45,514 research outputs found

    Active Classification: Theory and Application to Underwater Inspection

    Full text link
    We discuss the problem in which an autonomous vehicle must classify an object based on multiple views. We focus on the active classification setting, where the vehicle controls which views to select to best perform the classification. The problem is formulated as an extension to Bayesian active learning, and we show connections to recent theoretical guarantees in this area. We formally analyze the benefit of acting adaptively as new information becomes available. The analysis leads to a probabilistic algorithm for determining the best views to observe based on information theoretic costs. We validate our approach in two ways, both related to underwater inspection: 3D polyhedra recognition in synthetic depth maps and ship hull inspection with imaging sonar. These tasks encompass both the planning and recognition aspects of the active classification problem. The results demonstrate that actively planning for informative views can reduce the number of necessary views by up to 80% when compared to passive methods.Comment: 16 page

    Machine learning research 1989-90

    Get PDF
    Multifunctional knowledge bases offer a significant advance in artificial intelligence because they can support numerous expert tasks within a domain. As a result they amortize the costs of building a knowledge base over multiple expert systems and they reduce the brittleness of each system. Due to the inevitable size and complexity of multifunctional knowledge bases, their construction and maintenance require knowledge engineering and acquisition tools that can automatically identify interactions between new and existing knowledge. Furthermore, their use requires software for accessing those portions of the knowledge base that coherently answer questions. Considerable progress was made in developing software for building and accessing multifunctional knowledge bases. A language was developed for representing knowledge, along with software tools for editing and displaying knowledge, a machine learning program for integrating new information into existing knowledge, and a question answering system for accessing the knowledge base

    Active object recognition for 2D and 3D applications

    Get PDF
    Includes bibliographical referencesActive object recognition provides a mechanism for selecting informative viewpoints to complete recognition tasks as quickly and accurately as possible. One can manipulate the position of the camera or the object of interest to obtain more useful information. This approach can improve the computational efficiency of the recognition task by only processing viewpoints selected based on the amount of relevant information they contain. Active object recognition methods are based around how to select the next best viewpoint and the integration of the extracted information. Most active recognition methods do not use local interest points which have been shown to work well in other recognition tasks and are tested on images containing a single object with no occlusions or clutter. In this thesis we investigate using local interest points (SIFT) in probabilistic and non-probabilistic settings for active single and multiple object and viewpoint/pose recognition. Test images used contain objects that are occluded and occur in significant clutter. Visually similar objects are also included in our dataset. Initially we introduce a non-probabilistic 3D active object recognition system which consists of a mechanism for selecting the next best viewpoint and an integration strategy to provide feedback to the system. A novel approach to weighting the uniqueness of features extracted is presented, using a vocabulary tree data structure. This process is then used to determine the next best viewpoint by selecting the one with the highest number of unique features. A Bayesian framework uses the modified statistics from the vocabulary structure to update the system's confidence in the identity of the object. New test images are only captured when the belief hypothesis is below a predefined threshold. This vocabulary tree method is tested against randomly selecting the next viewpoint and a state-of-the-art active object recognition method by Kootstra et al.. Our approach outperforms both methods by correctly recognizing more objects with less computational expense. This vocabulary tree method is extended for use in a probabilistic setting to improve the object recognition accuracy. We introduce Bayesian approaches for object recognition and object and pose recognition. Three likelihood models are introduced which incorporate various parameters and levels of complexity. The occlusion model, which includes geometric information and variables that cater for the background distribution and occlusion, correctly recognizes all objects on our challenging database. This probabilistic approach is further extended for recognizing multiple objects and poses in a test images. We show through experiments that this model can recognize multiple objects which occur in close proximity to distractor objects. Our viewpoint selection strategy is also extended to the multiple object application and performs well when compared to randomly selecting the next viewpoint, the activation model and mutual information. We also study the impact of using active vision for shape recognition. Fourier descriptors are used as input to our shape recognition system with mutual information as the active vision component. We build multinomial and Gaussian distributions using this information, which correctly recognizes a sequence of objects. We demonstrate the effectiveness of active vision in object recognition systems. We show that even in different recognition applications using different low level inputs, incorporating active vision improves the overall accuracy and decreases the computational expense of object recognition systems

    A deep representation for depth images from synthetic data

    Full text link
    Convolutional Neural Networks (CNNs) trained on large scale RGB databases have become the secret sauce in the majority of recent approaches for object categorization from RGB-D data. Thanks to colorization techniques, these methods exploit the filters learned from 2D images to extract meaningful representations in 2.5D. Still, the perceptual signature of these two kind of images is very different, with the first usually strongly characterized by textures, and the second mostly by silhouettes of objects. Ideally, one would like to have two CNNs, one for RGB and one for depth, each trained on a suitable data collection, able to capture the perceptual properties of each channel for the task at hand. This has not been possible so far, due to the lack of a suitable depth database. This paper addresses this issue, proposing to opt for synthetically generated images rather than collecting by hand a 2.5D large scale database. While being clearly a proxy for real data, synthetic images allow to trade quality for quantity, making it possible to generate a virtually infinite amount of data. We show that the filters learned from such data collection, using the very same architecture typically used on visual data, learns very different filters, resulting in depth features (a) able to better characterize the different facets of depth images, and (b) complementary with respect to those derived from CNNs pre-trained on 2D datasets. Experiments on two publicly available databases show the power of our approach

    Learning to Look Around: Intelligently Exploring Unseen Environments for Unknown Tasks

    Full text link
    It is common to implicitly assume access to intelligently captured inputs (e.g., photos from a human photographer), yet autonomously capturing good observations is itself a major challenge. We address the problem of learning to look around: if a visual agent has the ability to voluntarily acquire new views to observe its environment, how can it learn efficient exploratory behaviors to acquire informative observations? We propose a reinforcement learning solution, where the agent is rewarded for actions that reduce its uncertainty about the unobserved portions of its environment. Based on this principle, we develop a recurrent neural network-based approach to perform active completion of panoramic natural scenes and 3D object shapes. Crucially, the learned policies are not tied to any recognition task nor to the particular semantic content seen during training. As a result, 1) the learned "look around" behavior is relevant even for new tasks in unseen environments, and 2) training data acquisition involves no manual labeling. Through tests in diverse settings, we demonstrate that our approach learns useful generic policies that transfer to new unseen tasks and environments. Completion episodes are shown at https://goo.gl/BgWX3W
    • …
    corecore