposal will showcase the project's value and earn an approval from faculty members to

move forward with it.

In phase two, creating a plan, this is a breakdown of all the tasks that will need to

be completed. For example, a schedule, resources, and a plan for risk and change such as

what to do in case my project encounter unexpected problems (software changes, quality

control, sabbatical leave).

In phase three, executing and completing tasks: the development of the

smartphone application and implementation of the cloud architecture. I will then attempt

to develop each component and look for alternatives when needed. For those components

that cannot be implemented due to complexity, show some possible further steps.

Subsequently, as part of the designing process, designers follow major

conventions, and affordances, understand context such as the user’s emotional state and

implement innovative user experience (UX) through a friendly interface (Kim, 2015). In

the current era, an everyday computational device or interactive software revolves around

the principles defined in Human-Computer Interaction (HCI). The reason is, that human

21

beings are complex. Hence, HCI uses a variety of disciplines such as engineering,

psychology, ergonomics, and design, to create a more compelling product than

competitors, and an efficient product for users (Kim, 2015). A good user experience

includes simplicity and creativity such as removing unnecessary user steps, buttons, and

pages. Moreover, at NEIU, Java is the common programming language that is taught

throughout computer science courses. If this project is extended horizontally or vertically,

another student will be able to pick up and continue within a short period of time.

Consequently, I will ensure the code base is modular and remove the redundancy

of extra lines of code by making use of packages, classes, methods, and parameters.

Inside each package we have classes and inside each class, we have its methods. It is

important to call the methods and pass the parameters whenever needed. In addition, I

will ensure the code is commented on and simple naming conventions are used. So, if the

project expands in the future, it will be easier for developers for transitioning and

refactoring as necessary. Accordingly, after the implementation is over, there will be user

testing for the application use cases and features. This ensures when presenting a live

demo such as to stakeholders, they are happy with the results. Some examples of bugs

testers should be on the lookout for include functional errors, algorithmic errors, data

duplication, error handling, and hardware defects.

In phase four, closing the project, all the resources have been accounted for, have

crossed the timeline, and it is time to close the project. Why is it important to close?

Closing the project is a chance to evaluate how the project went. You can make note of

what worked and what did not so you can plan better for next time. Even if the project is

a massive success, it is helpful to take time to reflect. Closing the project is also a great

22

way to connect with anyone from within or outside the organization who may have had

an interest in the project's goals and outcomes (Google Project Management:, 2021).

Project Use Cases

 This section addresses the use cases defined for the IoMT framework. The below

use cases for the patient are meant to give a direction (see Tables 1-5). The plan is to

implement as many use cases as possible during the project timeline. Defining use cases

of the users before moving to the prototype phase will help reduce future refactoring and

gives a clear picture of the application features that will need to be developed. For the

next paragraphs, I will be narrating in the user story template commonly used in agile

methodology. This “particular template, often referred to as ‘As a… I want to… So

That…’ (User Story Templates in Agile, 2015).

Table 1. Capturing real-time data via internal sensors.

 Sensor Measurements Medical Relevance

Ambient Indoor What is the temperature around the patient?

GPS Location Where is the patient located?

Accelerometer Physical activity How active is the patient?

Camera image Pulse What is the pulse of the patient?

As a patient, I want to capture the indoor temperature so that my doctor can learn

about my environment. As a patient, I want to capture the current location so that my

doctor can know where I am located. As a patient, I want to capture my physical activity

so that my doctor can know how active I am. As a patient, I want to capture my pulse so

that my doctor can notify me of any irregularities.

Table 2. Capturing real-time data via medical sensors.

23

 Sensor Measurements Medical Relevance

ECG Electrocardiography (ECG) What is the heart rate of the patient?

PPG Photoplethysmography (PPG) What is the heart variation of the patient?

As a patient, I want to capture my ECG so that my doctor can learn about my

heart condition. As a patient, I want to capture my PPG so that my doctor can learn my

heart variation.

Table 3. Capturing real-time data via external services.

 Service Measurements Medical Relevance

Weather Temperature What is the temperature around the patient?

Weather Humidity What is the humidity around the patient?

Weather Pressure What is the pressure around the patient?

Weather Weather Pattern What are the cloud conditions around the patient?

 As a patient I want to capture multiple weather parameters such as the

temperature, humidity, pressure, and cloud pattern so that my doctor can learn about my

environmental surroundings.

Table 4. Capturing real-time data via wearable devices.

Sensor Measurements Medical Relevance

Altimeter Air pressure What is the altitude of the patient?

Heart rate Pulse What is the heart rate of the patient?

Pulse oximeter Sp02 What is the oxygen level of the patient?

24

 As a patient, I want to capture my air pressure so that my doctor can learn about

my altitude. As a patient, I want to capture my pulse and Sp02 so that my doctor can

notify me of any irregularities.

Table 5. Capturing real-time data via wearable devices.

Metrics Measurements Medical Relevance

Duration of exercise What is the exercise routine of the patient?

Hours slept What is the sleep pattern of the patient?

As a patient, I want to capture the duration of exercise so that my doctor can learn

about my routine. As a patient, I want to capture the hours I slept so that my doctor can

learn about my sleep pattern.

Prototyping

When prototyping, the best practice is to include stakeholders or clients’ input so

they can approve the design before the development phase. As illustrated below, the

prototype designed for the mobile personal healthcare application (see Fig. 12-23).

Figure 12. Prototype, landing page

Figure 13. Prototype, user registration page

25

Figure 16. Prototype, scan sensors Figure 17. Prototype, get user location

Figure 14. Prototype, home page Figure 15. Prototype, internal sensors

26

Figure 21. Prototype, view a user record

Figure 18. Prototype, measure user pulse

Figure 19. Prototype, external medical sensors

Figure 20. Prototype, store user records

27

Mobile Authentication

The Google Cloud Adoption Framework (GCAF) assists with determining the

essential tasks and goals that will speed up an organization’s cloud journey. In GCAF,

there are four themes defined to develop a cloud-first organization. That is introducing

stakeholders and their teams to four adoption themes “continuously learn, effectively

lead, efficiently scale, and comprehensively secure in the cloud” (Google Cloud, 2022).

Google Cloud has many services for accomplishing a variety of technical and

business objectives. A service called Firebase helps adapt the fourth GCAF theme,

“Security”. Leveraging authentication with a Gmail account will help the patient feel

peace of mind. One of the benefits of cloud adoption is that in-house security does not

need to be developed as the provider have comprehensive security models deployed.

As illustrated in the figures below, when a new user is created, Firebase employs

a randomly generated unique identifier or UUID. This identifier has a low probability of

Figure 22. Prototype, user analytics

Figure 23. Prototype, push user record to broker

28

being repeated. Its importance takes effect when processing the record over the cloud.

The UUID serves as a key when categorizing retrieved records from different users. The

first step to authentication is utilizing the Firebase console. I will ensure the account has

billing enabled and then add the application package name. The Firebase console will

then generate google-services.json which will be specific to the project files. Below

figures showcase the security and user registration implementation (see Figs. 24-31).

Figure 25. User registration version 1

Figure 24. Enabling mobile authentication with Firebase

Figure 26. User registration version 2

29

Figure 29. Firebase Authentication and Real Time Database

Figure 30. Observe authenticated users over Firebase console

Figure 31. Observe daily users over Firebase console

Figure 27. User input of birthdate

Figure 28. User login page

30

There is an importance to retain certain user attributes such as the UUID, first

name, last name, date of birth, age, etc. For instance, if a user deletes the mobile

application, the attributes will also be deleted as they are synced locally. Having them

synced with a real-time cloud database fixes the issue (see Fig. 32). Upon registration,

when such attributes are generated and populated, in parallel, the application will sync

with a NoSQL document database, Firebase Realtime Database. Data is available even

when your app is not running because it is synced in real-time across all clients (Google

Developers, 2022a). Data is synchronized in real-time to every connected client and

stored in a JSON format. With Android and Apple devices you can create cross-platform

apps that automatically update with the most recent data across all of your clients while

using a single Realtime Database instance (Google Developers, 2022a).

Figure 32. Observe Firebase Real-Time Database

Local Mobile Database

In our framework, the information collected in real-time from the user

environment builds the personal medical record. The database utilized for the mobile

application is called SQLite Android. As it is lightweight, and embedded with the

31

operating system, Cleverroad, a mobile app development company, states “the main idea

of SQLite is to get rid of server-client architecture and store all the app information

directly on a mobile device. In such a manner, most Android developers have been using

it for more than 20 years for the projects where they need to store the data on a device,

not on a server” (Roshina, 2022). SQLite is now implemented and the PMRs are being

successfully stored (see Fig. 33-36). Each attribute populates after its data has been

collected. The user history is sorted by date and time. Every time a user pushes a record

to the cloud, that record will be moved to the database. After, a new empty record will be

created to then be further populated. One function to further improve the user experience

is giving the ability s to manually edit, update, and delete the existing record.

 Figure 33. View user profile and current record

Figure 34. Click history button

32

Internal Sensors

Smartphones have embedded sensors or internal sensors. These sensors can be

utilized to create a context aware PMR. Context-awareness is a systematic approach to

gather information from the user surroundings. Some old smartphone sensors used to

include environmental sensors: an ambient temperature-- provides the current ambient

(room) temperature, heartbeat-- reports the heart rate of a user, pressure-- reports the

pressure around the user, humidity-- reports the humidity around the user (Fig. 37).

The internal temperature sensor, “TYPE_TEMPERATURE”, cannot be used to

accurately read the environment (Fig. 38). In contrast most mainstream smartphone

devices have internal temperature sensors to prevent the CPU, battery, and components

Figure 35. View history records Figure 36. View history

button

33

from overheating. These sensors inform the device to shut down when the temperature is

either extremely hot or cold. There are applications in the Google Play Store that utilize

this specific sensor and customized algorithms to predict an ambient reading.

Note. Retrieved from Google LLC. Environment sensors. Accessed 08 Aug. 2022.

Note. Retrieved from Google LLC. Type Temperature Sensor. Accessed 08 Aug. 2022.

Consequently, it is a rarity now to find a sensor in modern mainstream

smartphones that is dedicated to accurately report a user’s ambient room temperature.

Additionally, Samsung and Motorola, on the early stages of the smartphone era , used to

equip their Android generations such as Galaxy S4 and Note 3, Moto X smartphones with

physical temperature sensors (Shams, 2016). However, these manufacturers did not trust

the accuracy due to the internal body heat generated from different device components.

Consequently, on the mobile application I have created a quick function to scan the

Figure 37. Smartphone environmental sensors

Figure 38. Type Temperature sensor is deprecated

34

device’s environmental sensors and will return true if any of them are found. I have tested

this function with an Android smartphone called TCL 10L and it returned false (Fig. 39).

For retrieving the current location, the internal sensor Global Positioning System

(GPS) will be utilized. The grid system that enables us to locate absolute or precise places

on the surface of the Earth is made up of latitude and longitude (National Geographic

Society, 2010). Latitude and longitude can be used to pinpoint certain locations and for

identifying landmarks. For pharmacies who only wish to reach a customer base in the

vicinity of each of their establishments, latitude and longitude targeting can be an option

(Healthy Ads, 2021). The app utilized an Android class called Geocoder. According to

the documentation, Geocoder is a “class for handling geocoding and reverse geocoding.

Figure 39. Scan smartphone environmental sensors

35

Geocoding is the process of transforming a street address or other description of a

location into a (latitude, longitude) coordinate” (Google Developers, 2022b). Geocoder

has been implemented and is functioning (as illustrated in Fig. 40-41). Programmatically,

I will first check if the GPS status of the user is enabled. If enabled, the application will

then try to retrieve the location. The location is pinpointed using satellites.

Figure 40. Retrieve user location, GPS disabled Figure 41. Retrieve user location, GPS enabled

Measuring the pulse was achieved through the camera image sensor. Simply the

user needs to place finger on the rear-facing camera lens and the reading will be recorded

via a customized algorithm (as illustrated in Fig. 42-43).

36

Figure 42. Camera sensor homepage Figure 43. Camera sensor integration results

Another sensor that can help further expand the record is the accelerometer,

which is a motion sensor. Although, I was not able to implement it, according to the

documentation:

Most Android-powered devices have an accelerometer, and many now include a

gyroscope. The availability of the software-based sensors is more variable

because they often rely on one or more hardware sensors to derive their data.

(Google Developers, 2022c)

External Weather Services

The weather information surrounding the patient can be obtained through an

Application Programming Interface (API). There are several benefits of utilizing APIs.

37

For instance, some benefits include outsourcing, increased mobility, moving from one

service by changing data endpoints, increased developer productivity, and connectivity.

For example, when a client (user) requests information such as weather, the

healthcare application will send a request to the server. The request is handled over a

server, doing all the heavy lifting as their computing power is more powerful than

personal computers or mobile phones. Finally, returning the needed information as a

response back to the user (Fig. 44).

Figure 44. API client request and server response

Note. Retrieved from Salesforce Trailhead. API Basics. Accessed 20 Aug. 2022.

There are several weather APIs that developers can use for the integration.

Tomorrow.io, is a paid service, and is enterprise-grade (i.e., used by Uber and Google

Cloud). It provides worldwide assistance and returns meteorological information on

weather patterns, moon phases, pollen counts, and air quality, as well as fire danger

(Bush, 2019). Since this is a paid service, I researched and opted for a free one instead,

called OpenWeatherMap API (see Table 6).

Table 6. Weather API Survey for External Services.

Weather API Pricing Free Tier

OpenWeatherMap free, paid plans 1,000 calls per day

38

Stormglass free, paid plans 50 requests per day

Yahoo Weather free, paid plans 2,000 calls per day

AccuWeather limited trial, paid plans 50 calls per day

 OpenWeatherMap through one API call can give essential weather data in one

response. As shown in the below, the API has been implemented (see Fig. 45-46).

Figure 45. Retrieve weather info test 1

Figure 46. Retrieve weather info test 2

External Medical Sensors

The external medical sensors purchased is a bundle called BITalino HeartBIT (see

Fig. 47). According to their website, “BITalino is an affordable & open-source biosignals

platform designed for Education & Prototyping. This is the ideal toolkit to be used in a

39

laboratory & classroom environments or to create prototypes and applications using

physiological sensors” (pluxbiosignals, 2022). They also added “The BITalino HeartBIT

bundle, which is designed for everyone who wants to measure cardiac activity

measurements (e.g., heart rate & heart rate variability) by evaluating electrocardiography

(ECG) and Photoplethysmography (PPG) signals. This bundle is completely assembled

with our 3D Printed Casing for BITalino (r)evolution Plugged making it more convenient

to use, wear, share, and transport. The core of our HeartBIT is our BITalino Core BT

allowing the user to connect more sensors in the future if convenient” (HeartBIT, 2022).

Note. Retrieved from (HeartBIT, 2022). Plux Wireless Biosignals. Accessed 20 Jan. 2022.

Another reason these were purchased is that their health API is written in most

mainstream languages (pluxbiosignals, 2021). In our case, their Java API, will be utilized

under Android development. The relevance of having a working API from the start is not

Figure 47. External medical sensors bundle, BITalino

40

having to develop from scratch. Since they have made this API open source, further

improvements were made to their baseline codebase (see Fig. 48-55). The samples read

were 1000 frames. Inside each frame is the real-time data of the sensor. By utilizing

Androidplot, a library for visualization, I was able to optimize the library and showcase

the frames in real time. By developing a save and stop button, the average of all frames

was taken from the value at index zero before storing it in the local database.

Figure 48. BITalino original API Figure 49. BITalino iteration #1

41

Figure 50. BITalino iteration #2 Figure 51. BITalino iteration #3

Figure 52. BITalino iteration #4 Figure 53. BITalino iteration #5

42

Personal Medical Record Schema

 In the below table is an entire snippet of one personal medical record (see Fig.

56). This is how the record is displayed when sent over to the customized data pipeline.

The purpose of using the JSON schema is that it will be easier to visualize how the data is

structured. In the future, if required, restructuring the schema can be done quickly.

Figure 56. Personal Medical Record JSON Schema

{

 "User": {

 "Identification_Information": {

 "id": "Tz4v3MufNTgtXQTSv0WjQfoYAKC2",

Figure 54. BITalino ECG sensor final iteration Figure 55. BITalino PPG sensor final iteration

43

 "first_name": "John",

 "last_name": "Doe",

 "age": "26",

 "DOB": "1/3/1996",

 "phone_no": "773-008-4262",

 "email": "personalehealth33@gmail.com",

 "gender": "male",

 "address": "2045 W Devon Ave, Chicago, IL 60659, USA",

 "country": "United States",

 "city": "Chicago",

 "longitude": "-87.68185752",

 "latitude": "41.99770812"

 },

 "VitalSigns": {

 "ECG": {

 "sensor_name": "BITLANO ECG",

 "value": "510.52",

 "date": "null",

 "location": {

 "longitude": "-87.68185752",

 "latitude": "41.99770812"

 }

 },

 "PPG": {

 "sensor_name": "BITLANO PPG",

 "value": "506",

 "date": "null",

 "location": {

 "longitude": "-87.68185752",

 "latitude": "41.99770812"

 }

 },

 "pulse": {

 "sensor_name": "Mobile Camera Sensor",

 "value": "131",

 "date": "null",

 "location": {

 "longitude": "-87.68185752",

 "latitude": "41.99770812"

 }

 }

 },

 "Weather_Information": {

 "temperature": "24.36",

 "humidity": "50",

 "pressure": "1012",

 "weather": "Clouds",

 "weatherDescription": "few clouds"

 }

 }

}

44

After the record is finalized, the next step is validating the record by using a free

online service called JSONlint. Other services are also available. Validating the record

will make further processing easier over the cloud. An invalid record can lead to extra

data filtering steps over the cloud to normalize the JSON payload. After observing the

results, the record is found valid (see Fig. 57).

Figure 57. Personal medical record JSON validation

Publishing a Record

MQTT is a protocol offering a publish and subscribe system. It allows you to

publish from one device to another. MQTT allows a user to subscribe to a topic. That

means a user can receive messages if subscribed. A user can also send a message through

publishing. And a user does not have to both publish and subscribe at the same time. A

user can wish to either only subscribe or only publish. Through MQTT messages, a user

can send files as long as they are in an acceptable payload format. For publishing the user

record, I will first utilize the Paho Android Service, an MQTT client library written in

Java (Eclipse Foundation, 2022). The Foundation states that “The Paho project has been

created to provide reliable open-source implementations of open and standard messaging

protocols aimed at new, existing, and emerging applications for Machine-to-Machine

(M2M) and IoT” (Eclipse Foundation, 2022).

 After implementing the library, it was found through testing that the Java client

was not compatible with Android 12, the twelfth release of the mobile operating system.

However, through surveying repositories, I found a working modified Paho MQTT

45

library written in Kotlin. This library holds the same features as the Java one (see Fig. 58-

60). Kotlin is also an object-orientated programming language like Java.

Figure 58. Features of modified Paho MQTT Android Service

Note. Retrieved from a GitHub repository (hannesa2, 2022). MQTT Android Service. Accessed 23 Oct.

2022. https://github.com/hannesa2/paho.mqtt.android

Figure 59. Patient connected to cloud Figure 60. Patient published PMR to cloud

46

Hosting MQTT HiveMQ Broker and Bridging to AWS IoT Core

In an MQTT system, a broker is responsible to receive all the messages and

acknowledgments. The broker decides who is interested in receiving and publishing the

message. It does this to all the subscribed users. They are several broker libraries

available on the internet and are free to use. The library first tested for the MQTT broker

is HiveMQ Community Edition, a Java-based open-source library (hivemq, 2022). This

library will be set up on a server or instance of the Amazon Elastic Compute Cloud

(EC2). As the instances link, EC2 offers secure, resizable capacity in the cloud.

A developer can develop and deploy apps more quickly using EC2 because there

is no longer a need to make an upfront hardware investment (Amazon, 2022). A

developer can launch as many or as few virtual servers as required, set up networking and

security settings, and control storage using EC2 (Amazon, 2022). In addition, in the

future if the user traffic of patients is high, EC2 will handle changes in demand or

popularity spikes, eliminating the need for medical professionals to predict traffic.

Once the broker is set up and listening to incoming traffic from port 8080 (web)

and 1883 (smartphone devices), the next step is to implement a manual configuration. So,

that the broker can recognize the generated security certificates from the authenticated

AWS console. With these certificates, the broker can then be authorized to communicate

with AWS IoT Core. This bridge between the broker to the cloud services is through a

middleware also called an MQTT Gateway. As mentioned before, IoT Core is the

gateway we need to connect to. If this bridge fails, another broker library will need to be

used and tested. It is crucial for this step to succeed as this part of the cloud architecture

then allows the utilization of microservices to further process the PMR for healthcare

47

professionals. The testing result for the HiveMQ library is that it was listening to

payloads (messages) but failed to accept the generated security certificates (see Fig. 61-

64). Although, I reviewed HiveMQ’s documentation, I was not able to pinpoint the issue.

Figure 61. AWS EC2 instance running for HiveMQ broker

Figure 62. AWS EC2 securely connects with a unique key pair

Figure 63. Editing EC2 inbound rules for incoming traffic

Figure 64. Editing HiveMQ broker config to bridge to IoT Core

48

Hosting MQTT Mosquito Broker and Bridging to AWS IoT Core

In this section, we address how the Mosquito library integrates with our

framework. The second MQTT broker library to test the middleware, we were able to

utilize and optimize the open-source Mosquito library from Eclipse to successfully bridge

communication with AWS IoT Core. As mentioned before AWS IoT Core serves as the

gateway between the broker and cloud services such as IoT Analytics and QuickSight.

This library is not written in Java but in C. This library is also open source. The Mosquito

library also features a username and password. Without these credentials a user will not

be able to communicate with the broker. In addition, without the AWS credentials

generated from IoT Core being recognized, the cloud services of an organization will not

be able to communicate with the broker. As illustrated in the Figures 65-70 below, after

creating an EC2 instance, opening the traffic, adding the credentials, creating rules, and a

customized configuration allowed a successful bridge between the broker and IoT Core

(our gateway to cloud microservices)!

Figure 65. AWS EC2 instance running for Mosquito broker

Figure 66. Editing EC2 inbound rules for incoming traffic

49

Figure 67. Generating AWS security certificates from IoT Core

Figure 68. Rules to route traffic from topic to IoT Analytics

Figure 69. Adding AWS certificates to Mosquito broker

Figure 70. Custom Mosquito broker configuration

50

AWS IoT Analytics, Cron, AWS QuickSight

In this section, we address how AWS IoT Analytics, Cron, QuickSight integrates

with our framework (Fig. 71-82). As illustrated in Figure 71, the first step is to collect the

patient data. IoT Analytics is completely linked with AWS IoT Core, allowing it to

receive messages from connected devices as they come in (Amazon LLC, n.d.). The

second step is to process the received data. IoT Analytics can transport data to the IoT

Analytics data storage after enriching it with information from outside sources, such as a

weather forecast or in our case the patient personal medical records. The third step is to

store the patient data. AWS IoT Analytics stores both processed and unprocessed data

automatically so that you can process it later (Amazon LLC, n.d.). The fourth step is to

analyze the data. Execute Ad-Hoc SQL Queries: AWS IoT Analytics offers a SQL query

engine that enables you to execute SQL Queries and receive results quickly (Amazon

LLC, n.d.). With the help of the service, you can extract information from the data

storage using conventional SQL queries and schedule them using Cron. I have scheduled

a Cron to run queries every other minute. The fifth step is to build and visualize the data

through QuickSight. AWS IoT Analytics offers a connector to QuickSight which allows

professionals to view health datasets in an interactive dashboard.

Figure 71. The following graphic shows an overview of how you can use AWS IoT Analytics

Note. Retrieved from Amazon. AWS IoT Analytics: User Guide. Accessed 25 Oct. 2022.

51

Figure 72. Creating a healthcare channel in AWS IoT Analytics

Figure 73. Creating an SQL query job for the health dataset

Figure 74. Creating a Cron expression for the SQL query job

Figure 75. Result overview of records after query is run

52

Figure 76. Connecting healthcare dataset with QuickSight

Figure 77. Filtering values in QuickSight

53

Figure 78. Organizing dashboard

Figure 79. Displaying personal medical records

Figure 80. Displaying patient location in a real-time map

54

Figure 81. Displaying patient location in a real-time map

Figure 82. Real-time interactive dashboard for healthcare stakeholders and professionals

55

FUTURE WORK

One Single Code Base, Multiple Platforms

 Currently, the IoMT application is developed for Android smartphones. In the

future, as there is a need to expand with Apple iPhone users, a second application will

need to be developed. That will be two code bases for developers to maintain which can

be costly for projects and the organization. Through utilizing Flutter, a Google

framework with one single code base, multiple platforms can be targeted (Fig. 83). For

large-scale projects, enterprises should utilize Figma, a more popular tool for interactive

designing. This tool recently was acquired from Adobe, at $20 billion in cash and stock.

Figure 83. One Single Code Base, Multiple Platforms

Note. Partial architecture retrieved from Flutter Festival GDG Montreal, Roman Jaquez, Google Cloud

Certified Architect. Icons retrieved from Google LLC and Adobe. Figure created by Muhammad Bangash.

56

Smart Wearable Devices

In the interest of the project time, Google Fit was not implemented. However, its

importance remains as the IoMT system is to be expanded for the current consumer

market. Some of the popular consumer devices such as smartwatches and fitness devices

in both the Android and Apple ecosystems can be leveraged through official APIs and

services (Fig. 84).

Figure 84. Expanding outreach by communicating with smart wearable devices

Note. Icons retrieved from https://developer.apple.com/health-fitness/ and https://www.google.com/fit/.

Icons accessed 23 Oct. 2022.

Testing User and Data Accuracy

Throughout the project timeline, the testing has been done on me. As collecting

health data from users need approvals and follows certain regulation, this part is crucial

for adaptation and feedback. Feedback can be collected anonymously through surveys

and ratings. Further iterations can then be applied to meet the patient’s needs.

Furthermore, testing rigorously the accuracy of vital signs with certified medical devices

is important for upholding medical integrity and for a correct diagnosis.

57

Medical Notifications

In the interest of the project time, AWS SNS was not implemented. However, its

importance remains as the IoMT system is to have communication from the medical

professional to patients. SNS features message security from the encryption keys

provided by AWS, application-to-application messaging, message durability, and

application-to-person notifications.

Medical Portal

In the interest of the project time, AWS DynamoDB was not implemented.

However, its importance remains as the IoMT system is to have a customized portal for

doctors. Although AWS QuickSight was utilized to increase enterprise value,

DynamoDB has its own benefits. A case study is as follows.

With the aid of radiopharmaceuticals and imaging agents, GE is well known for

its medical imaging equipment (Rockset, 2019). By utilizing cloud access, storage, and

computing, the business has employed DynamoDB to boost customer value. Healthcare

practitioners in the US have access to a single gateway through the GE Health Cloud to

process and distribute patient case images. This is a huge benefit for diagnosis. By having

access to these medical records, clinicians can enhance their therapies (Rockset, 2019).

Creating Enterprise Value through AWS SageMaker

The PMR can be further experimented on to find outliers, anomalies, and patterns.

By using QuickSight and AWS SageMaker, can apply machine learning models and

natural language capabilities. Having more data insights can provide value in important

decisions for healthcare stakeholders and institutions.

58

SUMMARY AND CONCLUSIONS

The project’s aim to give researchers a simulation of a working multilayer IoMT

system that preserves a patient’s personal medical record and health timeline has been

accomplished. Provided cloud and mobile solution architectures can be utilized as a

baseline for further expandability, improvement, and development.

Here are the key project highlights. Developed a secure Android mobile

application is developed to gather real-time user data through internal sensors, external

medical sensors, and external services. I successfully created a personal medical record

through context-aware (systematic) means. I bridged a secure communication to transfer

records from the mobile application to the cloud MQTT broker. I hosted an encrypted

middleware (MQTT broker) over the cloud. I utilized, optimized, and bridged an open-

source MQTT broker library to securely communicate with cloud services. I configured a

daily scheduler over the cloud to further process the medical records. Finally, I

implemented a real-time interactive serverless BI dashboard that filters, analyzes, and

displays the collected medical records. Thus, creating enterprise value for healthcare

professionals and stakeholders.

Furthermore, there are some directions laid out on how mobile architecture can be

further improved through a one-code base solution, targeting multiple platforms (web,

iOS, Android). Consequently, expanding outreach by communicating with smart

wearable devices (health and fitness). Moreover, implementing important medical

notifications, a medical portal, machine learning, and natural language capabilities

through existing cloud services.

59

BIBLIOGRAPHY

Alam, M., Malik, H., Khan, M., Pardy, T., Kuusik, A., & Moullec, L. (2018). A Survey

on the Roles of Communication Technologies in IoT Based Personalized

Healthcare Applications. IEEE Access, PP, 1–1.

https://doi.org/10.1109/ACCESS.2018.2853148

Amazon. (2022). What is Amazon EC2? - Amazon Elastic Compute Cloud. Amazon.com.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html

Amazon LLC. (n.d.). AWS IoT Analytics User Guide. Retrieved October 25, 2022, from

https://docs.aws.amazon.com/pdfs/iotanalytics/latest/userguide/iotanalytics-ug.pdf

Android Open Source Project. (2020). Sensor types | Documentation.

Source.android.com. https://source.android.com/devices/sensors/sensor-

types#proximity

Apple. (2022). Health and Fitness - Apple Developer. Apple Developer.

https://developer.apple.com/health-fitness/

AWS. (2022). Features and capabilities - Amazon Simple Notification Service.

Amazon.com. https://docs.aws.amazon.com/sns/latest/dg/welcome-features.html

Bush, T. (2019, November 12). 6 Best Free and Paid Weather APIs | Nordic APIs |.

Nordic APIs. https://nordicapis.com/6-best-free-and-paid-weather-apis/

Codd, E. F. (2001). A Relational Model of Data for Large Shared Data Banks. Pioneers

and Their Contributions to Software Engineering, 61–98.

https://doi.org/10.1007/978-3-642-48354-7_4

Eclipse Foundation. (2022). Eclipse Paho | The Eclipse Foundation. Eclipse.org.

https://www.eclipse.org/paho/index.php?page=clients/android/index.php

60

Economic Strategy Institute. (2015). Cloud Services will Expand US GDP, Jobs and Tech

Spending. Econstrat.org. https://www.econstrat.org/research/the-new-ip-and-the-

internet-of-things/638-cloud-services-till-expand-us-gdp-jobs-and-tech-spending

Evans, R. S. (2016). Electronic Health Records: Then, Now, and in the Future. Yearbook

of Medical Informatics, 25(S 01), S48–S61. https://doi.org/10.15265/iys-2016-

s006

Figma. (2022). Figma: the collaborative interface design tool. Figma.

https://www.figma.com/

Gartner Identifies Top 10 Strategic IoT Technologies and Trends. (2018). Gartner.

https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-

identifies-top-10-strategic-iot-technologies-and-trends

Gold, J., & Shaw, K. (2022, June). What is edge computing and why does it matter?

Network World. https://www.networkworld.com/article/3224893/what-is-edge-

computing-and-how-it-s-changing-the-network.html

Google Cloud. (2022). Firestore: NoSQL document database. Google Cloud.

https://cloud.google.com/firestore

Google Developers. (2021). Save data using SQLite. Android Developers.

https://developer.android.com/training/data-storage/sqlite

Google Developers. (2022a). Firebase Realtime Database. Firebase.

https://firebase.google.com/docs/database/web/start#:~:text=You%20can%20find

%20your%20Realtime,for%20databases%20in%20us%2Dcentral1%20)

Google Developers. (2022b). Geocoder | Android. Android Developers Documentation.

https://developer.android.com/reference/android/location/Geocoder

61

Google Developers. (2022c). Motion sensors. Android Developers.

https://developer.android.com/guide/topics/sensors/sensors_motion

Google Fit. (2022). Google Fit. Google Fit; Google Fit. https://www.google.com/fit/

Google LLC. (2021). Environment sensors. Android Developers.

https://developer.android.com/guide/topics/sensors/sensors_environment

Google LLC. (2022a). Firebase Realtime Database. Firebase.

https://firebase.google.com/docs/database

Google LLC. (2022b). Google Cloud Adoption Framework. Google Cloud.

https://cloud.google.com/adoption-framework

Google LLC. (2022c). Type Temperature Sensor | Android Developers. Android

Developers.

https://developer.android.com/reference/android/hardware/Sensor#TYPE_TEMP

ERATURE%20Edit%20API%20docs%20paths

Google Project Management: (2021). Coursera. https://www.coursera.org/professional-

certificates/google-project-management

hannesa2. (2022, October 24). GitHub - hannesa2/paho.mqtt.android: Kotlin MQTT

Android with almost all pull requests from upstream. GitHub.

https://github.com/hannesa2/paho.mqtt.android

Harahap, Nabila Clydea, Handayani, Putu Wuri, & Hidayanto, Achmad Nizar. (2021).

Functionalities and Issues in the Implementation of Personal Health Records:

Systematic Review. Journal of Medical Internet Research, 23(7), e26236–

e26236. PubMed. https://doi.org/10.2196/26236

62

Harrington, C. N., Lyndsie Marie Koon, & Rogers, W. A. (2020). Chapter 17 - Design of

health information and communication technologies for older adults (Arathi

Sethumadhavan & Farzan Sasangohar, Eds.; pp. 341–363). Academic Press.

https://doi.org/https://doi.org/10.1016/B978-0-12-816427-3.00017-8

Healthy Ads. (2021, September 19). Latitude and Longitude Targeting. Healthy Ads.

https://www.healthyads.com/targeting/latitude-and-longitude-targeting/

HeartBIT. (2022). Plux Wireless Biosignals.

https://www.pluxbiosignals.com/collections/bitalino/products/heartbit

hivemq. (2022, October 7). hivemq/hivemq-community-edition: HiveMQ CE is a Java-

based open source MQTT broker that fully supports MQTT 3.x and MQTT 5. It is

the foundation of the HiveMQ Enterprise Connectivity and Messaging Platform.

GitHub. https://github.com/hivemq/hivemq-community-edition

IJCSMC Journal, & Hasan, H. (2018). IoT Protocols for Health Care Systems: A

Comparative Study. IJCSMC.

https://www.academia.edu/37772860/IoT_Protocols_for_Health_Care_Systems_

A_Comparative_Study

Jaquez, R. (2022). Flutter Festival GDG Montreal. Google Developer Groups.

https://gdg.community.dev/events/details/google-gdg-montreal-presents-flutter-

festival-montreal-online/

Jashapara, N. (2021, June 2). AMAZON AND SURVEILLANCE CAPITALISM: DO WE

WANT A NETFLIX FOR BOOKS? Bad Form.

https://www.badformreview.com/read/rfka

63

Kelly, D. (2020, October 29). A Brief History of Databases. Cockroach Labs.

https://www.cockroachlabs.com/blog/history-of-databases-distributed-sql/

Kim, G. J. (2015). Human-Computer Interaction. Auerbach Publications.

https://doi.org/10.1201/b18071

Masykur, F., Prasetyo, A., Widaningrum, I., Cobantoro, A. F., & Setyawan, M. B. (2020,

September 1). Application of Message Queuing Telemetry Transport (MQTT)

Protocol in the Internet of Things to Monitor Mushroom Cultivation. IEEE

Xplore. https://doi.org/10.1109/ICITACEE50144.2020.9239118

MongoDB. (2021). Documents. Mongodb.com.

https://docs.mongodb.com/manual/core/document/

National Geographic Society. (2010, November 11). Introduction to Latitude and

Longitude. National Geographic Society.

https://www.nationalgeographic.org/activity/introduction-latitude-longitude/

Office of the National Coordinator for Health Information. (2019, January). “Office-

based Physician Electronic Health Record Adoption,” Health IT Quick-Stat #50.

Healthit.gov. https://www.healthit.gov/data/quickstats/office-based-physician-

electronic-health-record-adoption

OpenWeatherMap. (2017). Weather API - OpenWeatherMap. Openweathermap.org.

https://openweathermap.org/api

Perakslis, E. D., & Huang, E. (2020, March 12). Covid-19 will be the ultimate stress test

for electronic health record systems. STAT.

https://www.statnews.com/2020/03/12/covid-19-huge-stress-test-electronic-

health-record-systems/

64

pluxbiosignals. (2021, December 27). Official PLUX Application Programming

Interfaces (APIs) – Support PLUX Biosignals official. Pluxbiosignals.com.

https://support.pluxbiosignals.com/knowledge-base/official-plux-application-

programming-interfaces-apis/

pluxbiosignals. (2022). BITalino (r)evolution Plugged Kit BLE/BT. Plux Wireless

Biosignals. https://www.pluxbiosignals.com/collections/bitalino

Rockset. (2019). 5 Use Cases for DynamoDB. Rockset.com. https://rockset.com/blog/5-

use-cases-for-

dynamodb/#:~:text=GE%20Healthcare&text=The%20company%20has%20used

%20DynamoDB,a%20great%20advantage%20for%20diagnostics.

Roshina, D. (2022, October 4). SQLite vs Realm database for Android apps. Cleveroad

Inc. - Web and App Development Company; Cleveroad Inc.

https://www.cleveroad.com/blog/realm-vs-sqlite-what-is-the-best-database-for-

android-app-development/

Salesforce Trailhead. (2022). API Basics. Salesforce.com.

https://trailhead.salesforce.com/content/learn/modules/pw-api-basics/make-apis-

for-you-and-me

Saminathan, S., & Geetha, K. (2018). Real-Time Health Care Monitoring System using

IoT. International Journal of Engineering & Technology, 7(2.24), 484.

https://doi.org/10.14419/ijet.v7i2.24.12141

Schaefer, L. (2020, March 18). Mapping Terms and Concepts from SQL to MongoDB.

Mongodb.com; MongoDB. https://www.mongodb.com/developer/article/map-

terms-concepts-sql-mongodb/#std-label-sql-mdb-1-document-model

65

Schobel, J., Schickler, M., Pryss, R., Nienhaus, H., & Reichert, M. (2013). Using Vital

Sensors in Mobile Healthcare Business Applications: Challenges, Examples,

Lessons Learned. In WEBIST 2013Proceedings of the 9th International

Conference on Web Information Systems and Technologies.

Shams. (2016, September 12). A few Android Phones that have Temperature Sensor.

WebCusp.com - Make Living with Blogging and No Coding Web Design.

https://webcusp.com/a-few-android-phones-that-have-temperature-

sensor/#:~:text=Almost%20every%20device%20has%20an,and%20battery%20te

mperature%20of%20device.&text=These%20directions%20are%20there%20so,a

ccurate%20idea%20of%20ambient%20temperature.

Silva, A. F., & Tavakoli, M. (2020). Domiciliary hospitalization through wearable

biomonitoring patches: Recent advances, technical challenges, and the relation to

covid-19. Sensors, 20, Article 23. https://doi.org/10.3390/s20236835

The Internet of Things Connects Customers to Their World. (2019). Salesforce.com.

https://www.salesforce.com/products/platform/best-practices/internet-of-things-

connects-customers/

Tsao, Y.-C., Cheng, F.-J., Li, Y.-H., & Liao, L.-D. (2022). An IoT-Based Smart System

with an MQTT Broker for Individual Patient Vital Sign Monitoring in Potential

Emergency or Prehospital Applications. Emergency Medicine International, 2022,

e7245650. https://doi.org/10.1155/2022/7245650

User Story Templates in Agile. (2015, December 17). Agile Alliance |; Agile Alliance.

https://www.agilealliance.org/glossary/user-story-template/

66

Verma, N., Singh, S., & Prasad, D. (2022). A review on existing IoT architecture and

communication protocols used in healthcare monitoring system. Journal of the

Institution of Engineers (India): Series B, 103, 245–257.

https://doi.org/10.1007/s40031-021-00632-3

Wickramasinghe, S. (2021, July 14). MongoDB vs DynamoDB: Comparing NoSQL

Databases. BMC Blogs. https://www.bmc.com/blogs/mongodb-vs-dynamodb/

Wu, F., Wu, T., & Yuce, M. R. (2018). An internet-of-things (IoT) network system for

connected safety and health monitoring applications. Sensors, 19(1), 21.

	Smartphone as an Edge for Context-Aware Real-Time Processing for Personal e-Health
	tmp.1673975455.pdf.qV8JX

