3 research outputs found

    Selection of touch gestures for children’s applications

    Get PDF
    The touch-screen revolution is not restricted to adults only. Parents find games and educational applications running on touch-screen devices and purchase them for their children. Therefore, very young children are playing with and exploring these touch-screen devices. For any one device there can be hundreds of applications for the parents to choose from, so it is likely that the selection of applications is based on advertisements and recommendations. There is a large range of gestures available on multi-touch devices and there is very little known about the relationship between the age of a child and the gestures that they can master. This research focuses on the iPad device and children aged between 2 to 4 years old and investigate which gestures the children in that age group can manage. The results of the research, therefore, could be used to form guidelines for the design of gesture-based software for very young children

    Formalisierung gestischer Eingabe fĂĽr Multitouch-Systeme

    Get PDF
    Die Mensch-Computer-Interaktion wird dank neuer Eingabemöglichkeiten jenseits von Tastatur und Maus reicher, vielseitiger und intuitiver. Durch den Verzicht auf zusätzliche Geräte beim Umgang mit Computern geht seitens der Eingabeverarbeitung jedoch eine erhöhte Komplexität einher: Die Programmierung gestischer Eingabe für Multitouch-Systeme ist in derzeitigen Frameworks abgesehen von den verfügbaren Standard-Gesten mit hohem Aufwand verbunden. Die entwickelte Gestenformalisierung für Multitouch (GeForMT) definiert eine domänenspezifische Sprache zur Beschreibung von Multitouch-Gesten. Statt wie verwandte Formalisierungsansätze detaillierte Filter für die Rohdaten zu definieren, bedient sich GeForMT eines bildhaften Ansatzes, um Gesten zu beschreiben. Die Konzeption von Gesten wird unterstützt, indem beispielsweise in einem frühen Stadium der Entwicklung Konflikte zwischen ähnlichen Gesten aufgedeckt werden. Die formalisierten Gesten lassen sich direkt in den Code einbetten und vereinfachen damit die Programmierung. Das zugrundeliegende Framework sorgt für die Verbindung zu den Algorithmen der Gestenerkennung. Die Übertragung des semiotischen Ansatzes zur Formalisierung auf andere Formen gestischer Eingabe wird abschließend diskutiert.:1 Einleitung 1.1 Motivation 1.2 Zielstellung und Abgrenzung 1.3 Aufbau der Arbeit 2 Interdisziplinäre Grundlagenbetrachtung 2.1 Semiotik 2.1.1 Begriffe und Zeichenklassen 2.1.2 Linguistik 2.1.3 Graphische Semiologie 2.1.4 Formgestaltung und Produktsprache 2.1.5 Interfacegestaltung 2.2 Gestenforschung 2.2.1 Kendons Kontinuum für Gesten 2.2.2 Taxonomien 2.2.3 Einordnung 2.3 Gestische Eingabe in der Mensch-Computer-Interaktion 2.3.1 Historische Entwicklung von Ein- und Ausgabetechnologien 2.3.2 Begreifbare Interaktion 2.3.3 Domänenspezifische Modellierung 2.4 Zusammenfassung 3 Verwandte Formalisierungsansätze 3.1 Räumliche Gesten 3.1.1 XML-Beschreibung mit der Behaviour Markup Language 3.1.2 Detektornetze in multimodalen Umgebungen 3.1.3 Gestenvektoren zur Annotation von Videos 3.1.4 Vergleich 3.2 Gesten im Sketching 3.2.1 Gestenfunktionen für Korrekturzeichen 3.2.2 Sketch Language zur Beschreibung von Skizzen 3.2.3 Domänenspezifische Skizzen mit LADDER 3.2.4 Vergleich 3.3 Flächige Gesten 3.3.1 Regelbasierte Definition mit Midas 3.3.2 Gesture Definition Language als Beschreibungssprache 3.3.3 Reguläre Ausdrücke von Proton 3.3.4 Gesture Interface Specification Language 3.3.5 Logische Formeln mit Framous 3.3.6 Gesture Definition Markup Language 3.3.7 Vergleich 3.4 Zusammenfassung 4 Semiotisches Modell zur Formalisierung 4.1 Phasen gestischer Eingabe 4.2 Syntax gestischer Eingabe 4.3 Semantik gestischer Eingabe 4.4 Pragmatik gestischer Eingabe 4.5 Zusammenfassung 5 Gestenformalisierung für Multitouch 5.1 Ausgangslage für die Konzeption 5.1.1 Ikonographische Einordnung flächiger Gesten 5.1.2 Voruntersuchung zur Programmierung flächiger Gesten 5.1.3 Anforderungskatalog für die Formalisierung 5.2 Semiotische Analyse flächiger Gesten 5.2.1 Syntax flächiger Gesten 5.2.2 Semantik flächiger Gesten 5.2.3 Pragmatik flächiger Gesten 5.3 Präzedenzfälle für die Formalisierung 5.3.1 Geschicklichkeit bei der Multitouch-Interaktion 5.3.2 Präzision bei flächigen Gesten 5.3.3 Kooperation in Multitouch-Anwendungen 5.4 Evaluation und Diskussion 5.4.1 Vergleich der Zeichenanzahl 5.4.2 Evaluation der Beschreibungsfähigkeit 5.4.3 Limitierungen und Erweiterungen 6 Referenzarchitektur 6.1 Analyse existierender Multitouch-Frameworks 6.2 Grundlegende Architekturkomponenten 6.2.1 Parser 6.2.2 Datenmodell 6.2.3 Gestenerkennung und Matching 6.2.4 Programmierschnittstelle 6.3 Referenzimplementierung für JavaScript 6.3.1 Komponenten der Bibliothek 6.3.2 Praktischer Einsatz 6.3.3 Gesteneditor zur bildhaften Programmierung 7 Praxisbeispiele 7.1 Analyse prototypischer Anwendungen 7.1.1 Workshop zur schöpferischen Zerstörung 7.1.2 Workshop zu semantischen Dimensionen 7.1.3 Vergleich 7.2 Abbildung von Maus-Interaktion auf flächige Gesten in DelViz 7.2.1 Datengrundlage und Suchkonzept 7.2.2 Silverlight-Implementierung von GeForMT 7.3 Flächige Gesten im 3D-Framework Bildsprache LiveLab 7.3.1 Komponentenarchitektur 7.3.2 Implementierung von GeForMT mit C++ 7.4 Statistik und Zusammenfassung 8 Weiterentwicklung der Formalisierung 8.1 Räumliche Gesten 8.1.1 Verwandte Arbeiten 8.1.2 Prototypischer Aufbau 8.1.3 Formalisierungsansatz 8.2 Substanzen des Alltags 8.2.1 Verwandte Arbeiten 8.2.2 Experimente mit dem Explore Table 8.2.3 Formalisierungsansatz 8.3 Elastische Oberflächen 8.3.1 Verwandte Arbeiten 8.3.2 Der Prototyp DepthTouch 8.3.3 Formalisierungsansatz 9 Zusammenfassung 9.1 Kapitelzusammenfassungen und Beiträge der Arbeit 9.2 Diskussion und Bewertung 9.3 Ausblick und zukünftige Arbeiten Anhang Vergleichsmaterial Formalisierungsansätze Fragebogen Nachbefragung Ablaufplan studentischer Workshops Grammatikdefinitionen Statistische Auswertung Gestensets Literatur Webreferenzen Eigene Veröffentlichungen Betreute studentische Arbeiten Abbildungsverzeichnis Tabellen Verzeichnis der Code-Beispiel

    A Model-Based Approach for Gesture Interfaces

    Get PDF
    The description of a gesture requires temporal analysis of values generated by input sensors, and it does not fit well the observer pattern traditionally used by frameworks to handle the user’s input. The current solution is to embed particular gesture-based interactions into frameworks by notifying when a gesture is detected completely. This approach suffers from a lack of flexibility, unless the programmer performs explicit temporal analysis of raw sensors data. This thesis proposes a compositional, declarative meta-model for gestures definition based on Petri Nets. Basic traits are used as building blocks for defining gestures; each one notifies the change of a feature value. A complex gesture is defined by the composition of other sub-gestures using a set of operators. The user interface behaviour can be associated to the recognition of the whole gesture or to any other sub-component, addressing the problem of granularity for the notification of events. The meta-model can be instantiated for different gesture recognition supports and its definition has been validated through a proof of concept library. Sample applications have been developed for supporting multi-touch gestures in iOS and full body gestures with Microsoft Kinect. In addition to the solution for the event granularity problem, this thesis discusses how to separate the definition of the gesture from the user interface behaviour using the proposed compositional approach. The gesture description meta-model has been integrated into MARIA, a model-based user interface description language, extending it with the description of full-body gesture interfaces
    corecore