
UNIVERSITÀ DI PISA

DIPARTIMENTO DI INFORMATICA

DOTTORATO DI RICERCA IN INFORMATICA

PH.D. THESIS

A Model-Based Approach for
Gesture Interfaces

Lucio Davide Spano

SUPERVISORS REFEREES

Antonio Cisternino

Fabio Paternò

Gaëlle Calvary

Kris Luyten

November 2013

SSD INF/01

Largo Bruno Pontecorvo 3, 56127 Pisa, Italy.

Email: spano@di.unipi.it

This one goes out to the one I love

“People shouldn’t have to read a manual to open a door, even if it is only

one word long (push/pull).”

Don Norman

 “La vita in Sardegna è forse la migliore che un uomo possa augurarsi:

ventiquattro mila chilometri di foreste, di campagne, di coste immerse in un

mare miracoloso dovrebbero coincidere con quello che io consiglierei al buon

Dio di regalarci come Paradiso.”

Fabrizio De André

“And the only way to do great work is to love what you do. If you haven't

found it yet, keep looking. Don't settle. As with all matters of the heart,

you'll know when you find it. And, like any great relationship, it just gets

better and better as the years roll on. So keep looking until you find it. Don't

settle.”

Steve Jobs

“A common mistake that people make when trying to design something

completely foolproof is to underestimate the ingenuity of complete fools.”

Douglas Adams

“Est mezus ainu biu qui non doctore mortu”.

Sardinian proverb

“Do. Or do not. There is no try”

Master Yoda

Abstract

The description of a gesture requires temporal analysis of values generated

by input sensors, and it does not fit well the observer pattern traditionally

used by frameworks to handle the user’s input. The current solution is to

embed particular gesture-based interactions into frameworks by notifying

when a gesture is detected completely. This approach suffers from a lack of

flexibility, unless the programmer performs explicit temporal analysis of raw

sensors data.

This thesis proposes a compositional, declarative meta-model for gestures

definition based on Petri Nets. Basic traits are used as building blocks for

defining gestures; each one notifies the change of a feature value. A complex

gesture is defined by the composition of other sub-gestures using a set of

operators. The user interface behaviour can be associated to the recognition

of the whole gesture or to any other sub-component, addressing the problem

of granularity for the notification of events.

The meta-model can be instantiated for different gesture recognition

supports and its definition has been validated through a proof of concept

library. Sample applications have been developed for supporting multi-touch

gestures in iOS and full body gestures with Microsoft Kinect.

In addition to the solution for the event granularity problem, this thesis

discusses how to separate the definition of the gesture from the user interface

behaviour using the proposed compositional approach.

The gesture description meta-model has been integrated into MARIA, a

model-based user interface description language, extending it with the

description of full-body gesture interfaces.

Acknowledgments

This thesis, like many others, ends a chapter. And this is not only related

to a dot on paper. For me, this thesis completes a journey, which I started

ten years ago, when I finished the high school and I moved to Pisa to learn

something about Computer Science and for becoming a good programmer.

During this journey, I tried to learn all the skills that a good programmer

and a good researcher needs. But that was only a part of the journey. I met

great people who taught me a lot more than algorithms, programming

languages and techniques. The passion they put in their work, together with

their competence created an inspiration that has been and will be of primary

importance for me.

Now I have the possibility to represent for other people what they are for

me, and I hope I will be as good as they are.

The first persons in this list are of course my two supervisors: Antonio

Cisternino and Fabio Paternò. Antonio is able to inject enthusiasm into his

students, and this always helped me in reaching the next level. Every time

I discuss something with him, I can write down a list of ideas for the next

five or six years.

Fabio, with his great knowledge and experience, guided me through

different projects, giving me the opportunity to start my work in research,

at a European level. He supported me day by day and I owe him all the

experience I have in the HCI field.

Many thanks to the two reviewers Gaëlle and Kris, who have been so kind

to accept reading this work and for all their useful suggestions.

Special thanks go to Paolo Mancarella, for his help and his kindness during

these years. Thanks also to Pierpaolo Degano, for the effort he puts in

managing the PhD course.

I would like to mention here one by one all the people I met while working

at the Human Interfaces in Information Systems lab at ISTI-CNR:

Giuseppe, Carmen, Barbara, Giulio Galesi, Giulio Mori, Claudio, Marco,

Giuliano, Valentina, José, Christian, Mauro, Ariel. I really miss you all. A

fond farewell to you, Antonio, wherever you are now.

Many friends contributed in making Pisa my second home in these years.

First of all, the CdP members: Agostino, Giancarlo, Marta, Antonio, Zulio,

Alessandra, Federica, Raimondo, Giancossu, Pier. My “collegue” Claudio

and Cristina, Alessandro, Elena that never left us alone, Carlo, Rita, Chiara,

Anna, Paolo, Claudia, Antonio, and all the people that shared this wonderful

experience with me.

I really missed my hometown friends during these years, and it was always

nice to come back to you: Nicola, Ilaria, Gavinuccio, Barbara, Maura,

Manuela, German, Mattia, Nicoletta, Andrea, Nicola Giorgioni, Carlo,

Patty, Roberto, Carla.

I would like to thank also all the people that welcomed me in my new

adventure in Cagliari: the professors Gianni Fenu and Riccardo Scateni,

Maurizio Atzori, Marco, Paolo, Fabio, Samuel.

A special thank, with love and gratitude goes to my family. My parents

gave me the possibility to make such a wonderful experience, and they were

always at my side. I always do my best to make you proud of me, and this

work is largely yours. Thanks to my two brothers Andrea and Emanuele,

who supported in all these years, filling the distance that separated us.

Thanks also to Roberta and Laura, it is really nice to have you in our family.

Many thanks to all my uncles and cousins and every member of my second

family in Dorgali, who accepted me as one them.

Finally, my greatest thanks to my fiancée Pinuccia. Writing down what

you mean for me is harder that writing a PhD thesis. Only one word comes

into my mind: “everything”. If we are together, we can face challenges and

changes, double the joy and halve the sadness. Without you, this work would

not have been possible. Without you, my work in Cagliari will not be

possible. Without you, I am lost.

Thank you all.

Contents

Chapter 1 Introduction ... 19

1.1 Context and motivations .. 19

1.2 Objectives of the thesis ... 21

1.3 Requirements summary .. 21

1.4 Overview of the results ... 22

1.5 Thesis organization ... 23

1.6 Peer-reviewed publications .. 24

Chapter 2 Background and Related Work 25

2.1 Enabling recognition technologies ... 25

2.1.1 Multitouch .. 26

2.1.2 Remote-based gesture recognition ... 27

2.1.3 Image-based gesture recognition .. 28

2.1.4 Floor devices ... 30

2.2 Input modelling with formal approaches ... 31

2.3 Declarative approaches for gesture definition 33

2.3.1 Multitouch .. 34

2.3.2 Full-body .. 41

2.4 Model-based approaches for User Interfaces 44

2.4.1 Historical Background ... 45

2.4.2 The CAMELEON reference framework 50

2.4.3 ConcurTaskTrees .. 53

2.5 Non-Autonomous Petri Nets ... 54

Chapter 3 Gesture Meta-Model Definition 58

3.1 Meta-Model Definition .. 58

3.1.1 Basic Building Blocks: Ground Terms .. 59

3.1.2 Composition Operators ... 61

3.1.3 Handling recognition errors ... 72

3.2 Modelling multitouch gestures .. 73

3.3 Modelling full-body gestures ... 73

3.4 Comparison with Proton++ ... 76

3.4.1 Proton++ literals ... 76

3.4.2 Proton++ operators.. 78

Chapter 4 Gesture Models ... 81

4.1 Common multitouch gestures models .. 81

4.1.1 Tap ... 81

4.1.2 Double Tap ... 82

4.1.3 Pan ... 82

4.1.4 Slide .. 83

4.1.5 Pinch .. 83

4.1.6 Rotate ... 84

4.2 Common full-body gesture models .. 85

4.2.1 Pointing .. 89

4.2.2 Grab ... 90

4.2.3 Push ... 91

4.2.4 Push back ... 92

4.2.5 Lateral push .. 93

4.2.6 Kick .. 94

4.2.7 Wave .. 94

4.2.8 Swipe .. 97

4.2.9 Walk ... 98

4.2.10 Turn ... 100

4.2.11 Converge or Diverge Hands ... 101

4.2.12 Steering wheel ... 103

4.2.13 Roll ... 104

4.2.14 Universal Pause ... 105

Chapter 5 Library Support ..107

5.1 Library Architecture ... 107

5.1.1 Library core .. 108

5.1.2 Multitouch package ... 111

5.1.3 Full-body package ... 111

5.2 Creating a multitouch application .. 112

5.3 Creating a full-body gesture application 116

5.4 Sample applications .. 119

5.4.1 Pilot study: Simple canvas .. 119

5.4.2 Photo viewer ... 122

5.4.3 3D viewer .. 124

5.4.4 Touchless recipe browser ... 128

Chapter 6 A Gestural Concrete User Interface in MARIA135

6.1 MARIA ... 135

6.1.1 Abstract User Interface ... 136

6.1.2 Concrete User Interface ... 138

6.2 Gestural Concrete User Interface .. 139

 13

6.2.1 Modelling device data ... 140

6.2.2 Gestures definition .. 140

6.2.3 Gesture effects ... 143

6.2.4 Interactors .. 145

6.3 Model to code transformation ... 146

6.4 Sample application.. 148

Chapter 7 Discussion .. 157

7.1 Granularity problem ... 158

7.2 Spaghetti code problem .. 159

7.3 Selection Ambiguity Problem ... 160

7.4 Cross-platform gesture modelling .. 165

Chapter 8 Evaluation .. 169

8.1 Requirements review ... 170

8.1.1 Temporal evolution ... 170

8.1.2 Granularity ... 170

8.1.3 Separation of concerns .. 171

8.1.4 Multiple recognition devices .. 171

8.1.5 Parallel interaction ... 171

8.1.6 Equivalent descriptions ..172

8.1.7 Selection ambiguity ..172

8.2 Five themes in evaluating tools ..172

8.2.1 Parts of the user interface that are addressed173

8.2.2 Threshold and ceiling ...173

8.2.3 Path of Least Resistance ... 174

8.2.4 Predictability .. 174

8.2.5 Moving Targets ... 175

8.3 Cognitive Dimensions Framework ... 176

8.3.1 Abstraction gradient ... 176

8.3.2 Closeness of mapping .. 176

8.3.3 Consistency ... 177

8.3.4 Diffuseness .. 177

8.3.5 Error proneness ... 177

8.3.6 Hard mental operations... 178

8.3.7 Hidden dependencies ... 178

8.3.8 Premature commitment .. 178

8.3.9 Progressive evaluation .. 179

8.3.10 Role expressiveness ... 179

8.3.11 Secondary notation ... 179

8.3.12 Viscosity ... 180

8.3.13 Visibility ... 180

8.4 Performance analysis .. 181

8.4.1 CPU (sampling) .. 183

8.4.2 CPU (instrumentation) ... 186

8.4.3 Memory .. 188

8.5 Summary .. 190

Chapter 9 Conclusion ..191

9.1 Future work .. 192

List of Figures

Figure 2.1 An example of gesture definition with Proton++ 39

Figure 2.2 An example of Petri Net .. 54

Figure 2.3 Transition firing in Petri Nets from [36], p. 3. 55

Figure 2.4 Non-Autonomous Petri Net for a traffic light, from [36] p.4 56

Figure 3.1 Gesture recognition building block ... 61

Figure 3.2 The Iterative operator .. 64

Figure 3.3 The Sequence operator ... 64

Figure 3.4 The Parallel operator ... 65

Figure 3.5 The Choice operator (immediate variant) 66

Figure 3.6 Choice operator (best effort variant) .. 67

Figure 3.7 The Disabling operator .. 68

Figure 3.8 Order independence operator Petri Net 71

Figure 3.9 Skeleton joints .. 74

Figure 3.10 Full-body gesture coordinate system 75

Figure 4.1 The touch gesture .. 81

Figure 4.2 Double tap gesture ... 82

Figure 4.3 Pan gesture .. 82

Figure 4.4 Pinch gesture ... 84

Figure 4.5 Rotate gesture .. 84

Figure 4.6 The pointing gesture .. 89

Figure 4.7 The grab gesture .. 91

Figure 4.8 The push gesture .. 92

Figure 4.9 The push-back gesture ... 92

Figure 4.10 Lateral push gesture ... 93

Figure 4.11 The kick gesture ... 94

Figure 4.12 The wave gesture ... 95

Figure 4.13 The swipe gesture ... 97

Figure 4.14 Walk gesture .. 98

Figure 4.15 The turn gesture... 101

Figure 4.16 Converge or diverge hands gesture 102

Figure 4.17 Steering wheel gesture ... 103

Figure 4.18 Roll gesture .. 104

Figure 4.19 The Universal Pause gesture .. 105

Figure 5.1 GestIT class diagram ... 108

Figure 5.2 Recognition of a pinch gesture with the GestIT library 114

Figure 5.3 Recognition of a pinch gesture (sequence diagram) 115

Figure 5.4 Touchless recipe browser, dish type selection 117

Figure 5.5 Simple canvas UI, multitouch version 121

Figure 5.6 Simple canvas UI, full-body version 122

Figure 5.7 The photo viewer application .. 124

Figure 5.8 3D viewer interaction .. 126

Figure 5.9 3D viewer UI, grab gesture .. 127

Figure 5.10 3D viewer UI, roll gesture .. 127

Figure 5.11 Recipe category selection ... 131

Figure 5.12 Recipe selection.. 131

Figure 5.13 Recipe browser ... 132

Figure 6.1 MARIA gesture description meta-model 141

Figure 6.2 Task model for the TV control application 149

Figure 6.3 TV application AUI ... 150

Figure 6.4 MARIA application: function selection presentation 151

Figure 6.5 MARIA application: channel information presentation 152

Figure 6.6 MARIA application: channel selection presentation 152

Figure 7.1 Common prefix handling for the choice operator (1) 163

Figure 7.2 Common prefix handling for the choice operator (2) 164

Figure 8.1 Finite State Machine for the 3D viewer interaction 182

Figure 8.2 3D viewer CPU usage (FSM version) 184

Figure 8.3 3D viewer CPU usage (GestIT version) 184

List of Tables

Table 2.1: Comparison of different multitouch gestures definition

approaches in literature ... 38

Table 2.2 Comparison of different full-body gestures definition approaches

in literature .. 44

Table 3.1 Composition Operators .. 62

Table 3.2 Mapping a Proton++ literal to a GestIT ground term 77

Table 3.3 Mapping Proton++ operators to GestIT 78

Table 4.1 Common full-body gestures in literature 88

Table 5.1 XAML Gesture definition .. 118

Table 6.1: Channel selection gesture ... 154

Table 7.1 Grab and Drag gestures defined with GestIT.......................... 158

Table 7.2: Grab and Drag gestures e parametric definition 160

Table 7.3 Gesture definition for the 3D viewer application 161

Table 7.4 Simple drawing canvas gesture modelling 166

Table 7.5 Mapping multitouch ground terms to the full-body platform 167

Table 8.1 3D viewer CPU profiling (sampling, FSM version) 185

Table 8.2 3D viewer CPU profiling (sampling, GestIT version) 186

Table 8.3 3D viewer CPU profiling (instrumentation, FSM version) 187

Table 8.4 3D viewer CPU profiling (instrumentation, GestIT version) ... 187

Table 8.5 3D viewer memory profiling (FSM version) 189

Table 8.6 3D viewer memory profiling (GestIT version) 189

Chapter 1

Introduction

1.1 Context and motivations

In recent years, a wide variety of new input devices has changed the way

we interact with computers. Nintendo Wii in 2006 has broken the point and

click paradigm with the Wiimote controller, based on gestures in a 3D space;

iPhone has shown better usability by means of multi-touch in 2007, while

Microsoft introducing Kinect in 2010 has expressed a way of interaction

without wearing sensors of any kind. All these new devices exploit gestures

performed in different ways, such as moving a remote, touching a screen, or

through whole-body movements.

The introduction of such novel interaction techniques in the mass market

has not yet affected the current user interface programming frameworks: the

underlying model is still bound to the observer pattern [141] where events

occur atomically in time and they are notified through messages or callbacks.

The support for gestures has been mostly forced in the same paradigm by

hiding the gesture recognition logic under the hood, which usually means

providing high-level events when the gesture is completed, and leaving the

possibility to provide intermediate feedback to the handling of low-level

events, which are not correlated with the high-level ones.

Indeed, it is difficult to create gestural interfaces following the observer

pattern for two main reasons. The first one is that the temporal extension

of a gesture is significant with respect to the time scale of a system, since a

gesture may require seconds to complete. The observer pattern is

particularly effective when applied to events that can be considered atomic

from the system’s and the user’s point of view: a button click takes such a

small amount of time that both the user and the application can ignore what

happens during the click. Gestures break this assumption, since they have a

CHAPTER 1 INTRODUCTION 20

longer duration in time. In addition, the application usually has to provide

feedback during the gesture execution, in order guide the users. Therefore,

a single event does not fit a gesture in general.

In addition, the observer pattern has been successfully adopted in the

development of user interfaces (UIs), since it is particularly effective in

describing actions that do not have temporal relationships between them.

For instance, the handlers that deal with the pointer interaction work

independently from the timing sequence of e.g. the keyboard events.

Such property, which is a strength for classic WIMP (Window, Icon,

Menu, Pointing device) UIs, is the second problem in modelling gestural

interaction with the observer pattern. Indeed, in order to recognize a

gesture, a developer has to define the temporal relationships among different

low-level device event, through code that tracks the order of the received

events. For instance, in order to recognize a pinch gesture, the developer

has to ensure that at least two fingers are currently touching the screen

before reacting to touch move events. The code that establish whether the

event sequence is correct or not is mixed with the definition of the user

interface behaviour, increasing the code complexity and limiting its reuse.

Another aspect that is difficult to model with the observer pattern in UI

development is related to the animations. A simple approach may rely on a

timer tick notification. Each time the tick handler is triggered, the code

changes some visualization attributes and repaints the view. However, when

we want to compose more than one animation, such approach is difficult to

maintain since the actions that deal with the different animations are mixed.

The point is that it is easier to describe an animation as a continuous rather

than a discrete process. Most modern UI toolkits describe the animations

providing an initial state, a final state and an interpolation algorithm

between the two states. Given the duration, the UI toolkit can define a set

of discrete steps that changes the UI state from the initial to the final one.

An effective approach for modelling gestures solves the dual problem: for

each single discrete step (the low-level device events) in a given set (how

the user performs the gesture), it should be able to provide information on

the distance between the initial state (the start of a gesture) and the final

state (the end of a gesture), continuously.

This means that gesture description should have different level of

granularity: it should be possible to consider it as a whole, reacting to its

complete execution, but it should be also possible to associate feedback and

1.2 OBJECTIVES OF THE THESIS

21

UI behaviour to gesture sub-parts, in order to support users during the

execution of a complex gesture.

1.2 Objectives of the thesis

The objective of this thesis is the definition of a gesture meta-model that

can be effectively used for creating descriptions at the desired level of

granularity.

The meta-model should be abstract enough to describe gestures recognized

by different devices (e.g. touch screens, remotes, Microsoft Kinect etc.). We

follow a compositional approach: the definition of a complex gesture is

created through the composition of smaller sub-gestures, connected through

a set of operators. Such approach allows to declarative define a gesture and

to reuse its definition in more than one application, independently from a

given UI control. In this way, it is possible for instance to separate the pinch

gesture from the image viewer that exploits it for e.g. enlarging a photo.

In addition, the developer should be able to attach the behaviour

definition to the different parts of a gesture, either if its recognition

completes successfully or in case of partial recognition.

Once such meta-model has been defined, it should be instantiated for at

least to two different gesture recognition techniques, in order to validate it

with different sources of input.

Finally, we want to demonstrate its effectiveness through a set of

applications that define gestural interaction through the modelling elements.

We consider out of scope for this thesis an evaluation of the overall

usability of the applications created with the proposed approach. The effort

required for investigating the correlation between modelling and usability

forced us to focus on the meta-model definition and validation, but we plan

to consider this aspect in further research.

1.3 Requirements summary

In this section, we summarize the requirements we identified as success

criteria for the definition of our gesture description meta-model. The

motivation for such requirements is discussed in Chapter 2.

R1. Temporal evolution. The meta-model must describe the

gesture temporal evolution. The developers should be able to define

the behaviour of the user interface according to this temporal

CHAPTER 1 INTRODUCTION 22

evolution, without the need of tracking explicitly the different

stages of the gesture performance outside the model definition.

R2. Granularity. Provided that a gesture may take seconds to

complete, it must be possible for developers to define user interface

reactions to partially completed gestures, not only to their

complete recognition.

R3. Separation of concerns. The definition of gestures and the user

interface behaviour must be separated, in order to allow the reuse

of the same gesture model in different applications.

R4. Multiple recognition devices. The meta-model must support

different recognition devices, abstracting from a particular

recognition technology.

R5. Parallel interaction. The meta-model must handle the

recognition of different gestures at the same time, in order to allow

parallel interactions with the same application.

R6. Equivalent descriptions. The same gesture can be performed in

different ways (e.g. a pinch may be performed either with one hand

or with two hands). The meta-model must support the definition

of equivalent gestures.

During the development of the proposed modelling approach, we identified

another requirement that does not apply to the gestural interaction

modelling in general, but only to compositional approaches:

R7. Selection ambiguity. The recognition support must provide

means for identifying or managing the selection between two

different gestures that shares the same initial sequence.

1.4 Overview of the results

This thesis describes the following research results:

 The definition of GestIT (Gesture In Time), an abstract gesture

description meta-model, based on the composition of a ground

terms (which represent atomic gestures) through a set of

composition operators. The semantics of the meta-model elements

have been defined through Non-Autonomous Petri Nets [36].

 The instantiation of the abstract gesture description meta-model

for describing two different recognition supports: multitouch and

full-body.

1.4 OVERVIEW OF THE RESULTS

23

 The implementation of a proof-of-concept library that allows

creating user interfaces exploiting the gesture models. The library

can be exploited for creating multitouch and full-body gesture

applications.

 The implementation of a set of sample applications that

demonstrate the effectiveness of the meta-model.

 The integration of the gesture modelling technique into MARIA

[111], a state of the art User Interface Description Language

1.5 Thesis organization

The thesis is organised as follows:

 Chapter 1 introduces the context and the motivation of the thesis.

 Chapter 2 discusses the related work and different devices and

solutions for gesture recognition.

 Chapter 3 introduces the abstract gesture meta-model, and its

instantiation for multitouch and full body gestures

 Chapter 4 defines a set of gestures for multitouch and full-body

interaction using the proposed modelling approach.

 Chapter 5 discusses a proof-of-concept library that supports the

meta-model, together with a set of sample applications.

 Chapter 6 extends the MARIA [111] User Interface Description

Language with gestural interaction.

 Chapter 7 discusses how the proposed modelling approach

addresses three different problems in modelling gestural

interaction: the support for different granularity levels, the

separation between the gesture recognition code and the definition

of the UI behaviour, the ambiguities in the definition of different

gestures that have a common prefix.

 Chapter 8 reports an evaluation of the proposed meta-model,

according to the success parameters established for the thesis. We

report also an inspection of the notation according to two different

frameworks: Myers et al. [97] and the cognitive dimensions [51].

Finally we report on a preliminary analysis of the GestIT library

performance.

 Chapter 9 summarizes the results and describe possible directions

for further research.

CHAPTER 1 INTRODUCTION 24

1.6 Peer-reviewed publications

The following is the list of peer-reviewed publications that are a direct

outcome of this research:

 Spano, L.D. A model-based approach for gesture interfaces.

Proceedings of the 3rd ACM SIGCHI symposium on Engineering

interactive computing systems, ACM (2011), 327–330.

 Spano, L.D., Cisternino, A., and Paternò, F. A Compositional

Model for Gesture Definition. Proceedings of the 4th

International Conference in Human-Centered Software

Engineering (HCSE 2012), LNCS, Springer (2012), 34–52

 Spano, L.D. Developing Touchless Interfaces with GestIT. In F.

Paternò, B. de Ruyter, P. Markopoulos, C. Santoro, E. van

Loenen and K. Luyten, eds., Ambient Intelligence. Springer

Berlin / Heidelberg, 2012, 433–438.

 Spano, L.D., Cisternino, A., Fabio, P., and Fenu, G. A

Declarative and Compositional Framework for Multiplatform

Gesture Definition. EICS 2013, 5th Simposium on Engineering

Interactive Computing Systems, ACM Press (2013).

Chapter 2

Background and Related Work

This chapter provides an overview on the research topics that have inspired

or that are advanced in this thesis. The discussion starts with a quick

overview of the different devices that can be used for creating gestural

interfaces. After that, we provide a background on previous work on formal

techniques for modelling the user input. Then, we focus more on other

declarative approaches for modelling gestural interaction, briefly comparing

them with the one proposed in this dissertation. Next, we provide

background information on model-based approaches for user interfaces.

Finally, we introduce the Non-Autonomous Petri Nets, since we exploit

them for formally defining our gesture meta-meta model.

2.1 Enabling recognition technologies

This section discusses the main advances and innovations that introduced

gestural interaction to the mass-market. Some of them are due to

commercial innovation in existing platforms, such as mobile devices or game

consoles. Others have a long history, and eventually the technology

evolution (e.g. the increase of computing capabilities of mobile phones)

created the possibility to make them available to a wider set of users.

First, we have to define the meaning of the word “gesture”. Gestures

consist of movements of hands, face or other parts of the body that are used

for communication between people, replacing or enhancing speech. Gestural

interfaces emulate such kind of communication, recognizing a set of gestures

and exploiting them as input for computers [76].

Many tracking and sensing technologies have been employed in order to

recognize gestures through about thirty years of research. For instance, in

1986 Zimmerman et al. [148] already created gloves equipped with sensors

CHAPTER 2 BACKGROUND AND RELATED WORK 26

and force feedback for measuring finger bending and recognizing hand

motions.

With respect to the recognition techniques, in [95] it is possible to find a

survey on the different approaches for gesture recognition. In particular, we

can list the following techniques that have been employed for arm and hand

gestures: Hidden Markov Models [132,143], Particle Filtering and

Condensation [60,84], Finite State Machines [17] and Neural Networks [144].

Other computer-vision techniques that have been applied for recognizing

facial motions are important also for full-body gestures, such as Hidden

Markov Models, Principal Component Analysis [132], Contour Models [69]

Feature Extraction[101], Gabor Filtering [83].

The quest for a technique that is able to combine the recognition of

natural movements with a high level of precision is the “Holy Grail” for the

gestural interaction [40] and it is both one of the most investigated aspects

and one of the most challenging and open research question. However, the

techniques that enable the recognition of the gestures either on the hardware

or on the software side are not in the scope of this thesis. We aim to define

an effective model for defining the gesture structure according to the

different features that are provided by the recognition platform.

2.1.1 Multitouch

Multitouch UIs recognize the position of different touches on the same screen

simultaneously. Even if such kind of interaction has become popular after

the iPhone launch in 2007 [4], it is possible to find in literature systems that

used such screen interaction technique already in 1984 [68]. A survey on the

history of touch-based systems can be found in [25].

The technology support has been refined through the years the technique

was applied mainly for large and collaborative projective walls as, for

instance, in the Diamond Touch system [37]. It allowed multiple-user and

touches recognition using an array of antennas embedded in a table top,

used as a projector screen.

The application of the Frustrated Total Internal Reflection [54]

introduced an innovative and low-cost implementation for a multi touch

surface.

However, the industrial success of multitouch arrived with its application

on mobile devices: Apple introduced in 2007 the iPhone, which combined

this interaction technique with the idea of having a phone without hard keys

2.1.2 REMOTE-BASED GESTURE RECOGNITION

27

(already experimented with Simon by IBM & Bell South). This led to the

possibility of having a larger screen and an enhanced interaction vocabulary

with respect to its competitors.

In the same year, Microsoft introduced Surface (today renamed Pixel

Sense [86]) an integrated hardware and software table-top system that

enable multitouch and multi-user interaction on the same application. The

system allows also to place and move physical objects on the table-top, for

enhancing the interaction with tangible tags.

Besides the research on new technologies for enhancing the multitouch

support, different work focused on the definition of a set of gestures that

can be commonly accepted by users for executing different actions (e.g.

undo-redo, object selection etc.). For instance, in [140] the authors

conducted a user study on user-defined gestures, with the aim of finding a

consensus on the interactive meaning of gestures.

Nowadays multitouch interaction is mature in its application. All major

mobile device vendors created multitouch enabled smartphones, and all

major desktop operating systems support multitouch interaction.

2.1.2 Remote-based gesture recognition

The release of the Nintendo Wii in 2006 [102] leveraged the gesture-based

interaction from the research scope to the entire entertainment market. This

game console introduced an innovative controller called Wii Remote (or

Wiimote in short), which is equipped with a tree axis linear accelerometer

for sensing controller accelerations, an infrared camera for exploiting the

remote as a pointing device, and a set of buttons

The IR camera senses the light coming from ten emitters, positioned into

the Sensor Bar, another device placed near the screen. The controller has a

shape that makes it suitable to be used with one hand, similar to a normal

TV remote controller. It has no wires and it communicates with the console

through a Bluetooth connection.

Such hardware configuration broke the static game-pad interaction, where

the player has to stay motionless and control the actions pressing buttons.

The user started to control avatars moving the remote, performing

movements immediately replicated by her virtual counterpart. For instance,

in a golf game, the player mimes the club control with the remote, and the

power of the stroke can be associated to the movement speed, rather than

to a bar displayed on a GUI.

CHAPTER 2 BACKGROUND AND RELATED WORK 28

Such kind of natural interaction opened the video game market (at least

for Nintendo) to “casual gamers”, people who do not have a deep knowledge

of video games and do not play videogames very often [65].

The Sony PlayStation 3 adopted a similar controller in 2010 [123]. The

hardware configuration of this controller includes a three-axis accelerometer

and a three-axis gyroscope, which enables sensing the also the angular speed

of the movement. Differently from its Nintendo counterpart, the remote is

equipped with a spherical RGB light emitter. The orb changes its colour in

order to be recognizable for a camera in the surrounding environment,

enabling a precise 3D position tracking.

A similar operation principle is shared by the Gyration “in air” mouse [52],

a wireless device designed for the manipulation of 3D environments,

exploited in [38] for creating a virtual orchestra game.

Such kind of remote controllers are not able to track the movements of

the whole body if compared to e.g. Microsoft Kinect. However, they provide

haptic feedback to the user, which is particularly useful when there is the

need to manipulate virtual objects, offering a graspable counterpart in the

physical world. For instance, it is simpler for the user to understand the

aforementioned golf club metaphor if she has a physical object that represent

the club itself, rather than performing an in-air gesture pretending to have

something in her hands.

In addition, it is possible for the interface designer to exploit the physical

buttons in order to mitigate the well-known Midas Touch problem [62],

starting the gesture recognition only when the user presses a button,

otherwise avoiding the movement tracking.

2.1.3 Image-based gesture recognition

Another option that is widely adopted in both research and industry

solutions for gesture recognition is based on image analysis coming from

RGB, infrared and depth cameras, which can be also exploited in

combination.

One of the first examples for this kind of approach is CamSpace [29], a

software tool that exploits webcams for turning any object into a game

controller. Such generic approach comes at the price of losing possible haptic

feedback coming from the system: the tracked object cannot be used to send

output to the user.

2.1.3 IMAGE-BASED GESTURE RECOGNITION

29

A similar approach that lead a great change in the way people interact

with games has been produced with the launch of Microsoft Kinect [87],

released in 2010. The first version of the device was designed as a game

controller for the XBox 360 console. The device is composed by a bar placed

on top of a motorized pivot, which has to be placed horizontally below or

above the screen. It is equipped with an RGB camera, a depth sensor and

an array of microphones.

A newer version with a similar configuration, improved in its hardware

components, was created in 2011 together with the launch of the official

Microsoft SDK for Kinect applications. It supported the gesture tracking at

a nearer distance with respect to the previous version, which makes the

sensor suitable for the usage in desktop settings.

The hardware configuration enables the tracking of the whole body and

the recognition of facial expressions. The microphones allow the speech

recognition.

The Kinect was the Microsoft’s answer to Nintendo Wii, and with this

new type of devices all game consoles in the marked were equipped with

gesture recognition devices.

An improved version of this successful device (the Kinect 2) is expected

at the end of 2013 [137]. At the time of writing, only a set of specifications

and a presentation video are available, but it should include an improved

version of the hardware and a more powerful SDK. The new available

features are a smoother joint tracking, the recognition of the hand state

(open or closed), and the measurement of biometrical indices such as the

heart rate or the muscle tension.

Another promising device that exploits such kind of approach is the Leap

Motion sensor [80], which is a small bar to be placed under the screen of a

desktop computer or a laptop. It is able to track the position of the fingers

(or even sticks or pencils) with a precision of up to 0.01 mm. Such precision

enables the creation of touchless interfaces with a robust 3D hand tracking.

Two infrared cameras and three infrared emitters compose the device,

which tracks the hand position into a hemispherical surface of about one

meter. It is currently available for only for developers from October 2012,

and it has been delivered to consumers on September 2013.

The image processing approach has a higher flexibility on the supported

gesture types, since it is able to track the whole body or both hands.

However, such configuration limits to the visual and audio channels the

CHAPTER 2 BACKGROUND AND RELATED WORK 30

possibility to provide output to the user, which is a clear disadvantage with

respect to the haptic feedback that can be supported by a remote controller.

2.1.4 Floor devices

Considering again the entertainment field, it is possible to find another

device type that was largely exploited for enhancing the playing experience:

the so-called dance pads. Introduced by Konami with the game Dance Dance

Revolution, they essentially are a huge directional pad with big arrow-

shaped buttons that can be pressed with feet. This configuration allows the

player to move following the music and the button sequence displayed on

screen.

Even if such configuration is not able to track the body movements, the

button sequence to be pressed with the feet forced user to dance.

A different kind of floor device is the Wii balance board, which is a

rectangular feet panel that is equipped with two pressure sensors. It is

mainly used in snowboard emulation games and in aerobic and yoga

activities.

It is possible to find different work in literature that exploit such device

for the interaction: a virtual reality controller [53], in combination with hand

gestures for table tops [118] or 3D touch devices [70]. In addition, there are

many example in literatures that use such devices for medical purposes (e.g.

[49] and [145]).

In [9] the authors proposed Multitoe, an high-resolution frustrated total

internal reflection floor, which is able to detect the shape and the shape of

the users’ footprints. Based on such shape and on the estimation of the

pressure on the floor (using the brightness of the different footprint parts),

it is possible to reconstruct postures and to interact with different widgets

(keyboard, buttons, menu etc.).

An extension of this approach based on sensing the floor pressure is

provided by GravitySpace [23], which exploits a high-resolution pressure

sensitive floor for tracking the position of both furniture an multiple users

in the room. The system is able to reconstruct the movements of each object

and person on the surface analyzing the changes on the pressure image, and

to provide a real-time 3D reconstruction of the room scene on the floor

through a mirror metaphor.

2.2 INPUT MODELLING WITH FORMAL APPROACHES

31

2.2 Input modelling with formal
approaches

In this thesis, we exploit a formal notation for defining a gesture meta-

model. The idea of describing different types of input through a formal

notation has been widely investigated in literature, using different

formalisms. Such kind of research is recurrent when new type of input of

devices are available to the mass market.

The first category considers Finite State Machines (FSM), which have

been exploited not only for gestural interaction, but also for modelling input

coming from standard input devices such as mouse and keyboard. For

instance, Myers [98] defined a set of reusable interactors that encapsulate

the interactive behaviour, hiding the details of the underlining window-

manager events. The control part of such interactors, which managed the

input coming from the different devices, was modelled with FSMs.

In the same years, Henry et al. [56] used FSMs for solving the problem of

modelling non atomic actions on the UI, such as the drag and drop

technique. Indeed, such kind of interaction is particularly tedious for

developers, since they need to track the event sequence in order to

implement describe the temporal relationship of the user’s actions, which is

close to the definition of a gesture.

The same problem has been addressed also in [120], where FSMs are

exploited together with a set of intermediate layers between the input and

the application. They separate the UI object picking and the sequence

recognition from the definition of the UI behaviour. In this way, the authors

were able to increase the reuse of tracking code, isolating it in a component

library.

The FSMs approach for modelling the UI dialogues has been also

integrated into widely adopted window toolkits, such as Java Swing, by

Appert et al. [3]. In this work, the authors integrate FSMs inside the

definition of the UI classes, in order to define in a single place the interaction

code. Different FSMs can work together at the same time, in order to avoid

the state explosion problem. One of the motivating examples was again the

drag and drop interaction technique.

Jacob et al. [61] applied FSM to non-WIMP user interfaces: they

separated two aspects of such kind of interfaces. The first one is the response

to continuous input, which is managed by data-flow oriented variables. The

second aspect is the connection among these continuous variables that can

CHAPTER 2 BACKGROUND AND RELATED WORK 32

change according to different discrete events. The different set of

connections that are active among the continuous variables is described

through FSMs.

Increasing the number of modelled dialogues, the number of states in the

FSM definition explodes, and it may be difficult for designers to manage

them. In order to mitigate such problems, in [14] rich interactions are

defined using a hierarchical variant of FSMs, which includes sub-machines

that are composed together for defining the UI behaviour.

Besides FSMs, context-free grammars or the equivalent push-down

automata have been exploited for modelling the user input. We can

remember here the work in [103], where the authors described a user

interface generator that defined the accepted input through context-free

grammars. The same formalism was the core of a formal UI specification

defined in [15]. The authors exploited it not only for experimenting with

different designs for the same UI, but also for proving the UI conformance

to a set of guidelines.

The combination of different interaction modalities needed a formalism

that was able to integrate different concurrent information sources. In [2],

Accot et al. used Petri Nets for modelling low-level graphical interaction

events. In addition, they showed how it was possible to create multimodal

models starting from single-modalities, and composing them into one Petri

Net. They exemplified the composition technique defining a bimanual

interaction model for a direct-manipulation interface. A similar approach

for modelling bimanual interaction has been proposed in the same years in

[57].

More recently, Bo et al. [16] proposed an extension of Petri Nets that

integrate the unification of typed feature structures [31]. Petri Nets provide

a seamlessly definition of concurrent user’s input, while typed feature

structures support the specification of partial meaning and the integration

different modalities, together with the specification of the constrains on such

unification.

In this dissertation, we exploit a particular type of Petri Net, called Non-

Autonomous [36], in order to provide the semantics of the temporal

operators for our compositional model. Our approach is able to support and

integrate different modalities, since we provide an extensible definition for

the ground terms involved in the temporal expressions.

2.3 DECLARATIVE APPROACHES FOR GESTURE DEFINITION

33

2.3 Declarative approaches for gesture
definition

In this section, we review different approaches in literature that model

gestures following a declarative and/or compositional approach. We

differentiate between the work that addresses multitouch and the work that

addresses full-body gestural interaction.

Through the analysis of the different work, we identified a set of problems

that are addressed by the different notations, in order to define a set of

requirements for our gesture meta-model. The following is the list of the

requirements identified:

R1. Temporal evolution. The meta-model must describe the

gesture temporal evolution. The developers should be able to define

the behaviour of the user interface according to this temporal

evolution, without the need of tracking explicitly the different

stages of the gesture performance outside the model definition.

In the different work we analysed, such requirement was supported

by a formal description of the gesture, through different notations:

grammars [66], Petri Nets [7] or regular expressions [72,73].

R2. Granularity. Provided that a gesture may take seconds to

complete, it must be possible for developers to define user interface

reactions to partially completed gestures, not only to their

complete recognition.

The granularity requirement was supported in the different work

that proposed a compositional approach for defining gestures,

where it was possible to combine different definitions for obtaining

a new one. For instance, this was possible with grammars [66], rule-

based [50,59,119] and regular expressions [72,73].

R3. Separation of concerns. The definition of gestures and the user

interface behaviour must be separated, in order to allow the reuse

of the same gesture model in different applications.

Independently from the different modelling approach and from the

supported interaction device, the notations that raised custom

events for notifying the gesture recognition supported such

requirement [7,39,58,66,71,72,73,82]. This requirement it is not

supported by most rule-based approaches, which usually define the

behaviour in the rule body [50,59,119].

CHAPTER 2 BACKGROUND AND RELATED WORK 34

R4. Multiple recognition devices. The meta-model must support

different recognition devices, abstracting from a particular

recognition technology.

Such requirement is usually supported creating an abstraction layer

between the recognition support and the actual device used for

tracking the different features [7,39,58,59,82].

R5. Parallel interaction. The meta-model must handle the

recognition of different gestures at the same time, in order to allow

parallel interactions with the same application.

There are two main techniques for supporting the parallel

interaction. The first one is allowing the simultaneous recognition

of a set of gesture description, which are provided as a list. Such

gestures are always matched against the updates coming from the

recognition device. Such approach is common to the rule-based

notations [59,71,119] or in custom events engines [7,115] . Another

approach is to provide a composition operator that allow the

developer to specify such parallel recognition as a temporal

relationship among different gestures, which may be not available

from the beginning [66].

R6. Equivalent descriptions. The same gesture can be performed in

different ways (e.g. a pinch may be performed either with one hand

or with two hands). The meta-model must support the definition

of equivalent gestures.

Most of the work we analysed support this feature, providing a

composition operator for specifying the different alternatives.

2.3.1 Multitouch

In this section, we discuss different work in literature that provided different

notations for modelling multitouch gestures. We compare the different

approaches against the set of elicited requirements.

At the end of this section, we summarize the support provided by all the

approaches in Table 2.1.

Kammer et al. [66] introduced GeForMT, a formalization of multitouch

gestures that aimed to fill the gap between the high level complex-gestures

(such as pinch to zoom) and the low level touch events provided by different

2.3.1 MULTITOUCH

35

toolkits. The description language, defined through an Extended Backus-

Naur form grammar, is based on five different elements:

 the pose function describes the shape of the tracked touch;

 the atomic gestures describe the basic movements of the different

touches (move, point, hold, line, circle and semicircle)

 the composition operators define composite gestures through a

parallel or a sequential temporal relationship;

 the focus specifies the currently manipulated application object or

objects;

 the area constraints defines the relative movements among the

different touches (e.g. two touches that cross their positions).

The grammar productions of these five elements represent interactive

gestures. With respect to the approach described in this dissertation,

GeForMT is limited in scope, since it can be applied only to multitouch

gestures. The composition operators do not provide a way for defining the

equivalence of two different gesture definitions (e.g. through a choice

operator).

In [50], Gorg et al. modelled multitouch gesture recognition through a

labelled deductive system [44]. In order to define the interaction, the

designer has to specify a set of rules that is able to recognize the expected

sequence of touch-related events. Two different types of rules are exploited

in this approach: the first is an inclusion rule, where the designer defines

the expected sequence of events; the second is the exclusion rule, which

specifies explicitly which sequences break the recognition.

Through the rule system, the designer has a fine-grained control on the

recognition process, in particular when two gestures share the same common

prefix, since it is possible to define priorities. However, exclusion rules make

it difficult to compose gestures designed for different applications, since the

developer has to find out if they inhibit the recognition of the composed

gesture. In addition, the temporal evolution of the gesture is not stated

explicitly, but it should be reconstructed from the rule set.

Regarding the separation of concerns, the rule body defines the reaction

to the triggered events. This approach mixes the logic for the gesture

recognition with the behaviour of the UI.

Scholliers et al. [119] defined Midas, an architecture for recognizing

gestures according to a set of rules, which are matched against a set of input

CHAPTER 2 BACKGROUND AND RELATED WORK 36

facts using a logical rule inference engine. The rules are able to recognize

multitouch gestures, taking into account different features such as the touch

positions and speed, and the touch state (appear, move and disappear). Each

rule has a prerequisite part, which defines the input fact pattern to be

recognized, and an action part that specifies the UI behaviour.

The rules have different priorities in order to control the effects of the

overlapping ones. The composition is possible through a set of temporal

operators, which are able to compare the distance in time between two input

facts. In this way, it is possible to define complex gestures asserting that the

different components occurred with the specified temporal relationship.

With a rule-based approach, the designer has to figure out the temporal

relationship between gestures reading and understating the rules. The

approach proposed in this thesis describes this aspect more explicitly.

Similarly to [50], the definition of the UI behaviour is contained into the

same rules that matches a gesture.

In a follow-up work, Hoste et al. [59] extended the Midas approach for

describing multimodal interfaces. Mudra (which is the extension name) is

able to unify the input stream coming from different devices, which exploits

even different modalities. It provides the designer with a way to define both

the low-level handling events, and the high-level rules that combine them

into a unique software architecture. The rule language has been extended

for supporting facts coming from e.g. voice and hand movements, but its

structure still mix the gesture recognition and the behaviour definition. Even

if we do not explore deeply the multimodality aspect in this thesis, we

demonstrate with the application in section 5.4.4 that is possible to combine

the gestural and the vocal modality in GestIT.

Khandkar et al. [71] proposed GDL (Gesture Description Language),

which separated the gesture recognition code from the definition of the UI

behaviour. The description language focus on multitouch gestures, and it is

defined through three components: the gesture name, the code for the

gesture validation and a return type, which represents the data notified with

a callback to the application logic, containing all the relevant information

(e.g. the entire sequence of touch positions, the number of touches etc.).

The approach is compositional, since it is possible in the validation part

to reuse different gesture recognizers. However, since each recognizer

represents simply a boolean function, it not possible to define all the

2.3.1 MULTITOUCH

37

temporal sequences that we can define with GestIT, but it is possible to

provide different equivalent version of the same gesture. In addition, once

the composed gesture is defined, it is not possible to register a handler to

its sub-parts, since the only event that is notified is the completion of the

entire gesture.

GISpL [39] proposes a JSON-based syntax for describing gestural

interfaces and it supports different interaction modalities such as

multitouch, digital pens, regular mouse (or mice), tangible tokens and mid-

air gestures. The syntax defines how to monitor a set of features observed

in the input stream, such as e.g. the count of different objects in a region,

the matching accuracy between a predefined path and the one travelled by

a given input object etc. Each feature can be related to single or multiple

sources.

When one among the different gestures is recognized, the target

application receives a notification in the form of a specific event. It is

possible that more than one gesture is detected at the same time. The

approach enables the reuse of the gesture definition in different applications,

and the separation between the gesture recognition and the application

behaviour aspects. However, the language does not provide compositional

operators. Therefore, there is no way to create complex gestures describing

the temporal relationships among simpler ones.

The maturity of the multitouch support on different devices makes this

interaction suitable to be adopted in safety-critical settings. However, in

such environments it is necessary to prove a set of properties of the UI, such

as invariants or constraints on the behaviour. In [7], Arnaud et al. provide

a formalization for multitouch gestures, which can be exploited in order to

prove a set of UI characteristics for employing them in a plane cockpit. The

proposed architecture is based on the Interactive Cooperative Objects [99],

a formalism that exploits an object-oriented description of the structural

and static aspects of the UI, while it exploits Petri Nets for describing the

dynamic behaviour. The instantiation of such kind of objects for multitouch

interaction defines a set of layers that are similar to the ones proposed in

this thesis for supporting generic gestures: the first level creates and

abstraction of the low-level device events (called low-level transducer). Such

events are passed to the second layer, between the device and the

CHAPTER 2 BACKGROUND AND RELATED WORK 38

application, which contains a set of gesture recognizers that raise high-level

events according to the successful completion of a gesture (e.g. pinch or tap).

Finally, the application reacts to such high-level events. In the work by

Accot et al., Petri Nets are used to define directly the behaviour of an

interaction object that recognizes a gesture, therefore the expressive power

of the modelling language can be considered the same, since it is possible to

directly “reuse” the Petri Net definition of the composition operators we

propose in this thesis.

However, the approach is affected by the granularity problem: the high-

level events are raised only when a gesture completes successfully, without

any intermediate notification. In addition, all the interaction objects that

represent the different gesture receive the low level events in parallel, and

this limits the possible temporal relationships that can be defined among

the different gestures.

In Table 2.1, we summarize the comparison of all the approaches discussed

in this section against the set of requirements we identified. None of them

satisfied the full set of requirements.

 Temporal

evolution

Granularity Separation

of concerns

Multiple

recognition

devices

Parallel

interaction

Equivalent

description

Kammer

et al. [66]

Gorg

et al.[50]

Scholliers

et al. [119]

Hoste

et al. [59]

Khandkar

et al. [71]

Echtler

et al. [39]

Arnaud

et al. [7]

Kin et al.

[72,73]

Table 2.1: Comparison of different multitouch gestures definition approaches
in literature

2.3.1 MULTITOUCH

39

2.3.1.1 Proton++

In this section, we analyse the gesture description that, to the best of our

knowledge, is the closest one to the approach described in this dissertation.

Proton++ [72,73] is a multitouch framework allowing developers to

declaratively describe custom gestures, separating the temporal sequencing

of the events from the code related to the behaviour of the UI.

Multitouch gestures are defined as regular expressions, where literals are

identified by a triple composed of:

1. The event type (e.g. touch down, move and up)

2. The touch identifier (e.g. 1 for the first finger, 2 for the second

etc.)

3. The object hit by the touch (e.g. the background, a particular

shape etc.).

It is possible to define a custom gesture exploiting the regular expression

operators (concatenation, alternation, Kleene’s star).

Figure 2.1 shows an example of gesture definition using Proton++. The

gesture is a simple two-hand scale (pinch) gesture. The different colours in

the lower part of the figure correspond to the different gesture parts in the

expression.

The entire expression is built composing touch events represented in the

𝐸𝑇
𝑂 form, where 𝐸 is an event (𝐷 for touch down, 𝑀 for touch move and 𝑈

for touch up), 𝑂 is a touchable object (in our example 𝑠 is the star, while 𝑎

can be any object) and 𝑇 is the touch identifier (simply an integer). It is

possible to create the gesture definition composing such literals through the

usual regular expression operators.

Figure 2.1 An example of gesture definition with Proton++

The red part in Figure 2.1 describes starting part of the gesture, where

the user touches the screen with two fingers. After that, she can converge

or diverge the hands with an iterative movement of both fingers (the green

CHAPTER 2 BACKGROUND AND RELATED WORK 40

part in Figure 2.1). The gesture ends when both fingers are lift from the

screen (the blue part in Figure 2.1).

The underlining framework is able to identify conflicts between different

composed gestures and to return their common longer prefix in order to let

the developers remove the ambiguous expression or assign different

probability scores to the two gestures.

The runtime support receives the raw input from the device, transforms

it into a touch event stream that is matched against the defined regular

expressions.

When one or more gestures are recognized, the support invokes the

callbacks associated to the related expressions, selecting those with higher

confidence scores (assigned by the developer in case of conflict between the

expression definitions at design time).

An improved version of the framework (presented in [73]) included also

the possibility for the developer to calculate a set of attributes that may be

associated to an expression literal. For instance, it is possible to associate

the current trajectory to a touch move event, and let the framework raise

the associated events (read recognize the literal) only if its movement

direction is the one that the designer specified (e.g. north, north-west, south

etc.).

Other examples of such attributes are the touch shape, the finger

orientation etc. In Proton++ it is possible to define the custom gestures

through a graphical notation (called tablature), which has been

demonstrated to be more understandable for the developers if compared

with normal code.

Since this language shares different features with GestIT, such as the

separation between the gesture description and effects, and the possibility

to create gesture descriptions composing ground terms trough a well-defined

set of operators, we compare its expressiveness against our approach in

section 3.4.

2.3.1.2 Selection ambiguity

The framework described in [120] does not take into account gesture

modelling, but it focused on the input uncertainty problem. The same

problem affects in particular the compositional approaches when two

different gestures, which have a common starting prefix, are connected

through a choice operator (it is possible to execute either one or the other).

Starting from the fat finger problem in multitouch interfaces [42], the

2.3.2 FULL-BODY

41

authors propose to assign a probabilistic score to the input meaning (read

the selected object). For each possible interpretation of the input, the

different interactors send a notification of the events to an intermediate

layer between the interface view and the behaviour, called mediator. Such

component is in charge of handling the uncertainty according to different

policies. Once the mediator is able to pick one among the different actions,

it performs the selection and only one among the possible interpretation is

sent to the regular interface behaviour definition.

In this dissertation, we propose a different solution for this problem in

section 7.3, which exploits the possibility to split a gesture into different

sub-parts. Such solution is able to seamlessly provide a support not only for

the developer that needs a way to manage the uncertainty, but also for

providing guidance to the users during the gesture performance, which has

been demonstrated effective for learning the interaction vocabulary [10].

Therefore, we add to our set of requirements the following:

R7. Selection ambiguity. The recognition support must provide

means for identifying or managing the selection between two

different gestures that shares the same initial sequence.

2.3.2 Full-body

The compositional and declarative modelling techniques have been

scarcely applied to full-body gestures in literature. The state of the art

abstraction for creating gestural interfaces with depth cameras is based on

tracking the sequence of skeleton frames [115,138]: the sensor driver,

according to images captured by the cameras, updates the number of

skeletons and the position of their joints, using inverse kinematic techniques

[122,147].

The documentation for such programming toolkits presents such

abstraction as the usual instantiation of the observer-pattern: the developer

has to register to an event (the skeleton position change) and then the

application has to react to such change. Therefore, since there is nothing

new for the window managers, it is possible to build an intermediate layer

between the device drivers and the application logic in order to uniform the

new interaction devices to the existing input techniques, allowing the

developers to map them to mouse or keyboard events [128]. This has the

obvious advantage of reusing existing applications with different interaction

devices with little effort.

CHAPTER 2 BACKGROUND AND RELATED WORK 42

However, gestural interaction is intrinsically continuous, and the event-

handlers for the skeleton position change are filled by code that tries to filter

the notifications that do not correspond to the expected temporal sequence,

as we better detail in Chapter 7.

The research community and the device vendors have obviously identified

such problem and different solutions.

The first one is offering an extension point for the device driver SDK,

where it is possible to concentrate some recognition code that defines a new

custom gesture. When such gesture is recognized completely, the library

raises a custom event and the developer can attach different handlers in

different points of the application code. Such solution does not allow

developers to provide intermediate feedback during the gesture performance,

since the complex gesture cannot be decomposed in smaller parts, violating

our granularity requirement.

Such approach is adopted in NITE [115] but, given the amount of time

needed by the user for completing a gesture, is not sufficient for providing

an adequate support to developers. It is possible to provide a simple

explanation for this point simply considering the sample code that NITE

provides to developers for demonstrating such SDK feature. The sample

application recognizes a circular hand motion and changes the background

colour of the screen when the user completes the movement. Even in this

simple case, the application has to provide an intermediate feedback during

the gesture execution, otherwise the user is not able to understand if it is

tracking her movements correctly. Therefore, the sample provides such

feedback showing a circle and a line that represents its radius on the

application UI. When the user moves her hand, the radius rotates around

the centre of the circle. If the user does not perform the gesture correctly,

the radius returns in the initial position.

The sample code shows, even in this simple case, that the single-event

approach is not suitable for gestures: the screen-background change is

attached to the custom event, raised at the end of the gesture. However, in

order to provide the intermediate feedback, the sample code tracks the hand

position again, since it is not possible to access the inner components of the

custom gesture. However, such solution allows the recognition of different

gestures at the same time and, raising the same event for different gestures,

it is possible also to define the equivalence between two gestures.

A more effective solution is presented in [58], where the authors provide

a declarative syntax for defining complex gestures. The different gesture

2.3.2 FULL-BODY

43

recognition devices are exposed as a data stream, which is analysed by the

AnduIN [75] processing engine. The custom events are defined with an SQL-

like syntax that create triggers for the sequences that are compliant to a

specific selection rule. Even if the declarative syntax enhances the reuse and

the possibility to inspect the gesture definition, the notification of the

gesture recognition is still based on a single event. Therefore, in order to

provide intermediate feedback, the developer is in charge to define a set of

recognizers for the gesture sub-parts and to coordinate them in the

recognition handlers.

Such rule-based approach guarantees the parallel recognition of different

gestures and also the possibility to define equivalent gestures. In addition,

the data stream abstraction allows to support different recognition devices.

Another approach that tries to lower the complexity for gesture definitions

consists in providing an abstraction layer, which hides the complexity of the

underlying machine-learning algorithms that perform the recognition. An

example of this approach is GART [82], where the developer can provide a

set of training examples for different sensors in order to define the gesture

vocabulary.

The main difference with the approach proposed in this thesis is that

classifiers are bound to raise the events only when the whole gesture is

recognized. Therefore, such approach is good for gestures that have a limited

duration in time. In addition, such approach does not support neither the

definition of gesture composition nor the temporal sequencing.

Such approaches usually allow the recognition of only one gesture at time.

However, it is possible to map multiple gestures on the same event,

providing the mechanism for expressing the equivalence of gestures. In

addition, a classifier can be trained with features coming from different

devices.

Table 2.2 summarizes the comparison of the different modelling

approaches against our requirement set. As it is possible to see, the

approaches for full-body gestures provide a narrower support for the

required features if compared with multitouch work.

CHAPTER 2 BACKGROUND AND RELATED WORK 44

 Temporal

evolution

Granularity Separation

of concerns

Multiple

recognition

devices

Parallel

interaction

Equivalent

description

NITE

[115]

Hirte

et al. [58]

Lyons

et al. [82]

Table 2.2 Comparison of different full-body gestures definition approaches in
literature

Besides the obvious exploitation of gesture recognition for games or

different gestural applications (we show different examples in literature

while discussing common control gestures in section 4.1), it is worth pointing

out here that such devices have a wider impact on HCI with respect to other

input techniques. Indeed, as discussed for instance in [130], it is possible to

exploit such hardware to differentiate the user’s feedback according to their

personality (introvert or extrovert), inferring it through a user’s posture

analysis. The authors proved that such empathetic feedback enhanced the

experience in video games.

The same configuration can be also exploited in ubiquitous settings. In

[131], Tan et al. provided an off-the-shelf solution for tracking the user’s

affective state, that can be employed by intelligent user interfaces for

modifying the feedback and/or the content according to her current feelings.

The gesture description discussed in this thesis may be employed in such

configuration for instrumenting the posture recognition with a human-

understandable notation.

2.4 Model-based approaches for User
Interfaces

Model-Based User Interface design is sub-area of the Human-Computer

Interaction research field that aims to lower the complexity for the design

of an interactive system. This objective is achieved creating a set of

abstractions for the design and the development of a User Interface.

The proposed approach for modelling gestures has been integrated into

MARIA [111], a state of the user interface modelling language that belongs

to this research field.

2.4.1 HISTORICAL BACKGROUND

45

2.4.1 Historical Background

During the last two decades, the research in this field has tried to deal

with the evolution of the technological settings and the consequent changes

and challenges in the development and design of UIs.

In [111], three generations of approaches are identified. The first

generation focused on Graphical User Interfaces (GUIs).

In this category, MIKE [104] attempted to leverage the UI development

to non-programmers, introducing a command syntax for defining the

interface functionalities. After the command list was created, the tool

generated the UI, and it was possible to edit the result adding descriptive

information.

Jade [146] is a tool that automatically created input dialogs out of a layout

independent content description, created by programmers. Combining this

specification with a layout database created by artists, the tool was able to

generate the graphical dialogs.

In the same category, we can remember ITS [139], which defined a four

layered architecture for defining interactive systems. The different layers are

the application back-end functionalities (action layer), the content without

style information (dialog layer), the layout rules for choosing the appropriate

interaction technique (style rule layer) and the dynamic changes in the

interface (style program layer).

Humanoid [129] created an abstract description that allowed the

declarative specification of both presentation and behaviour.

Finally, UIDE [41] is a development environment able to exploit models

in order to generate automatically the implementation of the UI and also to

derive data schemas for databases and help for the application usage.

The second generation defined the shift of focus from the graphical

modality to the interaction semantics, using task models in order to describe

the actions that users have to perform in order to achieve a specified goal.

This trend was driven by the psychological theory on how people perform

tasks. Indeed, in [30] the execution was explained in terms of GOMS, which

stands for Goals, Operators, Methods and Selection rules. Goals refers to

the intended user's targets, the Operators are actions performed in order to

achieve a given goal, the Methods are sequences of operators and sub-goals

that allow accomplishing a goal, while the Selection rules drive the execution

of a certain method when more than one option is available.

In [63] Johnson et al. described ADEPT, an environment for prototyping

user interfaces. The tool supported the creation of a model of the tasks that

CHAPTER 2 BACKGROUND AND RELATED WORK 46

the user and the system have to perform jointly, together with a UI

prototype editor that take as input the task model. The designer can refine

the user interface model in order to create the application prototype.

Van der Veer et al. [134] created a conceptual framework for the design

of an interactive system, which envisioned a three staged modelling

methodology. At the first step, the designer creates a first task model (Task

Model 1) from the domain knowledge and the work practice. This model has

to be refined with the specification of task decomposition procedures, task

allocations to people and technology, communication structures and

management procedures (Task Model 2). After that, the designer should

create a User's Virtual Machine (UVM) that represents the knowledge of

the system that is relevant from the user perspective, without hardware or

implementation details. This abstraction has to be iteratively validated

through a prototyping phase, in order to obtain a UVM specification suitable

for creating the system.

Another example can be found in [114], which describes the

ConcurTaskTrees notation. It allows the designer to specify the task with a

graphical tree-shaped notation, decomposing high-level tasks (abstract)

down to atomic actions that can be performed by the user, the system or by

an interaction between them.

The various tasks are connected through operators in order to specify their

temporal relationship. It is also possible to specify which kind of objects are

manipulated while performing actions.

Since the temporal operator of this task modelling language provided the

inspiration for the ones we exploit in our compositional approach for the

definition of a complex gesture, we describe it in detail in a dedicated section

(2.4.3).

As explained in [97], although such approaches for the development of

interactive systems were promising, they did not found a wide acceptance

(aside for task modelling), because they were generally affected by the

unpredictability of the final result due to a set of generation heuristics. In

addition, the standardization of the vocabulary of GUI toolkits lowered the

importance of having specific models. However, a new generation of model-

based approaches is now pushed by the increasing availability of a large

number of different devices, each one with specific characteristics and

features, which creates the need for device-independent user interface

specifications [97]. In this thesis, we try to provide a unified approach for

the different devices that enable the recognition of a gesture.

2.4.1 HISTORICAL BACKGROUND

47

The third generation of model-based approaches is currently trying to take

into account such issues, providing models and languages able to support

multi-device development, and the desired level of control to designers. The

effort is generally on the definition of User Interface Description Languages

(UIDL) to describe such models. The best-known projects in this field are

XIML[116], UIML [1,55], UsiXML[81], Teresa XML [96], MARIA [111]

(which we extend in this dissertation in Chapter 6) CAP3 [11] and, to some

extent, XForms [20].

XIML [116] is the acronym of eXtensible Interface Markup Language,

which is an extensible language based on XML developed by RedWhale

Software. The language aims to create a framework for supporting the entire

UI engineering process (design, operation, evaluation). The XIML

vocabulary contains a collection of interface elements categorized into an

extensible number of components, which should be in a relatively small

number. Such components are:

 user tasks, which represent definition of activities with a

hierarchical decomposition

 domain objects, which represent a collection of data objects and

classes

 user types, which represent a hierarchical categorization of the

various user profiles

 presentation elements, which represent the hierarchy of abstract

interaction elements (such as windows, buttons, sliders etc.)

 dialog elements, which are actions that are available to the users

of an interface (e.g. clicks, gestures, voice responses etc.).

These components are linked using relations, which are definitions or

statements for the runtime operations on the UI. The language itself does

not specify the relation semantics, but the specification is left to each single

application. The interface elements have a set of attributes, which

characterize better their role.

The User Interface Markup Language [1,55] (UIML) is a XML-based

language that addresses the multi-device problem, with the definition of UI

elements that are independent from the target device, delegating the

mapping between elements and their rendering to style-sheets. The runtime

behaviour of the elements is described through events, which can be either

local (that affect only the interface elements) or global (that affect also the

application back-end). In a UIML document, the UI is described through

the following sections: the structure (a list of abstract part of the UI), the

CHAPTER 2 BACKGROUND AND RELATED WORK 48

style (a list of properties for rendering UI parts for a given device), the

content (text, images and data contained into the UI), the behaviour (a set

of rules that define how the UI reacts to actions), the logic (the application

programming logic for connecting the UI with its back-end), the

presentation (a mapping list between the UIML vocabulary and the target

implementation language constructs).

The USer Interface eXtensible Markup Language [81] (UsiXML) is a

XML-compliant language that employs different models for describing

various UI aspects in different context of use. The set includes the following

specifications: tasks (through an extension of the CTT [114] language),

abstract UI (a description of the UI elements independent from any

particular device or modality), a set of concrete UIs (a description of the UI

elements that is modality dependent, e.g. graphical, vocal, 3D etc.), domain

model (description of the classes of objects manipulated by the UI), a set of

mappings (declaration of inter-model relationship between elements

semantically related), a model of the context of use (properties regarding

the current end user, platform and surrounding environment), and a set of

transformations (a set of graph rewriting rules depending on attribute

conditions).

UsiXML has been exploited in different applications, and is maintained

with a dedicated project [133]. Among the different tools that support the

different models, we can remember here UsiComp [46] an environment that

support both the design and the generation of applications based on OSGi

[106] services. The environment can be extended for exploiting other meta-

models that describe different aspects of the application. Such extensions

enter in the final application generation through a set of custom

transformations (model-to-model or model-to-code).

In [96] is described TERESA, an XML language with the associated tool

that is able to support the definition of UIs with different levels of

abstraction (see section 2.2.2).

At the abstract level, the elements can be of three types: interactors

(single interaction objects), composition operators (that groups together

interactors logically connected) and presentations (a set of interactors and

composition operators presented to the user at the same time). The

interactors belong to different classes according to their interaction

semantics (e.g. edit, control, selection, only-output etc.). Each target

platform (graphical desktop, mobile, vocal, multimodal etc.) refines this

2.4.1 HISTORICAL BACKGROUND

49

abstract representation introducing modality dependent implementations of

the interactor classes.

XForms [20] is an attempt to create a new generation of web forms that

can be integrated into different markup languages, exploiting the model-

view-controller pattern. The relevant point for this discussion is that, being

tailored for being embedded into other XML markups, the view layer cannot

rely on a specific interaction modality, e.g. the forms can be embedded either

into HTML or Voice XML. Therefore, the input items should focus more on

the interaction semantics rather than the appearance as currently happens

in HTML. Examples of the interaction objects included in XForms are the

following: select (choice of one or more items from a list), trigger (that

activates a defined process), output (display-only form data), secret (entry

of sensitive information etc.). The XForms vocabulary represents an

attempt for a device-independent specification of UI controls.

CAP3 [11] is a user interface modelling language, designed to be integrated

in a user-centered design process. The language contains both structural and

behavioural specifications, combining such aspects into a model that can be

exploited by different stockholders while discussing the design of interactive

applications. In order to express the relationships with other models of the

same applications, it contains explicit references to external models

representing different aspects of the system, such as the domain, user and

context models.

Nowadays, there are different initiatives that aim to create international

standards for adopting the model-based approach into industrial settings.

The ANSI/CEA-2018 is a standard for the specification of task models [117],

published in November 2007, together with an XML interchange syntax.

The task definition is provided through a hierarchical structure, the sub-

tasks are by default executed sequentially, but it is also possible to define

partial orderings. Tasks are also optionally associated to input/output

parameters and pre/post execution conditions.

The World Wide Web Consortium has a working group for providing a

standardization of the different languages related to the Model Based User

Interface approach. The Model Based User Interface Working Group

(MBUI-WG) aims to provide a standard definition for task models and the

abstract user interface level that, according to the CAMELEON [27]

reference framework, provides a description of the UI that is independent

from the current device and interaction modality.

CHAPTER 2 BACKGROUND AND RELATED WORK 50

As a second step, the group aims to provide different specifications of UI

languages that describe the interface for a given set of homogenous devices

(the concrete level) and a way for representing context-dependent

adaptation rules.

The working group produced a public working draft for the task model

specification in August 2012 [109].

2.4.2 The CAMELEON reference framework

In this section, we introduce the CAMELEON [26,27] reference framework,

that provided the theoretical background for different model-based

languages for user interfaces (MBUI), and in particular for the definition of

MARIA [111], which we discuss more in detail in Chapter 6, since in this

dissertation we define an extension for supporting gestural interaction,

which can be therefore inserted into the broader scope of MBUI approaches.

The CAMELEON Reference Framework offers a unified representation of

the models, methods and processes for creating multi-target user interfaces.

The UI context of use is defined along three dimensions: the users that

are intended to use or effectively use the system, the platform that is the

hardware and software configuration of the interactive system, and the

environment that specifies the physical conditions where the interaction

occurs. A multi-target UI is able to support different contexts of use. The

reaction to a context change in a multi-target UI is called adaptation. If the

adaptation is performed preserving usability, the UI is plastic. Preserving

UI plasticity for cross-platform design and for context-aware applications is

currently one of the main challenges in this research field. Indeed in [121],

the authors demonstrated through a case study that the overall UI quality

(in terms of ergonomic criteria) increases when the UI plasticity is preserved.

This happens since plasticity has an impact on a set of usability criteria that

influence positively different usability aspects.

Given the increasing number of devices that people uses in their everyday

life, the engineering techniques able to preserve plasticity from the early

phase of the applications development have an impact on different fields of

Computer Science [28], and their number will increase in the future. Besides

HCI, fields such as Software Engineering (e.g. aspect-oriented programming,

model-driven-engineering) and Artificial Intelligence can provide effective

solutions for this problem.

2.4.2 THE CAMELEON REFERENCE FRAMEWORK

51

With respect to the application modelling, the CAMELEON framework

distinguishes three kinds of models. The ontological models are defined as

the meta-models, independent from any interactive system, which are able

to describe the concepts and their relationship involved in multi-targeting.

The archetypal models are instantiations of the ontological models and

represent an interactive system that deals with a given domain. The

observed models are executable models that support the adaptation process

at run-time.

The ontological models can be of three different types:

1. Domain Models, which support the description of a domain-related

concepts and tasks.

2. Context Models, which support the description of the context (user,

platform and environment).

3. Adaptation Models, which support the description of the reactions

in case of context change and the commutation process.

After the identification or the specification of the needed meta-models

(e.g. UML class diagram for describing the domain-concepts, CTT for

describing the tasks etc.), it is possible to define various configurations that

describe a specific interactive system using the different meta-model

constructs. This instantiation of the ontological model produces different

archetypal models, which represent the application for classes of potential

devices (e.g. the archetypal model for a multi-touch mobile device applies

for the iPhone, Samsung Galaxy S4 etc.). The observed models are exploited

at runtime in order to perform both the UI execution and the context

switches.

The design-time phase creates a set of executable UIs, each one targeted

to a particular archetypal model configuration, called initial model. The

process envisions the creation of a set of different transient models, produced

using different operators. At the end of the process, we have the final

context-sensitive interactive system.

The framework specifies four different transient models, with a decreasing

level of abstraction:

 Concepts and Tasks model: description of the concepts and the

tasks that is produced by the designer for a particular context of

use.

 Abstract User Interface (AUI): user interface description that is

independent with respect to the device and the interaction

modality.

CHAPTER 2 BACKGROUND AND RELATED WORK 52

 Concrete User Interface (CUI): user interface description that is

abstract with respect to the technology used for the

implementation.

 Final User Interface (FUI): the final implementation of the user

interface, expressed in source code.

The operators transform a model into another one. Such transformation

can be implemented in different ways: with a completely automatic process,

without any automatic support (completely defined by a designer), or with

a semi-automatic solution. The latter process envisions the automatic

creation of a target model draft, with an intervention of a designer, which

modifies it in order to achieve the desired result. On one hand, a full

automation leads to a very quick development process. However, this

produces only standard solutions that are not tailored for the specific

application, otherwise the designer should specify a huge number of details

that invalidates the model convenience. On the other hand, a completely

manual solution has a high development cost that would make the multi-

targeting expensive. It is a general opinion that a good balance between the

automation and human intervention is the best solution for this problem.

Operators can be classified according to the abstraction level of the models

involved in the transformation process:

 An operator performs a vertical transformation if the source and

the target models are at different levels of abstraction. The top-

down approach (from a higher level to a lower one) is called

reification, while a reverse engineering step is called abstraction.

 An operator performs a horizontal transformation if the source and

the target models are at the same abstraction level. If it involves

two different targets, it is called translation.

In the run-time phase, the designed UIs and the runtime infrastructure

cooperate in order to support the adaptation. The process consists of three

steps that include the recognition of the situation, the computation of a

reaction and the execution of the reaction.

The recognition of the situation needs the ability to sense the context of

use (or at least the part that are interesting for triggering a change), to

detect context changes (comparing the sensed attributes with the previous

values) and to identify context changes (classifying the change into the

modelled categories).

2.4.3 CONCURTASKTREES

53

2.4.3 ConcurTaskTrees

We dedicate this section to the description the ConcurTaskTrees [114], a

task modelling language that provides a set of temporal operators, which

inspired the ones we defined for composing gestures. In addition, it provides

the task-level language that is exploited by MARIA [111], the UIDL we

extend in this thesis.

The ConcurTaskTrees model hierarchically different task: at the top level

there is an abstract task that represents the whole application, which is

decomposed into a set of subtasks until the desired level of detail is reached,

building a tree. Four types of tasks exist: user (that involve only the human

user), system (that involve only the system), interaction (that involve both

the system and the user), and abstract (used for grouping together task of

different type at the intermediate levels).

At each level of the tree, it is possible to connect two tasks using the

following temporal operators, reported here in order of priority:

 Choice. It is possible to choose one of the connected task. Once one

task is selected, it is the only one that can be performed, while the

other is disabled.

 Concurrency. The connected tasks can be performed concurrently,

without any specific constraint.

 Order Independence. The connected tasks can be performed in any

order. However, once one of them is selected, it has to be completed

before executing the others.

 Synchronization. The connected tasks can be performed

concurrently, but they have to synchronize in order to exchange

information.

 Disabling. The first task is deactivated when the second is

performed.

 Suspend-Resume. The second task interrupts the first one. When

it is finished, the first can be reactivated from the state it was

before the interruption.

 Sequential Enabling. The first task enables the second when it is

finished.

 Sequential Enabling with information passing. The first task

enables the second when it is finished, passing some information.

The modelling language defines also two operators that are applied to a

single task. The optional operator indicates that the execution of a task is

CHAPTER 2 BACKGROUND AND RELATED WORK 54

optional. The iteration operator re-enables the beginning actions of a task

when it is completed.

2.5 Non-Autonomous Petri Nets

Before introducing the meta-model, we briefly summarize the formal

notation we exploit for defining the semantics of the gesture meta-model

entities. As we discuss in detail in Chapter 3, we used Non-Autonomous

Petri Nets since they allow us to define easily a parallel interaction. In

addition, they offer a straightforward way for modelling the reaction to

events that are external with respect to the application logic, such as the

data coming from gesture tracking devices.

A Petri Net is a bipartite graph consisting of two types of nodes:

transitions (represented as black rectangles) and places (represented as

circles), which are connected by directed arcs. A place contains a positive

number of tokens and the state of the net is represented by the distribution

of the tokens among the places.

Figure 2.2 An example of Petri Net

2.5 NON-AUTONOMOUS PETRI NETS

55

The Figure 2.2 shows a Petri Net example, which contains six places,

represented by the set 𝑃 = {𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6}, and five transitions,

represented by the set 𝑇 = {𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5}. The arcs are represented by

the following set of pairs: 𝐴 = {(𝑃1, 𝑇1), (𝑇1, 𝑃2), (𝑇1, 𝑃3), (𝑃2, 𝑇2), (𝑃3, 𝑇3),

 (𝑇2, 𝑃4), (𝑇3, 𝑃5), (𝑃4, 𝑇4), (𝑃5, 𝑇4), (𝑇4, 𝑃6), (𝑇5, 𝑃1) }.

When all the places that are connected to a given transition contain at

least one token, the transition fires, withdrawing a token from all the

incoming places and adding one token to all the out-coming ones.

Figure 2.3 shows different sample conditions for firing the same transition.

In the example (a), each one of the incoming places (P1 and P2) contains

exactly one token, while no one of the outcoming places (P3, P4 and P5)

contains any token (upper part). In this situation, the transition T1 fires and

each one of the outcoming places receives a token (lower part).

In the example (b), the initial situation is different: before firing the

transition, the outocoming place P3 already contains a token. Therefore,

after the transition firing, P3 contains two tokens.

In the example (c), the incoming place P1 contains two tokens, while P2

contains only one token. When the transition fires, only one token is

removed from each one of the incoming places, therefore after the transition

P1 contains one token.

In the example (d), it is not possible to fire the transition since there must

be at least one token in each one of the incoming places, while in this case

P1 is empty.

Figure 2.3 Transition firing in Petri Nets from [36], p. 3.

CHAPTER 2 BACKGROUND AND RELATED WORK 56

In Non-Autonomous Petri-Nets, the transition firing is controlled not only

by the presence or absence of the token in the incoming places, but also by

an external event. The transition fires if there is at least one token in all the

incoming places when the external event occurs. External in this case means

that the Net is able to react to changes that are not directly connected with

its internal state.

For instance, we can consider the Petri Net in Figure 2.4, which models a

semaphore. It contains one place for each one of its states, namely green,

yellow or red traffic light (respectively the G, Y and R places). One of the

three lights is on if the correspondent place contains the only token in the

Petri Net. If we consider the previously discussed basic version of Petri Nets,

the different transition would continue to fire indefinitely changing the light

colour as soon as the token enters into the one of the three places. Instead,

we would like to model the fact that the semaphore waits for a predefined

amount of time before changing the light colour.

In Non-Autonomous Petri Nets it is possible to model such situation

specifying that a transition fires when there is at least one token in all the

incoming places and the predefined amount of time has passed. Obviously,

the time is an external entity for the Petri Net, which has no control on it.

The Petri Net receives a notification when one of the specified external

events occur. In our example T1 fires after 65s after the token arrives in G,

T2 fires 5s after the token arrives in Y and T3 fires 65s after the token arrives

in R.

Figure 2.4 Non-Autonomous Petri Net for a traffic light, from [36] p.4

2.5 NON-AUTONOMOUS PETRI NETS

57

In our case, we use the internal state of the Net for modelling the gesture

recognition phases, which are driven by the data received by the gesture

recognition device.

An extensive description of Petri Nets and their properties can be found

in [36].

Chapter 3

Gesture Meta-Model Definition

This chapter provides the formal definition of the meta-model we use for

defining gestures. It can be applied to different recognition platforms and

for different types of gestures.

We start from the specification of the ground-term semantics. After that,

we define a set of composition operators that allow defining complex gestures

in a declarative and compositional way.

Next, we apply the meta-model to different recognition platforms: namely

multitouch and full-body. For each one of them, we provide the specification

of a set of commonly used gestures.

This chapter is an extended version of the work discussed in [125].

3.1 Meta-Model Definition

In this section, we theoretically define our gesture description meta-model.

Such meta-model is abstract with respect to a specific gesture recognition

support, which means that it is possible to instantiate it for different devices

(e.g. multitouch screens, body tracking devices, remotes etc.).

We start from the definition of the basic building blocks (ground terms),

which represent the set of basic features observable through a specific device.

Composed terms represent complex gestures (that can be further

decomposed) and they are obtained connecting ground or composed terms

through a well-defined set of composition operators.

The definition of the UI behaviour can be associated to the recognition of

basic or composed gesture definition. Once the Petri Nets for a basic building

block and for all the composition operators have been defined, the designer

can create complex gestures through expressions of basic building blocks

and/or complex gestures composed through the set of operators. The actual

Petri Net for the complex gesture is derived visiting bottom-up the complex

3.1.1 BASIC BUILDING BLOCKS: GROUND TERMS

59

gesture expression definition and can be executed by a run-time library that

we introduce in section 5.2.

3.1.1 Basic Building Blocks: Ground Terms

Ground terms of our language are the basic building blocks of our gesture

description model, since they cannot be further decomposed. They are

defined by the events that developers currently track in order to recognize

gestures. Ground terms do not have a temporal extension, though their

values may be obtained by computing a function of the raw sensor data (the

current gesture support). For instance, if we are describing a gesture for a

multitouch application, the ground terms are represented by the low-level

events that are available for tracking the finger positions, which are usually

called touch start, touch move and touch end.

Besides, for creating full body gestures, the current recognition devices

and libraries offer means for tracking specific skeleton points, such as hands,

head, shoulders, elbows etc.

As happens for multitouch gestures, also full body ones are recognized

tracking the skeleton points positions over time. Here, we define an abstract

building block that can be instantiated for different gesture recognition

supports. In order to do this, we have to consider that a gesture support

provides the possibility to track a set of features that change through the

time. As said before, the meaning of each feature (and the associated low-

level event) depends on the concrete gesture recognition support. A feature

is a n-dimensional vector (e.g., the position of a finger is a vector with two

components, the position of a skeleton joint has three components, etc.).

A set of features can be also represented with a vector that contains a

number of components equals to the sum of the dimensions of its elements.

A set of features is the abstract representation of a gesture recognition

support at a given time, since it describes the data provided by a given

hardware and software configuration.

We will provide examples for the definition of a gesture recognition

support in the following sections. The state of a gesture support at a given

time is represented by the current value of each feature. The state of a

gesture recognition support over time can be represented by a sequence of

such states, considering a discrete time sampling.

CHAPTER 3 GESTURE META-MODEL DEFINITION 60

Equation 3.1 defines a feature 𝑓, a gesture recognition support 𝐺𝑆, a

gesture recognition support state 𝐺𝑆𝑖
 and a gesture recognition support state

sequence 𝑆.

𝑓 ∈ ℝ𝑛

𝐺𝑆 = [𝑓1, 𝑓2, … , 𝑓𝑚] 𝐺𝑆 ∈ ℝ𝑘 𝑓𝑖 ∈ ℝ𝑛𝑖 ∑ 𝑛𝑖 = 𝑘

𝑚

𝑖=1

𝐺𝑆𝑖
= [𝑓1(𝑡𝑖), 𝑓2(𝑡𝑖), … , 𝑓𝑚(𝑡𝑖)] 𝑡𝑖 ∈ ℝ

𝑆 = 𝐺𝑆1
, 𝐺𝑆, … , 𝐺𝑆𝑛

 𝑛 ∈ ℕ

(3.1)

A gesture building block notifies a change of a feature value

between 𝑡𝑖 and 𝑡𝑖+1. Such notification can be optionally associated to a

condition, which can be exploited for checking properties of the gesture state

sequence such as trajectories for hand movements.

For instance, it is possible to check whether the path of a tracked point

is linear or not, avoiding the notification of different movements.

The gesture support is responsible for the notification of the feature

change, which is external with respect to the current state of the gesture

recognition.

This aspect is modelled by the Non-Autonomous Petri-Nets, since the

firing of a transition is enabled not only by the presence of the tokens, but

also by the occurrence of an event that does not depend on the considered

Net. Therefore, in Non-Autonomous Petri Net, the transition fires only if

the incoming places contain a token and if an event of a given type occurs.

We need such kind events in order to model the notification of a feature

change by the considered gesture support.

We define an event type for each observed feature. In addition, we define

a boolean predicate for each gesture state sequence constraint. As we already

specified previously, such predicates are optionally associated to a feature

change and constraints its recognition.

In our Petri Net it is possible to model the external notification with the

definition of a function 𝑟𝑎𝑖𝑠𝑒, which establishes if the external event is raised

at a time 𝑡, as defined in equation 3.2.

𝑟𝑎𝑖𝑠𝑒(𝐸𝑓𝑖,𝑃(𝑆),𝑡) ⇔ (𝑓𝑖(𝑡) ≠ 𝑓𝑖(𝑡 − 1)) ∧ 𝑝(𝑆)

 𝑝: 𝑆 ⟶ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}

(3.2)

3.1.2 COMPOSITION OPERATORS

61

In order to model the current progress in the gesture recognition, we use

a control state token (𝐶𝑠) on the Petri Net. The recognition of a basic block

is enabled by the presence of such token, and it is be inhibited by its absence.

As we explain better in the following sections, the parallel recognition of

different gestures in a composed Net is possible managing multiple instances

of such control state token. The Petri Net in Figure 3.1 defines a basic

building block for gesture recognition.

The two dotted arrows connect the ground term net to transitions that

are “externals” with respect to the building block, namely the previous and

the following parts of the gesture Net.

The place 𝑆𝑡𝑎𝑟𝑡 𝐹1 receives the control state token from its incoming

transition. If we are considering the first place in the recognition net, it

contains the token associated with the entire recognition process. The

transition after this place fires only when the event 𝑓1, 𝑝(𝑆) occurs.

Finally, the control state token reaches the place 𝐸𝑛𝑑 𝐹1, concluding the

basic gesture recognition. The actions that react to the basic gesture

recognition are associated to the latter place. The out-coming arrow that

starts from the 𝐸𝑛𝑑 𝐹1 place connects the considered block with the next

part of the gesture net.

In order to represent a basic building block we use the notation 𝐹𝑖[𝑝]: we

assign a name to the considered feature (𝐹𝑖 in this case) and to the boolean

function (𝑝), which is omitted if it is true for every gesture support state.

Figure 3.1 Gesture recognition building block

3.1.2 Composition Operators

A gesture description model is based on the composition of the

aforementioned ground terms. The connection is performed through a set of

operators, which express different temporal relationships among them. Such

set has as starting point those defined in CTT [114], which has been proved

CHAPTER 3 GESTURE META-MODEL DEFINITION 62

effective in defining the temporal relationship for task modelling, and that

are defined also in process algebras (e.g. [18]).

Some of them (sequence and choice) have been already defined through

Petri Nets in [107]. We provide here a complete definition of all operators.

Operator Notation Arity

Iterative 𝐺∗ 1

Sequence 𝐺1 ≫ 𝐺2 2 (n)

Parallel 𝐺1 || 𝐺2 2 (n)

Choice 𝐺1 [] 𝐺2 2 (n)

Disabling 𝐺1 [> 𝐺2 2 (n)

Order Independence 𝐺1 |=| 𝐺2 |=| … |=| 𝐺𝑛 n
Table 3.1 Composition Operators

Table 3.1 lists the composition operators that we describe in the next

sections. All binary operators are associative, therefore the n-ary version of

a binary operator (e.g. choice) is defined applying such property.

During the discussion in the following sections, we need also the definition

of three different sets of ground terms, given a complex gesture definition.

The first one is the set containing all its ground terms. We refer such set

as 𝐺𝑆 (Ground terms Set).

Equation 3.3 defines how to construct the 𝐺𝑆 for a gesture 𝐺, which

consists of a recursive set union on the sub-blocks connected through the

composition operators.

𝐺 = 𝐹𝑖[𝑝] ⇒ 𝐺𝑆𝐺 = {𝐹𝑖[𝑝]}
𝐺 = 𝐺1∗ ⇒ 𝐺𝑆𝐺 = 𝐺𝑆𝐺1
𝐺 = 𝐺1 𝑜𝑝 𝐺2 ⇒ 𝐺𝑆𝐺 = 𝐺𝑆𝐺1 ∪ 𝐺𝑆𝐺2
 𝑜𝑝 ∈ { ≫, ||, [], [>}

𝐺 = 𝐺1 | = | 𝐺2| = | … | = | 𝐺𝑛 ⇒ 𝐺𝑆𝐺 = ⋃ 𝐺𝑆𝐺𝑖

𝑛

𝑖=0

(3.3)

The second set we need to define contains only the ground terms not

appearing as the right operand in a sequencing temporal relation, so they

are immediately recognizable when the gesture execution starts. The

operators that express such relation are sequence and disabling.

We call such set Starting Ground terms Set, or 𝑆𝐺𝑆 and it is defined in

equation 3.4. Obviously 𝑆𝐺𝑆 ⊆ 𝐺𝑆.

3.1.2.1 ITERATIVE OPERATOR

63

𝐺 = 𝐹𝑖[𝑝] ⇒ 𝑆𝐺𝑆𝐺 = {𝐹𝑖[𝑝]}
𝐺 = 𝐺1∗ ⇒ 𝑆𝐺𝑆𝐺 = 𝑆𝐺𝑆𝐺1
𝐺 = 𝐺1 𝑜𝑝 𝐺2 ⇒ 𝑆𝐺𝑆𝐺 = 𝑆𝐺𝑆𝐺1 𝑜𝑝 ∈ { ≫, [>}

𝐺 = 𝐺1 𝑜𝑝 𝐺2 ⇒ 𝑆𝐺𝑆𝐺 = 𝑆𝐺𝑆𝐺1 ∪ 𝑆𝐺𝑆𝐺2 𝑜𝑝 ∈ {||, []}

𝐺 = 𝐺1 |=| 𝐺2|=| … |=| 𝐺𝑛 ⇒ 𝑆𝐺𝑆𝐺 = ⋃ 𝑆𝐺𝑆𝐺𝑖

𝑛

𝑖=0

(3.4)

The last set we define contains the complementary features with respect

to a given one in a gesture expression, and we call it 𝐶𝐺𝑆𝐺(𝐹𝑖), where 𝐺 is a

gesture and 𝐹𝑖 is a ground term.

In other words, this set contains all the features used in the gesture

expression that are different from the one specified. This set can be obtained

simply subtracting the specified feature from the 𝐺𝑆 set for the considered

expression. If the feature has an associated predicate, we have to add the

specified feature with the logical negation of the predicate to the 𝐶𝐺𝑆(𝐹𝑖).

set. The complete definition can be found in equation 3.5.

𝐶𝐺𝑆𝐺(𝐹𝑖) = 𝐺𝑆𝐺 ∖ 𝐹𝑖
𝐶𝐺𝑆𝐺(𝐹𝑖[𝑝]) = 𝐺𝑆𝐺 ∖ 𝐹𝑖[𝑝]⋃𝐹𝑖[�̅�]

(3.5)

3.1.2.1 Iterative Operator

The iterative operator repeats the recognition of gesture subnet for an

indefinite number of times. In order to avoid an infinite gesture definition,

each iterative basic block should also be coupled with a disabling operation.

As already specified in Table 3.1, we use the ∗ symbol in order to represent

the iterative operator (e.g. 𝐹∗ recognizes an infinite number of value changes

for the feature one).

It is possible to define this operator simply creating a cycle from the

ending transition of a gesture subnet to its starting place. In this way, the

recognition subnet is fed again with the control state token, immediately

after the gesture has been recognized.

Figure 3.2 shows the Petri Net definition of the iterative operator. The

thicker arrow represents the operator definition.

CHAPTER 3 GESTURE META-MODEL DEFINITION 64

Figure 3.2 The Iterative operator

3.1.2.2 Sequence Operator

This operator simply defines that two gesture subnets should be performed

in sequence. We use the ≫ symbol in order to represent this operator. It is

possible to define such operator connecting the last transition of the first

gesture with the starting place of the second one.

Figure 3.3 shows a gesture consisting of the sequential composition of two

basic feature recognizers. The thicker arrow represents the sequence

operator.

Figure 3.3 The Sequence operator

3.1.2.3 Parallel Operator

The parallel operator defines the recognition of two or more different

gestures at the same time. We use the || symbol in order to represent the

parallel operator.

From the Petri Net definition point of view, the blocks representing the

parallel gestures should be simply put in different recognition lines. In order

to do this, we assign a different control state token to each line. This can be

obtained, as shown in Figure 3.4, inserting a transition that “clones” the

control state token and dispatching a copy to the starting place of each

different recognition lines.

3.1.2.4 CHOICE OPERATOR

65

Figure 3.4 The Parallel operator

We add a place at the end of each recognition line that forwards the

“cloned” control state token to the last transition that, once all gestures

terminated, restores only one token in the net.

3.1.2.4 Choice Operator

The choice operator defines a gesture that is recognized if exactly one

between its first and its second component is detected (either one or the

other). We use the symbol [] for representing it.

The net can be defined as it is shown in Figure 3.5, and its construction

is similar to the parallel operator. The transition after the 𝐶ℎ𝑜𝑖𝑐𝑒 𝑆𝑡𝑎𝑟𝑡 place

splits the control state token between two subnets, each one representing a

component involved in the choice. The two lines cannot evolve

independently as happens for the parallel operator. Therefore, when one

subnet starts its recognition, the other one should be interrupted. In order

to do this, it is sufficient to connect the first place of the first gesture subnet

with the first transition of the second one and vice versa. In this way, once

one of the two feature events is raised, the control state token from the other

gesture subnet is deleted.

More precisely the steps to be followed for constructing a Petri Net for

𝐺1[]𝐺2 in the general case are the following:

1. Calculate 𝑆𝐺𝑆𝐺1and 𝑆𝐺𝑆𝐺2

2. Connect the first place of each element of 𝑆𝐺𝑆𝐺1 with the first

transition of each element in 𝑆𝐺𝑆𝐺2

3. Connect the first place of each element of 𝑆𝐺𝑆𝐺2 with the first

transition of each element in 𝑆𝐺𝑆𝐺1

CHAPTER 3 GESTURE META-MODEL DEFINITION 66

The last transition of each gesture subnet is connected to the 𝐶ℎ𝑜𝑖𝑐𝑒 𝐸𝑛𝑑

place, which forwards the control state token to the following part of the

recognition net.

This definition of the choice operator envisions an immediate selection

between the two sub-gestures involved in the choice. Immediate selection

means that the choice is performed taking into account elements from the

𝑆𝐺𝑆, thus it considers only the Ground Terms which can be recognized at

the beginning of the choice.

Such approach has the advantage that is sufficient to recognize only a

ground term in order to perform the choice. The main problem is that most

of the times the sub-gestures that are connected with the choice have a

common prefix, which is a set of ground terms at the beginning of the

expression. For instance, it is possible to take into account one finger and

two fingers multitouch gestures. The definition for both categories start

always with the detection of one finger on the screen. If we consider the

previous definition of the choice operator, the selection is ambiguous.

 As we discuss more in detail in Chapter 7, having a shared prefix between

the choice operands is really common. Therefore, in order to ease the

definition of gestures in choice, we defined a variant that applies a best

effort approach for performing such selection. The basic idea is to delay the

selection until only one of the two operands can continue in the recognition

process. This means that the two gestures are recognized in parallel until

one of them is blocked and the choice is performed.

Figure 3.5 The Choice operator (immediate variant)

3.1.2.4 CHOICE OPERATOR

67

The structure of the Petri Net for the best effort variant of the choice

operator is shown in Figure 3.6.

As in the previous variant, we put the two operands on two parallel

recognition lines, duplicating the token. The difference is the way we use for

disabling one of the two lines. For each one of the depicted operands, the

normal recognition flow for the gesture is disabled if it is no more possible

to continue the recognition. In the Petri Net, such concept is modelled

adding, for each ground term contained into the two operands, a transition

that fires if one of the elements of the 𝐶𝐺𝑆 set is recognized. We recall that

such set contains all the features of the considered gestures which are

different from the one considered (see section 3.1.2). In Figure 3.6, such

transitions are labelled 𝐶𝑜𝑚𝑝 𝐹1 and 𝐶𝑜𝑚𝑝 𝐹2 respectively for the first and

the second operand in the choice.

Figure 3.6 Choice operator (best effort variant)

If one of the two lines cannot recognize the gesture, its token goes to the

𝑂𝑝 𝐹𝑎𝑖𝑙 place. Here we have two possibilities: the first one is that the other

line successfully completes the recognition. In this case, since the place is

connected with the last transition of both the operands, the token is

consumed and the recognition proceeds as usual. The second possibility is

that both tokens arrive at the 𝑂𝑝 𝐹𝑎𝑖𝑙 place. This means that both

CHAPTER 3 GESTURE META-MODEL DEFINITION 68

recognition lines failed the recognition, and so the choice. In such situation,

the Net cannot proceed and it is in an error state (described in section 3.1.3).

In the general case, it is possible to construct the Net as follows:

1. Connect the place 𝑂𝑝 𝐹𝑎𝑖𝑙 to the ending transition of all choice

operands (𝐺1 and 𝐺2)

2. For each ground term 𝐹𝑖 in 𝐺𝑆𝐺1 and 𝐺𝑆𝐺2 calculate the sets
𝐶𝐺𝑆(𝐹𝑖)

3. For each ground term 𝐹𝑖 in 𝐺𝑆𝐺1 and 𝐺𝑆𝐺2, add a transition

between 𝐹𝑖 and 𝑂𝑝 𝐹𝑎𝑖𝑙 which fires if one of the features in 𝐶𝐺𝑆(𝐹𝑖)

is recognized.

From now on, we consider the choice operator the best effort variant.

3.1.2.5 Disabling Operator

The disabling operator defines a gesture that stops the recognition of

another one, thus “disabling” it. The operator symbol is [>. It is typically

needed when a gesture is iterative, in order to define the condition that stops

the loop. Figure 3.7 shows the definition of the disabling operator using

Petri Nets for 𝐺1[> 𝐺2.

Figure 3.7 The Disabling operator

3.1.2.6 ORDER INDEPENDENCE

69

The basic idea is to connect the first place of each basic component

belonging to 𝐺1 to a “copy” of the first transition of the starting blocks of

the second one. In Figure 3.7 we can see an example of this kind of net,

where the first gesture is composed by only one building block.

This gesture can be disabled by the second one, which starts with an event

related either to the feature 𝑓2 or 𝑓3. In order to obtain the desired effect,

we connect the 𝑆𝑡𝑎𝑟𝑡 𝐹1 place with a copy of both the transitions after the

𝑆𝑡𝑎𝑟𝑡 𝐹2 and 𝑆𝑡𝑎𝑟𝑡 𝐹3. In order to construct the net for 𝐺1[> 𝐺2 in the

general case, we need to perform the following steps:

1. Calculate the sets 𝐺𝑆𝐺1and 𝑆𝐺𝑆𝐺2

2. Connect the starting place of each element of 𝐺𝑆𝐺1 with a copy of

the first transition of each element in 𝑆𝐺𝑆𝐺2 , possible duplicates

(transitions that have the same incoming places and the same

external event) are merged. In case of order independence operator,

a transition duplicate is added also to each 𝑂𝐼 𝐹𝑙𝑎𝑔 and 𝑂𝐼 𝐸𝑛𝑑

(see section 3.1.2.6)

3. Connect the second place of each element in 𝑆𝐵𝑆𝐺2 with the

transitions generated at step 2. Such connection has to preserve

the single control state token property for each sub-gesture, so we

need to collapse recursively the recognition lines with net in the

case 𝐺1 sub-components contain the parallel or the order

independence operator. The technique is the same shown if Figure

3.4 for the parallel operator.

3.1.2.6 Order Independence

The order independence operator is used when two or more gestures can be

performed in any order. The composed gesture is recognized when all of its

subcomponents have been recognized. We use the symbol |=| for this

operator.

It is worth pointing out that such operator is not strictly needed, because

it is possible to derive it according to the property in equation 3.6.

𝐺1 |=| 𝐺2 = (𝐺1 ≫ 𝐺2)[](𝐺2 ≫ 𝐺1) (3.6)

In general, we can define an order independence composition of a set of n

gestures as a choice between all the permutations of its elements. Inside each

permutation the gesture set elements are connected through the sequence

operator.

CHAPTER 3 GESTURE META-MODEL DEFINITION 70

Obviously, such kind of definition creates n! options for the choice that

makes it too expensive both from the space and time point of view. It is

possible to provide a more compact net for defining this operator, which is

shown in Figure 3.8. The idea is to create a Petri Net that repeats 𝑛 times

the choice between the composed subnets, removing one option at each

iteration.

The place OI Start receives the control state token and creates two copies

of it for each gesture connected by the operator, in the same way we do for

the parallel operator.

For each gesture component, we create a place called OI Flag, which

receives one of the two control state token copies. Such token is used in

order to remember whether the corresponding gesture subnet has been

recognized in a previous iteration or not.

We guarantee two construction properties for this place. The first one is

that each OI Flag loses its token only when the corresponding gesture sub-

net ends its execution. This is enforced by an out coming connection between

OI Flag and the last transition of the gesture sub-component net. The

second property is that the OI Flag maintains its control state token until

the gesture sub-component has been recognized. This is obtained with an

incoming and out-coming connection of the OI Flag place with each event

transition of the gesture sub-component net. This property guarantees that,

when the sub-gesture has been already recognized, it is not possible to

restart it until a new token arrives from the OI Start place. The presence of

a token in an OI Flag place indicates that the corresponding sub-gesture has

not been recognized yet, while its absence indicates that the recognition has

already happened.

The second copy is received by the first place of the gesture component

sub-net. With this construction we guarantee that a gesture sub-net will be

chosen only once for each iteration. Now we need to add something in order

to avoid that two or more gesture sub-nets can start their recognition in

parallel. We already discussed a technique that guarantees this for the choice

operator. We reapply the same technique here, connecting the starting

transition of each order independence component to all the starting

transition of all the other components. In Figure 3.8 such connections are

the following:

• The one that connects the Start F1 place and the f2 q(S) transition

• The one that connects the Start F2 place and the f1 p(S) transition.

3.1.2.6 ORDER INDEPENDENCE

71

In order to guarantee that the choice is performed more than once, we

connect the last transition of each order independence component with its

starting place, in the same way we explained for the iterative operator. In

addition, we create also an OI End place for each component, which receives

a copy of the control state token when the corresponding gesture sub-net

ends its recognition. All the OI End places are connected to the last

transition of the order independence subnet. When they all contain a control

state token, all sub-gestures have been recognized, and the entire gesture is

completed.

The starting places of the different components are connected with the

last transition, in order to consume the control state tokens that returned

back after the n-th iteration.

Figure 3.8 Order independence operator Petri Net

The steps to construct this net for 𝐺1|=|𝐺2|=|. . .|=|𝐺𝑛 are the following:

1. Calculate 𝑆𝐺𝑆𝐺𝑖∀𝑖 ∈ [1, 𝑛]

2. Create an 𝑂𝐼 𝐹𝑙𝑎𝑔 place for each 𝐺𝑖 and connect it with its last

transition.

3. Create an 𝑂𝐼 𝐸𝑛𝑑 place for each 𝐺𝑖 and connect it with the same

transition at the end of the net.

4. Connect the transition after the 𝑂𝐼 𝑆𝑡𝑎𝑟𝑡 place with each starting

place of all elements in 𝑆𝐺𝑆𝐺𝑖 and with all the 𝑂𝐼 𝐹𝑙𝑎𝑔 places.

CHAPTER 3 GESTURE META-MODEL DEFINITION 72

5. For each 𝑖 ∈ [1, 𝑛] , connect the starting places of each element of

𝑆𝐺𝑆𝐺𝑖 with all the starting places of each element in ⋃ 𝑆𝐵𝐺𝐺𝑗 𝑗 ,

with j ∈ [1, i − 1] ∪ [i + 1, n]

6. For each ∈ [1, 𝑛] , connect the event-driven transitions of each

element of 𝐺𝑆𝐺𝑖 with 𝑂𝐼 𝐹𝑙𝑎𝑔𝑖and vice versa.

7. For each 𝑖 ∈ [1, 𝑛] connect the ending transition of the net

associated to 𝐺𝑖 with all the elements in 𝑆𝐺𝑆𝐺𝑖

8. For each 𝑖 ∈ [1, 𝑛], connect the starting places of each element of

𝑆𝐵𝑆𝐺𝑖 with the last transition of the order independence net.

3.1.2.7 Short-hands

Even if they are not strictly required for the definition of the meta-model,

we consider a set of short-hands that are useful for the definition of the

temporal relationships among gestures.

The first one is useful when the designer wants to recognize a gesture a

gesture a given number of times (e.g. five). We specify the number of times

as a superscript for the gesture, in brackets. Such kind of iteration can be

obtained obviously through a chain of sequence operators, as shown in

equation 3.7.

𝐹{𝑛} =
𝑛
≫

𝑖 = 1
𝐹 𝑛 ∈ ℕ

(3.7)

The second short-hand we use is related to the definition of iterations that

should be recognized at least a given number of times. The shorthand is

again a superscript for the gesture symbol and contains the minimum

number followed by a comma and the Kleene star, inside brackets.

The semantics of the shorthand can be defined again with a chain of

sequence operators, followed by the gesture with the iterative operator, as

shown in equation 3.8

𝐹{𝑛,∗} =
𝑛
≫

𝑖 = 1
𝐹 ≫ 𝐹∗ 𝑛 ∈ ℕ

(3.8)

3.1.3 Handling recognition errors

Besides the recognition of a gesture, it is important also to define how to

react if the sequence of events received does not match the gesture definition.

3.3 MODELLING FULL-BODY GESTURES

73

This case can be detected when the notification of an external event

related to some observed property does not fire any transition. In such case,

the gesture recognition should be interrupted, and the developer should have

the possibility to define the interface reaction to such interruption.

This can be supported associating a handler not only for the successful

recognition of a gesture (either basic or composed), but also for the

recognition failure. Obviously, the recognition failure is propagated from

through the composition tree, from the component to its parent.

From the Petri Net point of view, such handling can be modeled adding

a transition for each ground term to a place that represents the recognition

error. Such transition fires if one of the elements in 𝐶𝐺𝑆(𝐹𝑖), being 𝐹𝑖 the

feature associated to the ground term (see section 3.1.2).

3.2 Modelling multitouch gestures

A multitouch screen can detect multiple simultaneous touches. For each

touch, the device can detect its screen position (usually expressed in pixel).

In addition, it is possible to detect the current time.

According to our abstract meta-model, we have 𝑛 features related to the

touch positions (one for each detectable touch) and a feature related to the

current time. If a touch is not currently detected on screen, we say that its

current position is the point (⊥, ⊥).

We identify the feature related to the 𝑖-th touch with 𝑝𝑖, while we use the

𝑡𝑖𝑚𝑒 symbol for the time. In order to have a uniform terminology with the

current multi-touch toolkits, we define the simplest set of multitouch

gestures in equation 3.9. From these building blocks it is possible to define

complex gestures using the composition operators, which are described in

the following subsections.

𝑆𝑡𝑎𝑟𝑡𝑖 = 𝑝𝑖 [𝑝𝑖(𝑡 − 1) = (⊥, ⊥) ∧ 𝑝𝑖 (𝑡) ≠ (⊥, ⊥)]
𝑀𝑜𝑣𝑒𝑖 = 𝑝𝑖 [𝑝𝑖(𝑡 − 1) ≠ (⊥, ⊥) ∧ 𝑝𝑖(𝑡) ≠ (⊥, ⊥)]
𝐸𝑛𝑑𝑖 = 𝑝𝑖[𝑝𝑖 (𝑡 − 1) ≠ (⊥ , ⊥) ∧ 𝑝𝑖 (𝑡) = (⊥ , ⊥)]

(3.9)

3.3 Modelling full-body gestures

The devices that enable the recognition of full-body gestures (e.g. Microsoft

Kinect [87], Asus Xtion PRO [8] etc.), are able to sense the 3D position of

the complete skeleton joints for up to two users, while they can sense the

CHAPTER 3 GESTURE META-MODEL DEFINITION 74

body centre position of up to four more users, in meters. The SDKs provide

facilities for projecting the position on the image space of the RGB camera

or depth sensor, obtaining the corresponding coordinates in pixels

(obviously, without considering the depth axis). In addition, they are also

able to track the joint orientations, providing a 3D vector.

Moreover, it is possible to have more information using Computer Vision

techniques. For instance, it is possible to detect fingertips if the user is really

close to the sensor, or to detect if a hand is open or not at intermediate

distances (e.g. calculating the convex hull and convexity defects [21]).

It is clear that for this kind of devices the available toolkits share most of

the features, but we have still a set of differences which is larger if compared

with multitouch SDKs.

Figure 3.9 Skeleton joints

From the point of view of our abstract meta-model, it is possible to include

all the features provided by all the frameworks. However, in order to be able

to provide a proof-of-concept implementation, we had to fix a set of features

we deal with.

Therefore, from now on we limit the scope of the full body gesture features

to the following list, unless otherwise specified:

 The time

3.3 MODELLING FULL-BODY GESTURES

75

 3D position and orientation of the skeleton joints, depicted in

Figure 3.9

o Head

o Shoulder center

o Shoulder left

o Shoulder right

o Elbow left

o Elbow right

o Wrist left

o Wrist right

o Hand left

o Hand right

o Spine

o Hip center

o Hip left

o Hip right

o Knee left

o Knee right

o Ankle left

o Ankle right

o Foot left

o Foot right

 Left hand open (true if open, false otherwise)

 Right hand open (true if open, false otherwise)

Figure 3.10 Full-body gesture coordinate system

CHAPTER 3 GESTURE META-MODEL DEFINITION 76

Each feature is available for each user tracked by the device. We indicate

the user id in the gesture expression only if it involves more than one user.

The coordinate space representation used by our meta-model is shown in

Figure 3.10. It considers a right-handed coordinate system that has its origin

in the position of the tracking device. For other tracking systems that are

not based on depth sensors, it is possible to consider the screen as the origin

of the axes.

3.4 Comparison with Proton++

In this section we demonstrate that possible gestures modelled using

Proton++ [72][73] are a subset of those that may be defined with GestIT.

Proton++ is the declarative approach closest to GestIT in literature, as

described in section 2.3.1.1.

We prove it showing a general way for mapping the regular expressions

used in Proton++ towards the GestIT notation. In addition, we show that

it exists a class of GestIT models, which is not possible to define using

Proton++.

Obviously, since Proton++ describes only multitouch gestures, we define

the correspondence between the regular expression literals and the ground

terms only for the multitouch platform.

However, it is worth pointing out that the higher expressiveness of the

modelling approach is not related to the gesture recognition support, but it

is related to a less expressive set of operators provided by Proton++. Indeed,

it would be is possible to model full-body gestures using the Proton++

approach providing a set of literals related to a full-body tracking device,

but even in this case there is a set of gestures that can be expressed with

GestIT but not with Proton++.

3.4.1 Proton++ literals

A Proton++ literal is identified by:

1. An event type (touch down, touch move, touch up)

2. A touch identifier

3. An object hit by the touch

4. A set of custom attributes values (one or more), such as e.g. the touch

trajectory, shape etc.

3.4.1 PROTON++ LITERALS

77

In GestIT for multitouch, a ground term is identified by an event type

(touch start, touch move or end) and by a touch identifier. Therefore, the

correspondence between the first two elements of the Proton++ literal and

the GestIT ground term is straightforward. The third and fourth component

of a Proton++ literal can be all modelled constructing a correspondent

predicate associated to a GestIT ground term.

We recall that a predicate associated to a ground term in GestIT is a

boolean condition checks whether the gesture performance conforms to a set

of gesture-specific constraints or not. According to this definition, the third

component can be modelled with a predicate that checks if the current touch

position is contained into an object with a given id or belonging to a

particular class.

The forth component can be modelled considering, for each Proton++

custom attribute value, the function that computes its value. Such

computation may depend on the current or previous touch positions, or it

may depend also on other gesture features. In brief, such function depends

on what we call the gesture support state sequence.

The function that calculates the attribute value has been defined in

Proton++ for associating it to a literal. Therefore it is also possible to

provide a predicate that compares the current attribute value with the

specified in the regular expression, in order to be translated in a boolean

form that can be exploited in GestIT. If more than one value is acceptable,

the predicate can be defined simply through a boolean OR of the comparison

for the different values. Obviously, if the touched object and a set of custom

attributes for the literal need to be modelled, it is sufficient to define a single

predicate that is composed by the boolean AND of the corresponding

predicates.
Proton++ GestIT

𝑬𝑻𝒊𝒅

𝑶|𝑽𝟏… 𝑽𝒏 𝐸𝑇𝑖𝑑
[𝑝]

where:
𝒐 = 𝒕𝒓𝒖𝒆

⇔ 𝑶𝒕𝒚𝒑𝒆 = 𝑶

𝒂𝒊 = 𝒕𝒓𝒖𝒆

⇔ 𝑨𝒊 = 𝑽𝒊 𝒊 = 𝟏 … 𝒏

 𝒑 = 𝒐 ∧ (𝒂𝟏 ∨ … ∨ 𝒂𝒏) 𝒊 = 𝟏 … 𝒏

Table 3.2 Mapping a Proton++ literal to a GestIT ground term

Table 3.2 summarizes how to transform a Proton++ literal into a GestIT

ground term. E represents an event type 𝑇𝑖𝑑 a touch identifier, 𝑂𝑡𝑦𝑝𝑒 is a

CHAPTER 3 GESTURE META-MODEL DEFINITION 78

property that maintains the current object type, 𝑂 is a concrete value for

the object type (e.g. start, rectangle etc.), 𝐴𝑖 is a property that maintains

the value of an attribute, while 𝑉𝑖 is the actual attribute value, while 𝑝 is a

boolean predicate associated to the ground term in GestIT.

3.4.2 Proton++ operators

The correspondence between the Proton++ and the GestIT ones is

straightforward, since all the operators defined by the former have an

equivalent in the latter. Table 3.3 summarizes how to transform the

operators from Proton++ to GestIT.
Proton++ GestIT

Concatenation: 𝑨𝑷𝑩𝑷 Sequence: 𝑨𝑮 ≫ 𝑩𝑮

Alternation: 𝑨𝑷|𝑩𝑷 Choice: 𝑨𝑮[] 𝑩𝑮

Kleene star: 𝑨𝑷
∗ Iterative: 𝑨𝑷

∗

Table 3.3 Mapping Proton++ operators to GestIT

Appling recursively the transformations defined in Table 3.3 and Table

3.2, it is possible to build a GestIT gesture definition corresponding to a

Proton++ one.

The vice-versa is not possible in general, since there is no way to transform

the Disabling and the Parallel operators from GestIT to Proton++.

The Disabling operator is important in order to stop the recognition of

iterative gestures, in particular the composed ones.

Most of the times, it models how to interrupt the iterative recognition of

a gesture. For instance in a grab gesture, the iterative recognition of hand

movements is interrupted by opening the hand. In addition, it may be used

also for modelling situations where the user performs an action that

interrupts the interaction with the application. For instance, all the Kinect

games have a “pause” gesture that disables the interaction. In some

applications we describe in this thesis, the disable operator is used for

modelling the fact that the application tracks the user only if she is in front

of the screen. Therefore, the gesture “shoulders not parallel to the screen

plane” disables the interaction.

3.4.2 PROTON++ OPERATORS

79

This is particularly relevant while interacting with devices that track the

user continuously (e.g. Microsoft Kinect), since it is important to provide

the user with a way to disable the interaction at any time.

The Parallel operator has a clear impact when modelling parallel input

for e.g. multi-user applications. For instance, the parallel operator can be

useful in a scenario where a user zooms a photo on a multitouch table while

another user drags another picture, simply composing two existing gestures.

In addition, it is also possible that parallel interaction occurs with a single

user. A user may drag an object through a single-hand grab gesture and

point with the other hand for selecting where to drop it.

Chapter 4

Gesture Models

In this chapter, we provide the definition of different gesture models for both

multitouch and full-body interation.

4.1 Common multitouch gestures models

In this section, we provide a definition for the most common multitouch

gestures, using the GestIT notation, showing some modelling examples. It

is worth pointing out that all the following gestures can be in turn composed

in order to obtain more complex interactions.

In order to graphically show the gesture performance, we exploit the

representation in [142].

4.1.1 Tap

The tap gesture is simply a touch immediately released from the screen, and

it is shown in Figure 4.1. It can be simply described with equation 4.1: the

gesture starts with the touch of the first finger, which is immediately

released from the screen.

𝑆𝑡𝑎𝑟𝑡1 ≫ 𝐸𝑛𝑑1 (4.1)

Figure 4.1 The touch gesture

CHAPTER 4 GESTURE MODELS 82

4.1.2 Double Tap

A double tap is a tap followed by another tap in the same position, with a

maximum distance in time. The gesture is shown in Figure 4.2.

Figure 4.2 Double tap gesture

 We specify two constraints: the first checks that the two touch start points

are (almost) in the same position (modelled with the predicate 𝑝𝑜𝑠), while

the second one that their difference in time is not above a given threshold

(modelled with the predicate 𝑡𝑖𝑚𝑒𝐷𝑖𝑓𝑓). The description is simply a

sequence of taps, with the constraints to be checked on the second touch

start, shown in equation 4.2.

𝑆𝑡𝑎𝑟𝑡1 ≫ 𝐸𝑛𝑑1 ≫ 𝑆𝑡𝑎𝑟𝑡1 [𝑝𝑜𝑠 ∧ 𝑡𝑖𝑚𝑒𝐷𝑖𝑓𝑓] ≫ 𝐸𝑛𝑑1 (4.2)

4.1.3 Pan

The pan gesture consists on a single finger that touches the screen, changes

its position a certain number of times, and then it is released from the screen,

as shown in Figure 4.3.

Figure 4.3 Pan gesture

4.1.5 PINCH

83

The definition of the gesture using the GestIT notation is shown in

equation 4.3. After the touch is detected on the screen, we have an iterative

movement of the touch position. The loop is ended when the user releases

the touch from the screen. It is possible to add constraints to the finger

trajectory simply specifying an additional property for the 𝑀𝑜𝑣𝑒 feature.

𝑆𝑡𝑎𝑟𝑡1 ≫ 𝑀𝑜𝑣𝑒1
∗ [> 𝐸𝑛𝑑1 (4.3)

4.1.4 Slide

The slide gesture is simply a linear pan with a moving speed higher than a

certain threshold.

The modelling of the temporal relationships between the touch features is

exactly the same of the pan gesture. The difference is a specific constraint

for the path. We define such constraints through two predicates, one that

checks whether the trajectory is linear (linear) and another one that

compares the current speed with the specified threshold (speed). Thus, the

slide gesture can be defined with the expression in equation 4.4.

𝑆𝑡𝑎𝑟𝑡1 ≫ 𝑀𝑜𝑣𝑒1
∗[𝑙𝑖𝑛𝑒𝑎𝑟 ⋀ 𝑠𝑝𝑒𝑒𝑑] [> 𝐸𝑛𝑑1 (4.4)

4.1.5 Pinch

The pinch gesture is usually exploited in multi touch devices for zooming in

or out a view. It consists of the contemporary touch of two fingers on the

screen, followed by an increase or decrease of the distance between them,

due to a parallel movement of the two fingers. Lifting the two fingers from

the screen ends the gesture. The pinch gesture is depicted in Figure 4.4.

In order to model the gesture with the GestIT notation, we split the

execution in three different phases.

In the first one, the user touches the screen with two fingers. Obviously,

the touch order is not important, therefore we can use an order independence

relationship for the touch start features. After that (sequence) the user can

move both fingers on the screen independently an indefinite number of

times. In this case, we can use a parallel operator for connecting the two

𝑀𝑜𝑣𝑒 ground terms. Finally, such iterative movements are disabled by the

lift of one of the two fingers (the 𝐸𝑛𝑑 features), again without any constrains

in the lifting order.

The complete expression is shown in equation 4.5.

CHAPTER 4 GESTURE MODELS 84

Figure 4.4 Pinch gesture

(𝑆𝑡𝑎𝑟𝑡1 |=|𝑆𝑡𝑎𝑟𝑡2) ≫ ((𝑀𝑜𝑣𝑒1
∗|| 𝑀𝑜𝑣𝑒2

∗) [> (𝐸𝑛𝑑1 |=| 𝐸𝑛𝑑2)) (4.5)

4.1.6 Rotate

The rotate gesture is similar to the pinch, but instead of increasing or

decreasing the finger distance, the user moves the two fingers in a circular

path, as shown in Figure 4.5.

Figure 4.5 Rotate gesture

The gesture description is the same as the pinch from the temporal point

of view, but we should check the circular trajectory, represented by the

𝑐𝑖𝑟𝑐𝑙𝑒 property.

(𝑆𝑡𝑎𝑟𝑡1 |=|𝑆𝑡𝑎𝑟𝑡2) ≫ (𝑀𝑜𝑣𝑒1
∗[𝑐𝑖𝑟𝑐𝑙𝑒] || 𝑀𝑜𝑣𝑒2

∗[𝑐𝑖𝑟𝑐𝑙𝑒]) (4.6)

4.2 COMMON FULL-BODY GESTURE MODELS

85

 [> (𝐸𝑛𝑑1 |=| 𝐸𝑛𝑑2)

4.2 Common full-body gesture models

Considering the full-body gestures, it is more difficult to find a well-

established vocabulary with respect to the multitouch interaction, which can

be used as a benchmark for the proposed meta-model.

Therefore, we tried to create a list of common gestures through a literature

review, trying to identify the common ones and to provide a unified naming

convention for those that are exploited in different work, but called in

different ways by different authors.

We do not consider applications that exploit the full-body tracking device

in order to mimic the user’s movement through an avatar, as happens to

the wide majority of the Kinect enabled games for Xbox 360, since the effects

of the body movements are mapped one-to-one with the user’s virtual

counterpart.

The following is the list of papers we considered for identifying the

common gestures:

 In [45], the authors propose the integration of full-body gesture

interaction into a medical image viewer.

 In [79], the authors selected a set of gestures for developing a

machine-learning recognizer based on a restricted set of features.

 In [12], the authors propose a gestural interface for the remote

control of a robot

 In [67], the authors propose a set of gestures for controlling a

Google Maps through gestures

 In [74], the authors enhanced a book story telling application,

providing the possibility to select different paths on the plot

through a set of gestures. A user study demonstrated that the users

prefer such selection mechanism if compared with pressing buttons.

 In [33], the authors describe another gestural controller remote

control interface for robots

 In [35], the authors propose a gestural interface for controlling

Power Point presentations.

 In [135], the authors defined a set of gestures for navigating in a

virtual 3D environment.

 In [24], the authors provided an interface for controlling the

movements of a robot.

CHAPTER 4 GESTURE MODELS 86

 In [78], the authors created a 3D model visualizer, which can be

controlled by gestures.

 In [43], the authors describe a flexible way for adding gestural

interaction to applications that do not support it. They propose a

set of gestures that can be employed in different settings

 In [22], the authors present Code Space, a system for enabling

collaboration among developers exploiting touch and on-air

gestures.

 The book in [138] describes the basics of the development of Kinect

enabled applications exploiting the Microsoft Kinect SDK. The

Chapter 6 is dedicated to gestures, and the authors describe a set

of typical gestures and how they can be recognized.

 The middleware described in [115] provide a set of reusable

graphical controls for creating gestural interfaces

 The work in [125] and [127] is reported in section 5.4, since it

discuss the application developed exploiting the proof-of-concept

library for our gesture modelling approach. The applications are

respectively a 3D model visualizer and a touchless recipe browser.

In the following sections, we discuss the performance of each identified

gesture and we provide the correspondent model. In addition, we explain

how it has been exploited in the different work selected in literature. A

summary of the different identified gestures together with their exploitation

in the different selected papers is provided in Table 4.1

4.2 COMMON FULL-BODY GESTURE MODELS

87

G
e
st

u
re

[4

5]

[7
9]

[1

2]

[6
7]

[7

4]

[3
3]

[3

5]

[1
35

]
[2

4
]

[7
8]

[4

3]

[2
2
]

[1
38

]
[1

1
5
]

[1
25

]
[1

27
]

P
oi

n
ti

n
g

G
ra

b

P
u
sh

P
u
sh

b
ac

k

L
at

er
al

p
u
sh

K
ic

k

W
av

e

S
w

ip
e

CHAPTER 4 GESTURE MODELS 88

G
es

tu
re

[4
5]

[7

9]

[1
2]

[6

7]

[7
4]

[3

3]

[3
5]

[1

35
]

[2
4
]

[7
8]

[4

3]

[2
2
]

[1
38

]
[1

1
5]

[1

25
]

[1
27

]

W
al

k

T
u
rn

D
iv

er
ge

/C
on

v
er

ge

h
an

d
s

S
te

er
in

g

w
h
ee

l

R
ol

l

U
n
iv

er
sa

l

P
au

se

T
a
b
le

 4
.1

 C
o
m

m
o
n
 f
u
ll
-b

o
d
y
 g

e
st

u
r
e
s

in
 l
it

e
r
a
tu

r
e

4.2 COMMON FULL-BODY GESTURE MODELS

89

4.2.1 Pointing

The pointing gesture consists of the usage of the dominant hand (or

optionally the non-dominant hand), for selecting an object on the screen.

Figure 4.6 graphically shows the gesture performance.

The relationship between the hand position on the real world and the

corresponding position on the screen can be defined in different ways. For

instance, it is possible to exploit the image-plane approach described in [64],

where the on-screen position is obtained tracing a ray from the user’s eye

location, passing from the finger tip and intersecting it with the screen plane.

In [45], the authors approximate this approach replacing the eye position

with the head point of the skeleton and the fingertip with the position of

the dominant hand.

Figure 4.6 The pointing gesture

A different approach is a direct mapping between the screen and the real

world, defining a scale matrix between the two spaces. This is the a typical

approach since it is adopted by the Kinect SDK, and it is possible to find it

in literature for instance in [138].

Another source of variation for the pointing gesture is related to the space

where the hand movements are tracked. It is possible to define a depth

barrier where the hand position is tracked only if its Z coordinate is lower

than a certain threshold. Another possibility is to define a 2D plane in front

of the user.

In order to model this gesture with our declarative approach, it is

sufficient to iteratively track the position of the dominant hand (e.g. the

right one). It is possible to optionally associate a predicate to the recognition

of the hand feature in order to limit the tracking space. Equation 4.7 shows

CHAPTER 4 GESTURE MODELS 90

the definition of the pointing gesture for the right hand (represented by the

𝑚𝐻𝑟 feature). A symmetric definition is possible for the left hand. The

predicate 𝑡𝑠 can be instantiated in different ways in order to limit the

tracking space.

From the interaction semantics point of view, this gesture has the obvious

effect of selecting an area on the screen, or provides a direction for

controlling a robot

𝑚𝐻𝑟
∗[𝑡𝑠] (4.7)

4.2.2 Grab

In its simplest form, the grab gesture consists of simply closing one hand.

In this form it has been exploited for instance in [45] and in [127].

A different definition of the same gesture can be found in [78], [22], [125]

and [127], where the hand closure is followed by a change of the closed hand

position until the hand is reopened.

This variant is exploited for providing a manipulation metaphor for

rotating [78] or moving [125] a 3D model, changing the position of video

timeline [127] or for implementing an on-air drag and drop [22].

The grab gesture performance is shown in Figure 4.7: the bigger black

dots represent a closed hand, while the white dots represent an open hand.

The first phase is the same for all the gesture variants: the user closes the

hand. The phase number 2 and number 3 belong to the second variant of

the gesture: the user can move the closed hand in different directions

(represented with the arrows in the second part of Figure 4.7). Finally, the

user opens the hand (the third part of Figure 4.7).

The gesture modelling for the two variants is shown in Equation 4.8,

considering the right hand (the left one is symmetric). The feature 𝑜𝐻𝑟

represents a change on the open/closed state of the hand, while the predicate

𝑐 ensures that the hand is closed.

The second version of the gesture offers the possibility to drag the grabbed

object with the closed hand and then release it. This is modelled using a

sequence operator after the hand closure, which allows the closed hand to

be moved iteratively (represented by the 𝑚𝐻𝑟 feature). The loop is disabled

by a change in the hand closure state that changes from closed to opened.

The expression models such change exploiting the feature 𝑜𝐻𝑟, which is

associated to the 𝑐̅ predicate, which is the logical negation of 𝑐.

4.2.3 PUSH

91

𝐺𝑟𝑎𝑏𝑣1 = 𝑜𝐻𝑟
∗[𝑐]

𝐺𝑟𝑎𝑏𝑣2 = 𝑜𝐻𝑟
∗[𝑐] ≫ (𝑚𝐻𝑟

∗[> 𝑜𝐻𝑟
∗[𝑐̅])

 = 𝐺𝑟𝑎𝑏𝑣1 ≫ (𝑚𝐻𝑟
∗[> 𝑜𝐻𝑟

∗[𝑐̅])

(4.8)

Figure 4.7 The grab gesture

4.2.3 Push

The push gesture mimics the action for pressing a virtual on-air button,

stretching out one hand towards the screen. The approach for recognizing

this gesture is based simply on a depth barrier definition between the user’s

position and the screen. If one of the hands crosses the barrier, the push is

detected.

Figure 4.8 graphically shows how the gesture can be performed. The depth

barrier is depicted using a dotted line in the side view.

From the modelling point of view, the push gesture is a simple change in

the position of the hand feature, which has to cross the depth barrier. This

can be simply defined by a sequence of two hands movements: the former

has a depth value greater than the depth barrier (see Figure 3.10), while the

latter has a depth value lower than the depth barrier.

CHAPTER 4 GESTURE MODELS 92

Figure 4.8 The push gesture

We formalize the definition through the equation 4.9, where the 𝑚𝐻𝑟

feature tracks the changes in the position of the right hand (for the left one

the definition is symmetrical). The depth-barrier test is performed by the 𝑑

predicate: it is true if the Z coordinate for the hand position was lower than

the considered barrier value and false otherwise. The predicate �̅� is the

logical negation of 𝑑.

𝑚𝐻𝑟[�̅�] ≫ 𝑚𝐻𝑟[𝑑] (4.9)

4.2.4 Push back

The push-back gesture mimics the action for releasing a virtual on-air

button. The gesture performance is symmetric to the one described in the

previous section: this time the user pulls-back the hand from the depth

barrier.

Figure 4.9 The push-back gesture

4.2.5 LATERAL PUSH

93

Figure 4.9 graphically shows how the push back gesture is performed, with

the depth barrier represented by a dotted line in the side view.

The gesture modelling with our meta-model notation is symmetric with

the one discussed in the previous section, and it is shown in equation 4.10.

This time, the first ground term accepts values that are lower than the depth

barrier value (modelled with the 𝑑 predicate), while the second one accepts

values that are greater than the depth value (the �̅� predicate).

It is worth pointing out that the value of the depth barrier needs to be

updated according to the user’s position. For instance, it is possible to

consider a relative displacement calculated on the position of Z coordinate

of the hip center joint.

𝑚𝐻𝑟[𝑑] ≫ 𝑚𝐻𝑟[�̅�] (4.10)

4.2.5 Lateral push

The lateral push gesture is equivalent to the push gesture, the only difference

is the change of the axis for defining the barrier, which relays no more on

the depth axis but on a value defined on the X axis.

Figure 4.10 Lateral push gesture

CHAPTER 4 GESTURE MODELS 94

Figure 4.10 shows the performance of the lateral-push gesture. From the

modelling point of view, it is possible to reuse the definition in the equation

4.9, changing the definition of the 𝑑 predicate.

4.2.6 Kick

The kick gesture, as the name already explains, consists in recognizing when

the user mimics a kick for interacting with the application. As it depicted

clearly by Figure 4.11, the recognition of this gesture can be defined through

the same patterns we use for recognizing the push gesture (front or lateral):

we again set a depth barrier and the gesture is completed when it is crossed

by the considered foot.

Figure 4.11 The kick gesture

Equation 4.11 shows the definition of a GestIT expression for the kick

gesture. The 𝑚𝐹𝑟 is the feature for the right foot (symmetrically it is possible

to define the same gesture for the left one), which has to be detected first

outside the depth barrier (represented by the 𝑑 predicate) and then inside

it (the �̅� predicate).

𝑚𝐹𝑟[𝑑] ≫ 𝑚𝐹𝑟[�̅�] (4.11)

4.2.7 Wave

The wave gesture is commonly used by people to say hello and goodbye

from a distance, simply moving one hand. Different applications exploit this

4.2.7 WAVE

95

gesture for communicating the intention of the user to interact whit them,

using a “greet the screen” metaphor, especially in games for Xbox.

In order to define an expression for recognizing it, we consider the

algorithm described in [138].

The gesture recognition phases are depicted in Figure 4.12. We describe the

recognition of the wave gesture for the right hand, but it can be defined

symmetrically also for the left hand. For convenience, in this paragraph we

exploit a different coordinate system for the hand point: we set its origin on

the elbow of the considered hand, preserving the orientation for the axes in

Figure 3.10. Such coordinate system can be obtained at each frame simply

defining a translation of the original coordinate system, using as vector the

one defined by the currently tracked elbow position.

Figure 4.12 The wave gesture

The gesture starts when the hand point reaches the second quarter in our

coordinate system, with a positive Y and a negative X value. The situation

is depicted in Figure 3.10, part 1. Then, the user has to move the hand in

CHAPTER 4 GESTURE MODELS 96

the first quarter of the coordinate system, with both values of X and Y

positive, as shown in Figure 3.10, part 2. After that, the hand has to return

in the second quarter (Figure 3.10, part 3). At this point, there are two

alternatives: either the user repeats the wave, returning to the situation in

Figure 3.10 part 2 and then back to hand position in Figure 3.10 part 3, or

she can conclude the gesture moving the hand in the third quarter, as

depicted in Figure 3.10, part 4.

In order to model this gesture with the GestIT notation, we define four

different predicates, to be applied to the feature that describes the position

of the right hand (𝑚𝐻𝑟):

1. 𝑥 is true if the hand point has a positive value for the X coordinate

2. �̅� is true if the hand point has a negative value for the X coordinate

3. 𝑦 is true if the hand point has a positive value for the Y coordinate

4. �̅� is true if the hand point has a negative value for the Y coordinate

With such predicates, we can model the recognition of the hand position

as follows:

 𝑚𝐻𝑟[�̅� ⋀ 𝑦] recognizes the hand in the second quarter

 𝑚𝐻𝑟[𝑥 ⋀ 𝑦] recognizes the hand in the third quarter

 𝑚𝐻𝑟[�̅� ⋀ �̅�] recognizes the hand in the fourth quarter

Having defined the different parts of the gesture, we can compose them

using the temporal operators in order to obtain the wave. For defining such

temporal relationships, we have to consider that, during the gesture

performance, the hand position inside the different quarters changes an

indefinite number of times. Therefore, the recognition of each gesture

subpart is iterative, it has to be executed at least once, and it is stopped by

the recognition of one of the other components.

The equation 4.12 shows the definition of the wave gesture with the

GestIT notation, and it clearly shows the four phases of the gesture. The

first ground term corresponds to the first gesture phase. The iterative hand

movement inside the second quarter of our coordinate system is disabled by

the expression for the phases 2 and 3, contained in round brackets, which

correspond respectively to the 𝑚𝐻𝑟[𝑥 ⋀ 𝑦] and the 𝑚𝐻𝑟[�̅� ⋀ 𝑦] ground

terms.

These phases can be repeated an indefinite number of times (the user can

wave more than once), but they have to be completed at least once.

Finally, the user put down the hand, positioning the hand point inside

the third quarter, modelled by the 𝑚𝐻𝑟[�̅� ⋀ �̅�] ground term.

4.2.8 SWIPE

97

𝑚𝐻𝑟
{1,∗}[�̅� ∧ 𝑦] [>

(𝑚𝐻𝑟
{1,∗}[𝑥 ∧ 𝑦][> 𝑚𝐻𝑟

{1,∗}[�̅� ∧ 𝑦])
{1,∗}

[>

𝑚𝐻𝑟[�̅� ∧ �̅�]

(4.12)

4.2.8 Swipe

The swipe gesture is a rapid movement of one hand, in a direction roughly

parallel to the X or Y axis. In this paragraph, we consider a swipe on the X

axis with the right hand, but it is easy to modify the definition to obtain

any combination of hand and axis for recognizing all the variants for this

gesture.

The gesture performance is depicted in Figure 4.13: the user moves her

hand rapidly maintaining it in the area between the two dotted lines.

Obviously, it is possible to define different tolerance thresholds for both the

height of the area and the movement speed, in order to fine-tune the

recognition.

Figure 4.13 The swipe gesture

It is possible to model the gesture using the expression in equation 4.13.

The swipe gesture is simply an iterated hand movement, which is

constrained to be in an area with a specific height (modelled by the 𝑙𝑖𝑛𝑒𝑎𝑟

predicate) and with a speed higher than a specific threshold (modelled by

the 𝑠𝑝𝑒𝑒𝑑 predicate).

CHAPTER 4 GESTURE MODELS 98

It is possible to specify that the recognition of such hand movement has

to be repeated at least a given number of times, changing the iterative

operator with the second one of the short-hands we defined in section 3.1.2.7.

Finally, the first hand movement that do not satisfy the constraints

disables the iteration, concluding the gesture.

𝑚𝐻𝑟
∗[𝑙𝑖𝑛𝑒𝑎𝑟 ∧ 𝑠𝑝𝑒𝑒𝑑] [> 𝑚𝐻𝑟 (4.13)

4.2.9 Walk

The walk gesture is an in-place imitation of the movements we perform

while walking. In literature, we can find two different types of such

imitation.

In the first type, the user mimics the walking movement raising

alternatively the left and the right foot. Such kind of definition is exploited

for instance in [74] and [33].

Figure 4.14 Walk gesture

The second one is more recognition-oriented and tries to mimic the

walking movements with less physical effort for the users. Indeed, it consists

of simply putting one of the feet forward with respect to the other one. This

definition is exploited for instance in [67] and [24].

4.2.9 WALK

99

We define a GestIT expression for both variants here. The first one is

depicted in Figure 4.14.

The gesture performance can be decomposed in four phases, each one

depicted by a number in Figure 4.14.

In the first phase, the user raises the first foot (we consider the right one

here, but the order is not fixed) until it reaches the height of the knee. After

that, the same foot has to return to the rest position. The other two phases

are symmetric: the user raises the second foot (the left one in our example)

to the knees height and then she returns to the rest position.

We can model each one of the different phases with a GestIT expression,

considering an iterative movement of the foot point (right for the first two,

left for the other ones) that is disabled by reaching the position that

concludes the considered phase. Therefore, we can define the follow four

expressions:

1. 𝑚𝐹𝑟
∗[> 𝑚𝐹𝑟[𝑟𝑖𝑔ℎ𝑡𝑈𝑝] , where 𝑟𝑖𝑔ℎ𝑡𝑈𝑝 is a predicate that tests if

the right foot is in the position depicted in Figure 4.14, part 1.

2. 𝑚𝐹𝑟
∗[> 𝑚𝐹𝑟[𝑟𝑒𝑠𝑡] , where 𝑟𝑒𝑠𝑡 is a predicate that tests if the right

foot is in the position rest position depicted in Figure 4.14, part 2

and 4.

3. 𝑚𝐹𝑙
∗[> 𝑚𝐹𝑙[𝑙𝑒𝑓𝑡𝑈𝑝] , where 𝑙𝑒𝑓𝑡𝑈𝑝 is a predicate that tests if the

left foot is in the position depicted in Figure 4.14, part 3.

4. 𝑚𝐹𝑙
∗[> 𝑚𝐹𝑙[𝑟𝑒𝑠𝑡] , where 𝑟𝑒𝑠𝑡 is a predicate that tests if the right

foot is in the position rest position depicted in Figure 4.14, part 2

and 4

We can compose the four phases using the GestIT temporal operators in

order to define the complete gesture. The phases 1 and 2, and symmetrically

the phases 3 and 4, have to be executed in sequence: when the user starts

raising one of the feet, she must raise it at the knee height and put it back

in the rest position before starting the same movement with the other foot.

Obviously, there is no need to force the user to start with the left or the

right foot, but we must ensure that the execution of the in-place steps is

alternated between the right and the left foot. For this purpose, GestIT

provides the order independence operator that, as defined in section 3.1.2.6,

does not impose any order on the two operands but forces both of them to

be completed in order to successfully recognize the entire expression.

The resulting GestIT expression for the first variant of the walk gesture

is shown in equation 4.14.

CHAPTER 4 GESTURE MODELS 100

((𝑚𝐹𝑟
∗[> 𝑚𝐹𝑟[𝑟𝑖𝑔ℎ𝑡𝑈𝑝] ≫ 𝑚𝐹𝑟

∗[> 𝑚𝐹𝑟[𝑟𝑒𝑠𝑡]) |=|
(𝑚𝐹𝑙

∗[> 𝑚𝐹𝑙[𝑙𝑒𝑓𝑡𝑈𝑝] ≫ 𝑚𝐹𝑙
∗[> 𝑚𝐹𝑙[𝑟𝑒𝑠𝑡]))∗

(4.14)

In the second variant of the walk gesture, the user put forward one of the

feet with respect to the rest position. The recognition of this variant is quite

similar to the one described for the kick gesture, the only difference is that

the foot is not raised from the ground. Therefore, from the modelling point

of view, the difference between the second type of the walk gesture and the

kick gesture is simply the definition of the 𝑑 predicate in the expression

4.11.

4.2.10 Turn

The turn gesture is a change in the user’s position that, from being in front

of the screen, turns the entire body either left or right. This gesture has

been exploited in [67] for turning the field of view in a 3D-space control

application. The same gesture has been exploited in [127] in order to

distinguish when the is willing to interact with the application (and then

she stays in front of the screen) from the situation where she was focused

on cooking and her movements should not be tracked: if the turn gesture

was recognized, the interaction tracking was disabled.

The recognition of this gesture is quite simple, and it is based on a

comparison of the position of the two shoulders points. If they are both on

a plane that is roughly parallel to X axis, we can consider that the user is

in front of the screen (or, more precisely, in front of the sensor).

Starting from this consideration, it is simple to define how to recognize

the gesture: we need simply to track the movements of the two shoulders

and as long as they are no more on the aforementioned parallel plane, the

gesture is recognized. Figure 4.15 depicts the performance of the turn

gesture.

In order to model this gesture using the GestIT notation, it is sufficient

to track the shoulder movements in parallel, checking the position of the

shoulders at each movement. The gesture can be modelled in two steps: in

the first one the user’s shoulder has to be parallel to the X axis of our

coordinate system, represented by the 𝑝 predicate. The shoulders can move

independently (even if they actually do not move independently, but we can

abstract from such correlation), modelled by the parallel operator. The

movement of one shoulder (or both) that does not fulfil the predicate

constraint ends such situation (�̅� predicate). The complete definition is

4.2.11 CONVERGE OR DIVERGE HANDS

101

shown in equation 4.15, 𝑆𝑙 and 𝑆𝑟 represent respectively the feature

associated to the left and the right shoulder points.

(𝑆𝑙[𝑝]| | | 𝑆𝑟 [𝑝])∗[> (𝑆𝑙[�̅�]| | | 𝑆𝑟 [�̅�]) (4.15)

Figure 4.15 The turn gesture

4.2.11 Converge or Diverge Hands

In different work in literature, it is possible to find the definition of a full-

body gesture for controlling the zoom level of a 2D or 3D view with an

interaction style similar to the pinch gesture for multitouch screens. The

touches are replaced with the position of the hands and the zoom level is

controlled through the current distance between them: if it increases during

the movement, the view is zoomed-in otherwise is zoomed-out.

The main difference with the multitouch counterpart of this gesture is the

way we establish when it starts. For multitouch screens is straightforward:

the gesture starts when the user touches the screen. Instead, for the full-

body gesture we have two main alternatives. The first one is relaying on the

depth barrier concept we introduced for instance for the push: the gesture

begins when both hands cross a given depth threshold (e.g. [45] and [79]).

The second one exploits the recognition of the hand closure, and the gesture

starts when the user closes both hands (e.g. [78] and [43])

The gesture performance, based on hands closure, is shown in Figure 4.16,

but it is obviously similar also for the depth barrier case.

CHAPTER 4 GESTURE MODELS 102

Figure 4.16 Converge or diverge hands gesture

The expression for modelling this gesture is quite similar to the one shown

in equation 4.5. Indeed, the gesture is defined exploiting the same temporal

relationships, but we substitute the multitouch feature with the full-body

ones, according to the different variations we are considering.

If we exploit the depth barrier, we have the GestIT definition in the upper

part of the equation 4.16: the gesture starts when both the right and the

left hands cross the depth barrier (modelled with the 𝑑 predicate), continues

with an iterative movement of the hands “inside” the barrier and then

finishes withdrawing the hands from the barrier (the logical negation of 𝑑

holds).

The second variant works without considering the position of the hands

in the depth axis. The gesture starts when the user closes both hands

(represented by the 𝑐 predicate), continues with a parallel hand movement

and it is ended when the user reopens the hands (and the logical negation

of 𝑐 holds). The GestIT definition for this variant is shown in equation 4.16.

(𝑚𝐻𝑟[𝑑]|=|𝑚𝐻𝑙[𝑑]) ≫ ((𝑚𝐻𝑟
∗[d]|| 𝑚𝐻𝑙

∗[𝑑])

 [> (𝑚𝐻𝑟[�̅�] |=| 𝑚𝐻𝑙[�̅�]))

(𝑜𝐻𝑟[𝑐]|=|𝑜𝐻𝑙[𝑐]) ≫ ((𝑚𝐻𝑟
∗|| 𝑚𝐻𝑙

∗)
 [> (𝑜𝐻𝑟[𝑐̅] |=| 𝑜𝐻𝑙[𝑐̅]))

(4.16)

4.2.12 STEERING WHEEL

103

4.2.12 Steering wheel

Together with the definition of a pinch equivalent for the full-body gesture

recognition support, different work defined a full-body equivalent for the

rotation gesture for multitouch. What we call “steering wheel” is exactly

such equivalent, which can be found in literature with the same variants

described for the previous gesture: based on the depth barrier [45] or on

hand closure [78][43].

The gesture performance consists in mimicking a rotation of the hands

along a circular path, as if the user holds a steering wheel. The gesture is

depicted in Figure 4.17, the dotted line shows the path that constrains the

hand movements. In practice such area cannot be defined simply as a circle,

but it must contain an outer and an inner circle where the hands can move,

tolerating some degree of deviation from a perfect trajectory.

Figure 4.17 Steering wheel gesture

It is possible to model such gesture in GestIT through an expression

similar to the converge or diverge gesture. The two definitions differs only

on the path that constrains the “steering wheel”: we add a 𝑐𝑖𝑟𝑐𝑙𝑒 predicate

for checking such property to the iteration of the parallel movement of both

hands.

We keep the two different definitions also in this case: one for the depth

barrier and one for the hand closure exploitation for starting and finishing

the gesture. The expression is shown in equation 4.17.

CHAPTER 4 GESTURE MODELS 104

(𝑚𝐻𝑟[𝑑]|=|𝑚𝐻𝑙[𝑑]) ≫
((𝑚𝐻𝑟

∗[𝑑 ∧ 𝑐𝑖𝑟𝑐𝑙𝑒]|| 𝑚𝐻𝑙
∗[𝑑 ∧ 𝑐𝑖𝑟𝑐𝑙𝑒]) [> (𝑚𝐻𝑟[�̅�]|=| 𝑚𝐻𝑙[�̅�]))

(𝑜𝐻𝑟[𝑐]|=|𝑜𝐻𝑙[𝑐]) ≫
(𝑚𝐻𝑟

∗[𝑐𝑖𝑟𝑐𝑙𝑒]|| 𝑚𝐻𝑙
∗[𝑐𝑖𝑟𝑐𝑙𝑒]) [> (𝑜𝐻𝑟[𝑐̅]|=| 𝑜𝐻𝑙[𝑐̅]))

(4.17)

4.2.13 Roll

The roll gesture is similar to the grab one defined in section 4.2.2: The

difference is that performs the on-air grab with two hands. The user has to

close both hands before moving them.

As we already explained for other gestures, when the information on the

hand closure is not available it is possible to exploit a depth barrier

technique for staring the recognition.

Figure 4.18 Roll gesture

In addition, the two hands cannot move independently: they should be

maintained close to each other, as if the user holds a stick during the

movements. This kind of gesture is exploited in [45] and [125] for rotating a

3D models using a virtual trackball mechanism [32], and it was included by

Franke et al. [43] in their benchmark gestures.

4.2.14 UNIVERSAL PAUSE

105

The definition of a GestIT expression for recognizing this gesture is similar

to the one we used for the steering wheel gesture. The main difference is the

predicate that constraints the parallel movement of the hands: in this case

we have to ensure that the distance between the hands remains roughly the

same for the whole gesture performance. For this purpose, we define a 𝑑𝑖𝑠𝑡

predicate, which performs this check.

In addition, we define two variants for this gesture, one that exploits a

depth barrier for recognizing when interaction start and one that exploits

the hand closure. The resulting expressions are shown in equation 4.18.

(𝑚𝐻𝑟[𝑑]|=|𝑚𝐻𝑙[𝑑]) ≫
((𝑚𝐻𝑟

∗[𝑑 ∧ 𝑑𝑖𝑠𝑡]|| 𝑚𝐻𝑙
∗[𝑑 ∧ 𝑑𝑖𝑠𝑡]) [> (𝑚𝐻𝑟[�̅�]|=| 𝑚𝐻𝑙[�̅�]))

(𝑜𝐻𝑟[𝑐]|=|𝑜𝐻𝑙[𝑐]) ≫
(𝑚𝐻𝑟

∗[𝑑𝑖𝑠𝑡]|| 𝑚𝐻𝑙
∗[𝑑𝑖𝑠𝑡]) [> (𝑜𝐻𝑟[𝑐̅]|=| 𝑜𝐻𝑙[𝑐̅]))

(4.18)

4.2.14 Universal Pause

The universal pause gesture is exploited in the Xbox games in order to pause

the interaction. The gesture has been defined with the purpose to be an

unnatural pose for the interaction, in order to reduce the accidental

recognition of this gesture, with a consequent undesired pause [138].

Figure 4.19 The Universal Pause gesture

The gesture performance is shown in Figure 4.19: the user has to maintain

the position of the harm roughly at 45 degrees from the body. Obviously, it

CHAPTER 4 GESTURE MODELS 106

is difficult that the user is able to hold the exact position, therefore the user

will actually move the hand, but keeping it roughly in the same position.

The other parameter to establish is how long the user has to wait before the

recognition. It obviously depends on the designer’s choice (e.g. two seconds).

In order to model the gesture with the GestIT notation, we have to

consider the hand position as the tracking feature. We have also to ensure

that the position of the hand is at roughly 45 degrees from the body, and

for this purpose, we defined the 𝑑𝑒𝑔45 predicate. Moreover, we take into

account the time spent by the user in this position, through the definition

of a 𝑡𝑖𝑚𝑒 predicate that checks whether the required time has passed or not.

The complete definition of the gesture is shown in equation 4.19: it

iteratively recognizes the hand movement in the specified position until the

time has passed.

𝑚𝐻𝑟
∗[𝑑𝑒𝑔45 ∧ 𝑡𝑖𝑚𝑒̅̅ ̅̅ ̅̅][> 𝑚𝐻𝑟[𝑡𝑖𝑚𝑒] (4.19)

Chapter 5

Library Support

This chapter presents the implementation of a proof of concept library for

the development of gestural interfaces according to the meta-model

definition described in Chapter 3. The library is open source and it is

publicly available at http://gestit.codeplex.com/.

In the first part, we discuss the overall library architecture, which includes

the classes shared by the different gesture recognition platforms. After that,

we show how the abstract classes are refined in for supporting multitouch

and full-body gestures.

The second part of this chapter shows how it is possible to define gestures

through the library, discussing some code samples for iOS (multiouch) and

for the Microsoft Kinect (full-body).

The third part briefly discuss a set of applications developed exploiting

the library for both the multitouch and the full-body platforms.

The last part of the chapter introduces the possibility of a cross-platform

reuse of the gestures definition.

5.1 Library Architecture

We designed and implemented a proof-of-concept library starting from the

meta-model defined in Chapter 3. The library architecture has been designed

in order to isolate the definition of the temporal relationships once for all

the supported platforms. Therefore, we created an abstraction layer that is

exploited by all recognition supports.

In this way, it is easy to add the support for new recognition platforms,

since there is no need to redefine how to compose expressions and the

semantics of the temporal operators.

http://gestit.codeplex.com/

CHAPTER 5 LIBRARY SUPPORT 108

According to this idea, the library consists of different packages, one for

each supported platform, which share the implementation of the temporal

relationships between gestures.

The library class diagram is shown in Figure 5.1. It has a core independent

from the actual gesture recognition support, which is contained in the core

package. Each platform is an extension of the core package and it deals with

an actual device. The ones that are currently supported are iOS and Android

devices (multitouch package) and Microsoft Kinect (fullBody package).

Figure 5.1 GestIT class diagram

5.1.1 Library core

The library core contains the classes for the defining gesture expressions.

The abstract class TmpExp represents such expressions, either ground terms

5.1.1 LIBRARY CORE

109

or composed ones. The class contains a composition of TmpExpObservers,

which define the protocol for receiving notifications about the recognition of

the gesture expression. It is possible to receive two types of notifications:

 onCompleted, which notifies the successful completion of the

gesture expression;

 onError, which notifies that it was not possible, given the current

gesture state sequence, to recognize the gesture expression.

Both events are parametric on two abstract classes, the ExpEventArgs

and the Token. The first one is the extension point for the information about

the current gesture recognition support state that contains, as we defined in

section 3.1.1, the value of all the features recognizable by the considered

device.

The second one instead maintains the gesture recognition state sequence,

which is the history of the previously sensed features. As we describe in

more detail during the discussion of the platform refinements, it is not

feasible for the concrete implementations of the Token class to maintain the

whole history of the feature values. Therefore, the implementation provides

the developer with mechanism to control the amount of information to

maintain.

The iterative operator is represented by a boolean flag on all TmpExp

instances.

The subclasses of TmpExp refine the gesture expression concept with

according to different roles.

The SimpleTmpExp class implements the Petri Net for recognizing a

generic basic building block, and it is a subclass of TmpExp. The actual

feature changes and the optional conditions on them (see section 3.1.1) are

defined by a delegate object associated to the SimpleTmpExp instances,

which are obviously device-dependent. Such delegate object must implement

the ExpContent protocol, which is the second extension point defined for the

core package. Such interface consists of two different methods:

 accept, which receives the current gesture recognition support state

(represented by the abstract class ExpEventArgs) and the Petri Net

Token that, for convenience, contains the information on the

previous gesture recognition support state sequence. A concrete

implementation of the delegate returns a boolean value indicating

whether the feature change is recognized or not, according to the

parameter values;

CHAPTER 5 LIBRARY SUPPORT 110

 consume, which allows to specify the amount of gesture data to be

maintained during the gesture recognition. As we better detail in

section 5.2, it is not feasible to maintain the entire sequence of

feature values because of memory space, storing into a Token only

the subset of the gesture support state sequence that is needed.

The possibility to combine building blocks and composed gestures is

provided by other two TmpExp subclasses: BinaryTmpExp and

ComplexTmpExp.

The first one implements all Petri Nets representing binary operators,

namely sequence, parallel, choice, disabling. Obviously, an instance of this

class behaves differently according to the operator property and its left and

right operands, which belong to the TmpExp class. This make it possible to

connect both building blocks and complex gestures.

The N-ary versions of such operators can be obtained associating the

operands, exploiting the associative property of all the binary operators.

The second TmpExp subclass implements the Petri Net for the order

independence and contains a list of operands (again belonging to the

TmpExp class).

A gesture definition is represented by a TmpExp tree, where all leafs are

SimpleTmpExp instances, while the other nodes belong either to the

BinaryTmpExp or the ComplexTmpExp class. At runtime, the tree is

managed by a device dependent implementation of the Emitter class. Its

responsibility is to listen to device updates and to forward them to the leafs

that currently contain a token. For each one of them, the Emitter invokes

the accept method. If the return value is true, the Emitter calls the consume

method. Then, the SimpleTmpExp notifies the recognition to its parent

expression that, according to the Petri Net semantics, moves the Token,

propagating the notification up to the tree hierarchy and proceeding with

the gesture recognition. In section 5.2 we provide a concrete example of this

mechanism.

It is possible that the device raises an update that is not accepted by any

leaf. In this case, the gesture recognition should be interrupted, and the

developer should have the possibility to define how the interface should react

to the interruption. The library offers the possibility to associate a handler

not only for the successful recognition of a gesture (either basic or

composed), but also for the recognition failure (the aforementioned onError

event of the TmpExp class). The recognition failure is also propagated to

the upper levels of composition tree as in the successful case.

5.1.3 FULL-BODY PACKAGE

111

5.1.2 Multitouch package

In order to recognize multitouch gestures described through this formal

definition with our library, we need to define the concrete implementation

of the abstract classes discussed in section 4, represented as the multitouch

package in Figure 5.1.

The first one is TouchEventArgs, an ExpEventArgs subclass, which

contains the information about a device feature update (touch identifier,

touch point, time). The instances of this class are created by a

TouchEmitter, an Emitter subclass, which translates the touch screen

updates into a format manageable by the library.

The TouchEventArgs instances are forwarded to the leafs of the TmpExp

tree that, as already discussed in the previous section, are SimpleTmpExp

instances. These leafs are connected with TouchExpContent instances, which

are ExpContent refinements. The TouchExpContent class has two instance

variables, which represent the touch identifier and the type of a basic

building block for touch gestures (start, move and end).

Therefore, the accept method checks the conditions defined in equation

3.9, according to the specified type. Further conditions to be checked can

be defined by developers sub-classing TouchExpContent and overriding the

accept method. The TouchToken class contains the information on the

gesture sequence, and represents the concrete implementation of a Token.

Obviously, it is not possible to store in memory each single feature update

especially when programming for mobile devices. Therefore, it is possible to

specify the maximum number of updates to be buffered and, for convenience,

if the starting point of each touch should be maintained or not.

5.1.3 Full-body package

The structure of the fullBody package is symmetric with respect to the

multitouch one. The BodyContent class is the concrete implementation of

the ExpContent for this package, and it defines all the possible ground terms

for the full body platform through an enumeration that contains a value for

each different joint type, joint orientation, the hands status (open or closed)

and the time, as discussed in section 3.3.

The constraints on the recognition of a given feature are defined by the

accept instance method. In the particular case of the C# implementation,

we exploited a delegate method [88], which allow the developer to customize

CHAPTER 5 LIBRARY SUPPORT 112

the definition of a predicate on the given feature without the need of

subclassing BodyContent.

The data manipulated by the expressions is contained into the concrete

refinement of the ExpEventArgs, the BodyEventArgs. This class provides

the information tracked by the Kinect for Windows SDK [87] to the core

package, wrapping it in a format that can be manipulated by the library. It

contains the current position and orientation of the skeleton joints, together

with the information on the time feature.

The information on the gesture recognition state sequence is maintained

into an object of the BodyToken class, a refinement of the Token class, in

the same way we already explained for the multitouch platform. The objects

of this class are able to maintain a finite number of gesture recognition

support states, which can be specified at the moment of the object

instantiation. This is obvious, since it is not possible to maintain the whole

history of the features changes in memory.

The task to interface the Kinect device with the expression library is

accomplished by the BodyEmitter class. It observers the changes of the

device state through the API provided by the Kinect SDK [87] and, when a

change occurs, it creates an object of the BodyEventArgs class that contains

the same updates in a format that can be processed by the library, and

forwards them to the expression three that represents the gesture description

definition.

5.2 Creating a multitouch application

We better clarify how a developer can use the library for providing

multitouch gesture support for a UI control with an example. We consider

a pinch gesture (defined in equation 4.5), exploited in a multitouch

application that we detail in section 5.4.2.

We recall in the equation 4.1, the GestIT expression that defines the pinch

gesture.

(𝑆𝑡𝑎𝑟𝑡1 |=|𝑆𝑡𝑎𝑟𝑡2) ≫ ((𝑀𝑜𝑣𝑒1
∗|| 𝑀𝑜𝑣𝑒2

∗) [> (𝐸𝑛𝑑1 |=| 𝐸𝑛𝑑2)) (4.1)

The following are the steps that have to be followed by the UI control

initialization code.

1. Construct the tree of TmpExps represented by the UML object

diagram in Figure 5.2, starting from the leafs, and then associate

5.2 CREATING A MULTITOUCH APPLICATION

113

each SimpleTmpExp to the delegate for recognizing the desired

feature

2. Create a TouchToken instance, specifying the number of updates

to be buffered and whether the initial position of each touch has to

be stored or not.

3. Create an instance of the TouchTmpEmitter class, passing the

token created at step 2, and the current UI control (exploited in

order to receive the touchscreen updates from the OS).

4. Attach the handlers to the completion and/or error event of the

entire gesture and/or its subparts, represented by the instances of

TmpExps created at step 1.

This initialization code at step 1 can be created directly by the developer

with the considered programming language (e.g. Objective C or Java).

Otherwise, it can be created exploiting an XML-like description of the

gesture, which eases the definition of the gesture tree. As we better detail

in the next section it is convenient to extend the interface description

markup (e.g. XAML [89]) if available.

In addition, it is possible to store such initialization code in a separate

class (e.g. PinchTmpExp) and reusing it for different UI controls.

The flow of notifications that allows the library to manage the recognition

and to raise the appropriate intermediate events is shown with a sequence

diagram in Figure 5.3. In Figure 5.2 we show the how such notifications are

propagated in the object tree, visualizing the numbers of the messages in

Figure 5.3 inside arrows.

The numbered arrows represent the sequence of notifications when the

user touches the screen with the second finger, the squares represent the

handlers attached to gesture sub-components, the solid circle represents the

position of the token before the second touch, and the dotted circles the

position of the token after the second touch. The lower part shows the effects

of the attached handlers on the UI.

We suppose that net has already recognized a touch start with id 1.

Therefore, it is waiting for another touch start, this time with id 2. Such

“waiting” is defined by the token position (represented as a circle-enclosed

T on the s2 object in Figure 5.2).

When the touch screen senses a new touch, the TouchEmitter forwards

such notification to s2, the tree leaf that currently contains the token (arrow

1). After that, s2 tries to recognize the touch, invoking the accept method

of its TouchExpContent delegate, which returns true (arrow 2). Then s2

CHAPTER 5 LIBRARY SUPPORT 114

notifies the successfully completion to its parent, c1, which represents the

expression (𝑆𝑡𝑎𝑟𝑡1 |=|𝑆𝑡𝑎𝑟𝑡2).

All the building blocks enclosed in this expression are recognized, thus the

order independence expression is completed. Therefore, the event handler

attached to c1 is executed. In our example, it paints two circles on the

currently visualized image in correspondence of the touch points (A square

in Figure 5.2), providing intermediate feedback to the user while executing

the gesture.

Figure 5.2 Recognition of a pinch gesture with the GestIT library

This is the point where our approach breaks the standard observer

pattern: the gesture recognition is not already finished, but it is possible to

define UI reactions to the completion of its sub-parts, without re-coding the

entire recognition process, as happens for instance when a viewer has a built-

in pinch for zoom gesture recognition.

After that, c1 notifies the completion to its parent, pinch (arrow 4), which

represents an enabling expression. Having completed its left operand, pinch

passes the token to its right operand b2 (arrow 5), which represents a

disabling expression, and b2 passes the token to both its operands (arrow

6), which both duplicate it (arrow 7) at next step. The left one represents a

5.2 CREATING A MULTITOUCH APPLICATION

115

parallel expression, while the right one represents an order independence

(see section 3.2.3 and 3.2.5).

Finally, we have four different basic gestures that can be recognized as

next ones: touch 1 move, touch 2 move, touch 1 end or touch 2 end. The

dotted circles in Figure 5.2 represent the new token positions.

It is worth pointing out that the device dependent part of the recognition

support is concentrated on delegates for the SimpleTmpExp object

(represented at the bottom of the tree in Figure 5.2). Therefore, the

remaining part of the support is implemented by classes that are not bound

to a specific device (identified by the “Abstract” label in Figure 5.2) and can

be exploited not only for multitouch, but also for full body gestures and

other recognition supports.

Figure 5.3 Recognition of a pinch gesture (sequence diagram)

As already mentioned at the beginning of this section, the example

discussed here is a part of an iOS proof of concept application that allows

zooming the current view through the pinch gesture and drawing with a pan

gesture. The application gives intermediate feedback during the pinch,

showing two divergent arrows while zooming in and two convergent arrows

while zooming out (respectively square B and C in Figure 5.2). The two

gestures are composed through the parallel operator, so it is possible to draw

and to zoom the view in at the same time (e.g. using one hand for zooming

and one for drawing).

From the developer point of view, the difference in handling them at the

same time or separately is a matter of selecting the choice or the parallel

operator for the composition. No further code is required, which is not the

case for current multitouch frameworks. In addition, both gestures have

been defined separately from the application (they are contained as samples

in the iOS library implementation) and nevertheless the developer can

CHAPTER 5 LIBRARY SUPPORT 116

associate UI reactions at different levels of granularity (to the whole gesture,

or part of it).

5.3 Creating a full-body gesture
application

In this section, we detail how a developer can use GestIT in order to create

a full-body gestural UI.

We consider here a touchless recipe browser application that, as we detail

better in section 5.4.4, is organised into three presentations: the first one

allows the user to select the recipe type (e.g. starter, first dish, main dish

etc.), the second one is dedicated to the selection of the recipe, while the

last one presents the steps for cooking the selected dish with video and

subtitles.

In the latter presentation, it is possible to go through the steps back and

forth or to jump randomly from one point to the other of the procedure.

We consider here the C# version for Windows Presentation Foundation

(WPF) of the GestIT library. An interface in WPF is described by two

different files. The first one contains the definition of the UI appearance and

layout specified using XAML [89], an XML-based notation that can be used

in .NET applications for initializing objects. In this case, it initializes the

widgets contained into the application view.

The second file involved in the UI definition contains the behaviour, and

it is a normal C# class file. Since the two files are part of the same view

class definition, the latter is called the “code-behind” file. Objects defined by

the XAML file are accessible in the code-behind file and the methods defined

in the code behind file are accessible in the XAML definition.

In this example, we discuss the implementation of the first presentation,

which is shown in Figure 5.4. The view is composed of a title on the upper

part and a fisheye panel in the centre. The bottom part is dedicated to the

status messages: the application notifies if it is tracking the user’s

movements or not.

5.3 CREATING A FULL-BODY GESTURE APPLICATION

117

Figure 5.4 Touchless recipe browser, dish type selection

The gestural interaction is defined inside the associated view through a

set of custom XAML tags, which are shown in Table 5.1. The tree structure

of the tags is equivalent to the expression notation we used in Chapter 3.

The high-level description of the gesture interaction is the following: if the

user is not in front of the screen, the application does not track her

movements. When the user is in front of the screen, she can highlight one

of the recipe types, which can be selected by a grab gesture (closing the

hand). The definition of such gestural interaction is highlighted with

comments in Table 5.1.

The interaction is a sequence of different gestures, which starts with the

user that stands in front of the screen (a turn gesture, from line 7 to line

11). This is modelled checking the position of the shoulder points, which

have to be almost parallel to the sensor plane on the depth axis (see section

4.2.10). Such constraint is modelled using a predicate associated to the left

shoulder ground term, which is specified by the Accepts attribute containing

a value the name of the C# method that calculates it (screenFront). The

latter method is defined in the code-behind file associated to a XAML

specification.

When this gesture is completed, the user needs to be aware that the

application is tracking her position, therefore the completion method

associated to the gesture changes the message on the label at the bottom of

the UI in Figure 5.4, setting its text to “Tracking User” with a green

background.

CHAPTER 5 LIBRARY SUPPORT 118

 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

<TabItem Background="#FF92BCED" x:Name="recipeType">
 <Grid Background="#FF92BCED">
 <!-- gesture definition -->
 <g:GestureDefinition x:Name="moveSelection" >
 <g:Sequence Iterative="True">
 <!-- turn gesture (front of the screen) -->
 <g:Change Feature="ShoulderLeft" Accepts="screenFront">
 <g:Change.Completed>
 <g:Handler method="screenFront_Completed"/>
 </g:Change.Completed>
 </g:Change>
 <g:Disabling>
 <!-- grab gesture -->
 <g:Disabling Iterative="True">
 <g:Change Feature="HandRight" Iterative="True">
 <g:Change.Completed>
 <g:Handler method="moveHand_Completed" />
 </g:Change.Completed>
 </g:Change>
 <g:Change Feature="OpenRightHand" Accepts="rightHandClosed">
 <g:Change.Completed>
 <g:Handler method="rightHandClosed_Completed"/>
 </g:Change.Completed>
 </g:Change>
 </g:Disabling>
 <!-- turn gesture (not in front of the screen) -->
 <g:Change Feature="ShoulderLeft" Accepts="notScreenFront">
 <g:Change.Completed>
 <g:Handler method="notScreenFront_Completed"/>
 </g:Change.Completed>
 </g:Change>
 </g:Disabling>
 </g:Sequence>
 </g:GestureDefinition>
 <!-- view definition -->
 <ui:FisheyePage x:Name="heading" Grid.ColumnSpan="2" />
 <kt:KinectSensorChooserUI Grid.Column="0" Grid.ColumnSpan="2"
 Name="kinectSensorChooser1" VerticalAlignment="Center" Width="328"/>
 </Grid>
</TabItem>

Table 5.1 XAML Gesture definition

The definition of this behaviour is again in the code-behind file, and it is

linked with the gesture declaration through the method attribute for the

handler element inside the change.completed tag (line 8 and 9 in Table 5.1).

The method name in this case is screenFront_Completed.

Once this gesture is completed, it is possible to interact with the screen,

and the grab gesture implements the selection of the recipe type. First, we

listen iteratively to the change of the right hand position (the Change tag

with Feature=“HandRight” at line 15 in Table 5.1, which implements a

pointing gesture). Every time such ground term is completed, (read the user

moves the hand), the moveHand_Completed method is executed. It updates

5.4.1 PILOT STUDY: SIMPLE CANVAS

119

the currently highlighted recipe type (the one with the red border in Figure

5.4).

The recognition iteration may be interrupted in two cases. The first one

is when the user closes the right hand (the Change tag with Feature=

“OpenRightHand” at line 20 in Table 5.1) and the method

rightHandClosed_Completed handles the completion of the grab gesture,

changing the current presentation.

The second case is when the user goes away and she is not in front of the

screen anymore (the turn gesture at line 27 in Table 5.1). This situation is

modelled symmetrically with respect to the gesture at line 7, the only

difference is the Accepts method (notScreenFront), which is exactly the

logical negation of ScreenFront. In both cases, the interruption is modelled

using a disabling operator, declared respectively by the inner and the outer

Disabling tags (respectively at line 14 and 12 in Table 5.1).

As it should be clear from the description, in order to create a gestural

interface with GestIT in XAML is sufficient to:

1. Create the UI view

2. Define the gestures associated to a view (in the same file), composing

declaratively existing gestures or creating new ones starting from

ground-terms.

3. Provide the methods for calculating the predicates associated to the

specified gestures in the code-behind file (if any)

4. Provide the UI behaviour associated to the gesture completion

5.4 Sample applications

In this section, we provide the description of the different applications that

developed as showcases for the GestIT library.

5.4.1 Pilot study: Simple canvas

The first example we discuss is a simple drawing application for both the

multitouch and the full-body gesture recognition supports, which we

exploited in order to drive the design of the gesture meta-model we defined

in Chapter 3, with a proof-of-concept implementation. The preliminary

results for this pilot study were discussed in [126].

We used two different supports and SDKs, such as the iPhone and the

iOS SDK [5] and the Microsoft Kinect with the NITE framework [115], since

CHAPTER 5 LIBRARY SUPPORT 120

it was created before a stable version of the Microsoft Kinect SDK was

released. The application is a simple canvas where the user can draw with

her finger in the iPhone or with one hand in the Kinect version.

Though the applications are really simple, they have two important things

in common. The first one is the support for the temporal operator definition,

shared by both versions, which have been initially developed in C++ and

compiled for both platforms.

The second one is the gesture definition: we selected for this sample

application the Pan (see section 4.1.3) and the Pointing (see section 4.2.1)

gestures for drawing respectively for multitouch and full-body, which can be

considered two equivalent gestures in the two different platforms.

For the same reason, we selected the Pinch for multitouch (see section

4.1.5) and the Diverge or Converge Hands for the full-body (see section

4.2.11) in order to implement the zoom feature.

In both versions, the gestures are connected through the choice operator,

showing already the main advantage of our modelling technique: we can

reuse the definition of two gestures and combine them in order to obtain a

more complex interaction.

In addition, with the same definition it is possible to support the zooming

feature while drawing in the multitouch version changing only the

composition operator (Parallel), without any additional effort for the

developer.

The equation 4.1 shows the definition of the gestures for the simple canvas

application: the first two expressions model the multitouch application,

while the third one defines the full-body interaction.

The definitions show how the Pan and the Pinch gestures may be

connected first through the choice and then with the parallel operator. The

choice operator connects also the Point and the Diverge or Converge Hands

in the full-body version.

Multitouch with choice operator

(𝑆𝑡𝑎𝑟𝑡1 ≫ 𝑀𝑜𝑣𝑒1
∗ [> 𝐸𝑛𝑑1) []

(𝑆𝑡𝑎𝑟𝑡1 |=|𝑆𝑡𝑎𝑟𝑡2) ≫ ((𝑀𝑜𝑣𝑒1
∗|| 𝑀𝑜𝑣𝑒2

∗) [> (𝐸𝑛𝑑1 |=| 𝐸𝑛𝑑2))

Multitouch with parallel operator
(𝑆𝑡𝑎𝑟𝑡1 ≫ 𝑀𝑜𝑣𝑒1

∗ [> 𝐸𝑛𝑑1) ||
(𝑆𝑡𝑎𝑟𝑡1 |=|𝑆𝑡𝑎𝑟𝑡2) ≫ ((𝑀𝑜𝑣𝑒1

∗|| 𝑀𝑜𝑣𝑒2
∗) [> (𝐸𝑛𝑑1 |=| 𝐸𝑛𝑑2))

(4.1)

5.4.1 PILOT STUDY: SIMPLE CANVAS

121

Full-body
(𝑚𝐻𝑟

∗[𝑡𝑠]) []
(𝑚𝐻𝑟[𝑑]|=|𝑚𝐻𝑙[𝑑]) ≫ ((𝑚𝐻𝑟

∗[d]|| 𝑚𝐻𝑙
∗[𝑑])

 [> (𝑚𝐻𝑟[�̅�] |=| 𝑚𝐻𝑙[�̅�]))

The UI behaviour associated to the gesture definition can be summarized

as follows:

 To the 𝑀𝑜𝑣𝑒 block of the pan gesture and to the 𝑚𝐻𝑟 block of the

pointing gesture, we associated an event handler that draws a line

from the previous touch position to the current one.

 To each one of the 𝑀𝑜𝑣𝑒 blocks of the pinch gesture and to the 𝑚𝐻𝑟

blocks of the diverge or converge gestures, we associated an event

handler that computes the difference between the previous and the

current distance between the two touches. If it is increased, the

canvas zooms in the view, otherwise it zooms out the view

accordingly.

The iPhone version included the definition of the TmpExp that describes

the gesture definition as discussed in section 5.1.2 and 5.2.

The UI controls and the listeners that define the UI behaviour for the

multitouch version are coded exploiting the UI Kit framework [6] for iOS.

The resulting user interface is shown in Figure 5.5.

Figure 5.5 Simple canvas UI, multitouch version

CHAPTER 5 LIBRARY SUPPORT 122

Figure 5.6 Simple canvas UI, full-body version

For the Kinect version, the definition of the UI reaction with respect to

the notification of the gesture recognition is symmetric with respect to the

iPhone version. However, this time the application exploits the Qt4 for the

application UI, which is shown in Figure 5.6.

5.4.2 Photo viewer

The second application we discuss is a multitouch photo viewer for iOS

devices, which is the sample application that is shipped with the GestIT

library in order to show how it is possible to create multitouch interfaces

with it.

With all the currently available UI toolkits for multitouch mobile devices,

the creation of an application that is able to simply show a photo is simply

a matter of exploiting an image view widget. Usually, such widget provides

the possibility to interact with the contained photo, using the pinch for

zooming and a single touch for panning the view. When the device recognizes

one of these gestures, it raises an event corresponding respectively to the

change of the image scale factor or position.

It is possible to identify two problems with this approach from the gesture

interaction design point of view:

5.4.2 PHOTO VIEWER

123

1. The gestures that have been selected for the interaction cannot be

modified. They are completely tied to the implementation of the

UI graphic control

2. If the events are raised only when the corresponding gesture has

been completely recognized, it is difficult for the developer to

provide intermediate feedback during the gesture execution.

Therefore, in order to show the GestIT library capabilities, we started

from this simple photo viewer application, but with a small variant: when

the user is panning or zooming the photo, the application has to show one

or more arrows under the user’s fingers, which change their orientation

according to the finger movement direction.

Exploiting directly the image viewer widget is still possible but, in order

to provide the intermediate feedback, the developer has to register to the

following low-level touch events:

1. Detect when a new touch is detected, in order to show the arrow(s)

2. Maintain the count of the currently detected fingers

3. Track the movement of the different touches for detecting the

movement direction

4. Detect when a touch ends, in order to hide the arrow(s)

The application we discuss in this section shows a different way to create

an application for this simple yet exhaustive scenario.

Through the GestIT library, we separated the UI control for visualizing

the photo from the definition of the gestures that manipulates it. We

exploited the existing image viewer shipped with the iOS UI toolkit, but we

“deviated” the touch events to a GestIT expression.

Such expression is a composition of the pan and the pinch gestures

through a choice operator, respectively discussed in section 4.1.3 and 4.1.5.

The photo scale factor and viewport position are now changed through

two different handlers attached to the gesture expression ground terms. Such

expression is exposed by the image control. In this way, the developer can

inspect such definition and it is possible to easily add behaviour to an

existing definition.

In our case, it is possible to add the arrow feedback through three simple

handler methods, one for showing or hiding one arrow, one for changing its

position and orientation.

Without re-implementing the touch tracking logic, it is possible to connect

such handlers to the recognition of the appropriate ground term (e.g. touch

start for showing the arrow, touch move for changing the position and the

CHAPTER 5 LIBRARY SUPPORT 124

orientation etc.) and the developer can really reuse the UI control and the

definition of the gestures.

Figure 5.7 The photo viewer application

5.4.3 3D viewer

In this section, we describe a 3D viewer we created for demonstrating the

library capabilities in [125]. The application visualizes a 3D car model, which

can be moved and rotated by the user through a set of on-air gestures.

In order to avoid unwanted interactions, we specified that users have to

stand with the shoulders in a plane (almost) parallel to the sensor, before

starting the interaction with the car. Thus, if the user is not in front of the

device that means most of the times in front of the screen, the interface will

not give any response.

5.4.3 3D VIEWER

125

The car position can be changed with a grab gesture (see section 4.2.2),

which consists of closing the right hand, moving and reopening it.

In addition, the car can be rotated performing the roll gesture (an on-air

grab with both hands), which means closing two hands, moving them

maintaining almost the same distance in between, and then reopening them

(see section 4.2.13)

We want also to display the 2D projected hand position on the screen, in

order to provide an immediate feedback to the user for each hand movement.

The resulting gesture model is defined in equation 4.2. The Front and

NotFront gestures respectively activate and deactivate the UI interaction.

When a change in the feature associated to the left and right shoulder

(indicated as Sl and Sr) occurs, they respectively check if the sensor parallel

plane property (p) is true or false.

The UI interaction consists of three gestures in parallel. The first and the

second one are simply a hand position change. The UI reacts to their

completion moving a correspondent (left or right) hand icon. The Grab

gesture is the one associated to the car position change, and consists of a

sequence of a right hand close (represented 𝑜𝐻𝑟[𝑐]) and a unbounded

number of right hand moves (𝑚𝐻𝑟
∗), interrupted by the opening of the right

hand (𝑜𝐻𝑟[𝑜]).

The Roll gesture is represented by the same sequence, performed with

both hands in parallel, almost maintaining the same distance (the d

condition).
𝐹𝑟𝑜𝑛𝑡 ≫ (𝑚𝐻𝑟

∗ | |𝑚𝐻𝑙
∗| | (𝐺𝑟𝑎𝑏 [] 𝑅𝑜𝑙𝑙)))∗[> 𝑁𝑜𝑡𝐹𝑟𝑜𝑛𝑡

𝐹𝑟𝑜𝑛𝑡 = (𝑆𝑙[𝑝]| | | 𝑆𝑟 [𝑝])
𝑁𝑜𝑡𝐹𝑟𝑜𝑛𝑡 = (𝑆𝑙[! 𝑝]| | | 𝑆𝑟 [! 𝑝])
𝐺𝑟𝑎𝑏 = 𝑜𝐻𝑟[𝑐] ≫ (𝑚𝐻𝑟

∗ [> 𝑜𝐻𝑟
 [𝑜])

𝑅𝑜𝑙𝑙 = (𝑜𝐻𝑟[𝑐]||𝑜𝐻𝑙[𝑐]) ≫
 ((𝑚𝐻𝑟[𝑑]||𝑚𝐻𝑙[𝑑])∗[> (𝑜𝐻𝑟[𝑜]||𝑜𝐻𝑙[𝑜]))

(4.2)

The intermediate feedback associated to different sub-parts of the

composed gestures is shown in Figure 5.8, the upper part shows the UI

feedback provided while performing the gestures represented in the lower

part.

 The interaction proceeds as follows: when the correct pose is detected

(the Front gesture is completed), the car passes from a grayscale to a full-

colour visualization, indicating that it is possible to start the interaction

(the B square in Figure 5.8).

CHAPTER 5 LIBRARY SUPPORT 126

When the user “grabs” the car with one hand (completes cHr), a four arrow

icon is shown on top of the car (C square). The change of the car position

is associated to the following hand movements (mHr
*).

The interface during the grab gesture is shown in Figure 5.9: the central

part shows a car model with the user feedback for the grab gesture on top.

The sidebar shows the representation of the user’s skeleton, the video

coming from the RGB camera of the Kinect sensor and a label with the

current tracking state (true or false) of the application.

The other interaction command is associated with a two-hands closure in

parallel (completion of (𝑜𝐻𝑟[𝑐]||𝑜𝐻𝑙[𝑐]), the roll gesture of section 4.2.13), a

circular arrow is displayed (D square), suggesting the gesture function. The

car rotation is associated to the parallel movement of the two hands (the

completion of (𝑚𝐻𝑟[𝑑]||𝑚𝐻𝑙[𝑑]) ∗). The car returns inactive when the user

is not in the front position any more (A square).

Figure 5.10 shows the interface during the rotation of the 3D model: the

central part shows the rotation feedback, while the right part still shows the

position of the skeleton, the RGB video and the tracking label.

Writing such application with the support of the GestIT library has a set

of advantages, which is possible to notice also in this simple case.

First of all, the defined gestures are separated from the UI control. Indeed,

the car viewer is a standard WPF 3D viewport, enhanced with full body

gestures at the application window level.

Second, the possibility to inspect the gesture definition and to attach

handlers at the desired level of granularity allowed us to define easily when

and how to react to the user input, without mixing the logic of the reactions

with the conditions that need to be satisfied for executing them.

Figure 5.8 3D viewer interaction

5.4.3 3D VIEWER

127

Figure 5.9 3D viewer UI, grab gesture

Finally, we do not define any additional UI state for maintaining the

gesture execution. Indeed, if we created such application simply with the

Kinect for Windows SDK, we would have needed at least a state variable

for maintaining what the user has already done and, consequently, for

deciding what she is allowed to do next (e.g. when the user closes the right

hand the state has to change for moving the car at next hand movement).

Most of the times, this is managed with the implementation of a state

machine inside the handler of the skeleton tracking update, which mixes the

management of all gestures together. Especially when we want to support

parallel gestures, mixing the different gestures leads to code difficult to

understand and maintain.

Figure 5.10 3D viewer UI, roll gesture

CHAPTER 5 LIBRARY SUPPORT 128

The approach discussed in this thesis helps the developer to separate the

temporal aspect and the UI reaction and to reuse gesture definition in

different applications, while maintaining the possibility to define fine-

grained feedback.

5.4.4 Touchless recipe browser

In this section, we describe how we exploited the GestIT library in order to

create an interactive support to be used in a kitchen environment, which

has been presented in [127].

Indeed, depth sensors are useful when users are performing tasks that do

not allow the use of traditional pointing devices or keyboards. For instance,

the primary user’s task may be the creation of an artefact in the real world,

which requires several steps to be completed, like assembling furniture or

replacing a part of an appliance.

An interactive support that enables the user to browse the information

while performing the primary task can be really effective in such situations.

Its advantages and its risks have been analyzed in [77], where the authors

concluded that a touchless direct manipulation is well accepted by the users,

but designers should be careful while choosing the vocabulary, which has to

be immediately understandable for them.

It is possible to find in literature examples of touchless interfaces for

specific appliances in the kitchen environment [48], or for getting a full

control of different devices [108], but problems such as gesture reuse or how

to distinguish movement aimed to interact with the system from those that

are not (the well-known Midas Touch) are still open.

In this section, we consider the kitchen environment as an example for

such kind of applications. The case-study scenario envisions the assistance

during the dish preparation through information displayed on a screen,

which can be browsed while touching the food or using kitchen tools. In such

situation, the touchless interaction has the advantage of avoiding the

contact with the input devices, which can create hygiene problems or the

risk of damaging the electronic equipment (e.g. touching it with wet hands).

For the development of the touchless user interface, we considered a

scenario in which the user wants to cook a dish, but she does not really

master the particular procedure. Therefore, she needs a description of the

steps to be accomplished in order to complete the preparation, which is

usually provided through books or specialised magazines.

5.4.4 TOUCHLESS RECIPE BROWSER

129

We try to enhance such experience with an interactive support for

delivering the information: the steps are described by the interactive system

through a combination of text and video. In order to browse the recipes, the

user does not need to touch any particular input device, which has the

advantage of supporting the interaction while the cooker is manipulating

tools or she has dirty hands.

Instead, she controls the application through a multimodal combination

of voice and gestures. In order to enable such kind of interaction, we

exploited a Microsoft Kinect, together with a computer screen or TV that

displays the user interface.

The touchless recipe browser supports two tasks: the first one is the recipe

selection, while the second one is the presentation of the cooking step. The

selection of the recipe consists of two screens: the first one for selecting the

recipe category (starter, first course, second course, dessert etc.) and then

the selection of the recipe itself.

The presentation of the cooking steps is performed through a combination

of text and video. The user can watch the entire video with subtitles that

show how to cook the selected dish, or she can browse back and forth among

the different steps with a previous and next function or controlling a

timeline.

In order to combine the vocal and the gestural modality, we extended the

GestIT library adding the possibility to react to vocal input, representing

the different keywords that activate vocal commands as features that can

be detected by the Kinect support. Therefore, it is possible to combine in

the gesture description expression also vocal inputs.

With respect to the design of the user interface, we decided to assign

commands that do not need any argument (e.g. going back to the previous

screen) to the vocal modality, while we assigned commands related to object

selection and/or manipulation to the gesture modality. The rationale behind

this choice is trying to keep the user’s focus on her main task (cooking the

dish) as much as possible: gestures have a higher cognitive load with respect

to speech interaction.

In addition, the design of such kind of user interface must take into

account the well-known Midas Touch problem. We exploited the possibility

to define the temporal relationships between gestures provided by GestIT

in order to mitigate it. Indeed, we chose to enable the interaction with the

user interface only if the user stands in front of the screen, while we do not

consider any movement or interaction otherwise. The rationale behind this

CHAPTER 5 LIBRARY SUPPORT 130

design choice is that, being the dish cooking the main task, we assume that

most of the times the user does not want to interact with the application.

When the user wants to get some information from the application, she will

look at the screen, positioning herself in front of it.

Using the GestIT library, the interaction with the different application

presentation follows the schema defined in equation 4.3. The Front gesture

enables the ScreenInteraction, which represents the allowed gestures or

vocal commands for the considered presentation, and it is disabled by the

NotFront gesture. Such expression term is refined in different ways

according to the considered presentation.
𝐹𝑟𝑜𝑛𝑡 ≫ 𝑆𝑐𝑟𝑒𝑒𝑛𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛∗[> 𝑁𝑜𝑡𝐹𝑟𝑜𝑛𝑡

𝐹𝑟𝑜𝑛𝑡 = (𝑆𝑙[𝑝] | |𝑆𝑟[𝑝])
𝑁𝑜𝑡𝐹𝑟𝑜𝑛𝑡 = (𝑆𝑙[! 𝑝] | |𝑆𝑟[! 𝑝])

(4.3)

As it is possible to observe in equation 4.3, Front and NotFront are

symmetric: they respectively check whether the shoulder position (Sl and

Sr) are parallel with respect to the sensor (and screen) plane (the p

predicate) or not. This means that as long as the user stays in front of the

screen, it is possible to interact with the application.

The Front and NotFront gestures have handlers that provides the user

with feedback for signalling whether the application is ready to receive

inputs (a green “Tracking” label) or not (a red “Not Tracking” label).

Figure 5.11 shows the presentation for selecting the recipe category. The

user points the screen and moves the hand in order to highlight the different

categories, which are magnified using a fisheye effect. The selected one has

a thick red border. When the user closes her hand, the presentation changes,

and the application shows the interface in Figure 5.12, which supports a

similar interaction for selecting one of the recipes in the different categories.

As already discussed before, we assigned the commands without

arguments to the vocal modality: in this screen it is possible to use the

following commands: back for going back to the previous screen and exit for

closing the application.

𝑆𝑐𝑟𝑒𝑒𝑛𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑉[𝑏𝑎𝑐𝑘][]𝑉[𝑒𝑥𝑖𝑡][]𝐺𝑟𝑎𝑏

𝐺𝑟𝑎𝑏 = 𝑚𝐻𝑟
∗ [> 𝑐𝐻𝑟

(4.4)

5.4.4 TOUCHLESS RECIPE BROWSER

131

Figure 5.11 Recipe category selection

Figure 5.12 Recipe selection

CHAPTER 5 LIBRARY SUPPORT 132

Equation 4.4 shows the ScreenInteraction gesture definition for the

selection presentation (we describe movements only for the right hand for

simplicity, but the actual implementation provide a symmetric support also

for the left hand). The features marked with 𝑉[𝑤𝑜𝑟𝑑] are those related to

the voice and indicate the pronunciation of the specified word, with the

obvious effect on the user interface (respectively going back to the previous

screen or closing the application).

Figure 5.13 Recipe browser

The Grab gesture is used for selecting the recipe category and it is

composed by an iterative hand movement (𝑚𝐻𝑟
∗) disabled by a closure of

the hand (𝑐𝐻𝑟
). As already explained in section 5.1.1, it is possible to attach

event handlers not only to the whole gesture completion (which performs

the category selection and therefore changes the screen), but also to its sub-

parts. In this case, the fisheye effect in Figure 5.11 is driven by an event

handler attached to the completion of the hand movement (𝑚𝐻𝑟
∗).

Figure 5.13 shows the screen for the preparation of a dish. In the upper

part, it is possible to read the recipe name, in the centre there is a video

tutorial for the preparation1 together with a text describing the procedure

1 The sample recipes included with the application prototype have been created using some videos

from the public website of the Italian cooking TV show “I Menu di Benedetta”

(http://www.la7.it/imenudibenedetta/)

http://www.la7.it/imenudibenedetta/

5.4.4 TOUCHLESS RECIPE BROWSER

133

to follow in order to complete the current step. In the lower part, a slider

represents the video timeline.

The interaction for this presentation is defined in equation 4.5. The vocal

commands back and exit are still available in this screen. The video playback

can be continuous or it can stop at each step. A vocal command is available

for activating both modes.

It is possible to pronounce the words next and previous respectively to

show the previous or the next step of the preparation. Such command can

be activated also through the Swipe gesture, an iterative linear hand

movement performed at a certain speed (verified by the properties linear

and speed), disabled by a hand movement that does not have this

characteristics (for finishing the iteration loop).
𝑆𝑐𝑟𝑒𝑒𝑛𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑉[𝑏𝑎𝑐𝑘][]𝑉[𝑒𝑥𝑖𝑡][]𝑉[𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠][]
 𝑉[𝑛𝑒𝑥𝑡][]𝑉[𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑠][]𝑉[𝑠𝑡𝑒𝑝]
 𝑆𝑤𝑖𝑝𝑒[]𝐷𝑟𝑎𝑔
𝑆𝑤𝑖𝑝𝑒 = 𝑚𝐻𝑟

∗[𝑙𝑖𝑛𝑒𝑎𝑟 ∧ 𝑠𝑝𝑒𝑒𝑑][> 𝑚𝐻
𝐷𝑟𝑎𝑔 = 𝐺𝑟𝑎𝑏 ≫ 𝑅𝑒𝑙𝑒𝑎𝑠𝑒 𝑅𝑒𝑙𝑒𝑎𝑠𝑒 = 𝑚𝐻𝑟

∗[> 𝑜𝐻𝑟

(4.5)

If the swipe movement has been performed from left to right, the tutorial

proceeds to the next step, if it has been performed from right to left the

tutorial goes back to the previous step.

Finally, it is possible to control the video timeline through the Drag

gesture. The latter is a composition of two sub gestures: the first one is Grab

(already defined for the recipe and dish selection) and the second one is

Release, which is an iteration of hand movement disabled by its opening

(𝑜𝐻𝑟).

Through such gesture description is possible to notice the reuse possibility

offered by the library (we defined the Grab gesture and reused it for the

Drag one). Different handlers have been assigned to the different gesture

sub-parts, which allow to define easily the user interface reactions while

performing the gesture: when the user closes the hand (completion of 𝑐𝐻𝑟 in

the Grab gesture), the user interface changes the colour of the slider knob,

after that its position is changed according to the hand movement direction

together with the displayed video frame (completion of .𝑚𝐻𝑟
∗ in the Release

gesture) and finally, when the whole gesture is completed, the video

playback restarts from the point selected by the user.

Chapter 6

A Gestural Concrete User

Interface in MARIA

In this chapter we extend MARIA [111], a model-based user interface

definition language with different abstraction levels, in order to define full-

body gestural interfaces.

We first describe the general modelling concepts of the language, and then

we detail how we extended the entities in order to model gestural interfaces.

After that, we discuss the implementation of a model to code transformation

that we exploit in order to create running applications starting from the

MARIA model definition, showing a sample application.

6.1 MARIA

MARIA [111](Model-based lAnguage foR Interactive Applications) is a set

of XML languages for defining UIs at different levels of abstractions.

Created as an evolution of TERESA [96], the different languages inherit

the CAMELEON [27] reference framework structure.

Indeed, the set includes an abstract language that has multiple extensions

for the different interaction platform supported.

For designers of multi-device user interfaces, one advantage of using a

multi-layer description for specifying UIs is that they do not have to learn

all the details of the many possible implementation languages supported by

the various devices, but they can reason in abstract terms without being

tied to a particular UI modality or, even worse, implementation language.

In this way, they can better focus on the semantics of the interaction,

namely what the intended goal of the interaction is, regardless of the details

and specificities of the particular environment considered.

CHAPTER 6 A GESTURAL CONCRETE USER INTERFACE IN MARIA 136

The languages have also an associated authoring tool called MARIAE

[112] (MARIA Environment), publicly available for download2.

Exploiting the CTT [114] language for the task modelling, the tool is able

to support the CAMELEON design process for different platforms, allowing

the designer to create and edit models at different levels of abstraction,

exploiting also different reification functions (see section 2.4.2).

The tool is able to derive an AUI from a CTT task model, to derive

different CUIs from an AUI definition and provides at least one code

generator (FUI) for each supported platform.

6.1.1 Abstract User Interface

The Abstract User Interface (AUI) level describes a UI only through the

semantics of the interaction, without referring to a particular device

capability, interaction modality or implementation technology.

An AUI is composed by various Presentations, which groups logically

connected model elements to be presented to the user at once.

A presentation contains modelling elements that belong to two different

categories: Interactors or Interactor Compositions. The former represents

every type of interaction object, the latter groups together elements that

have a logical relationship.

According to its interaction semantics, an interactor belongs to one the

following categories:

 The Selection interactors allow the user to select one or more values

among the elements in a predefined list. It contains the selected value

and the information about the list cardinality. According to the

number of values that can be selected by the user, the selection

interactor can be either a SingleChoice or a MultipleChoice.

 The Edit interactors allow the user to manually edit the data

associated to them, which can be textual (Text Edit), numerical

(Numerical Edit), related to a position (Position Edit) or a generic

object (Object Edit).

 The Control interactors allow the user to switch between

presentations (Navigator) or to activate UI functionalities

(Activator).

 The Only Output interactors represent information that is presented

to the user but it is not affected by the user actions. An interactor of

2 http://giove.isti.cnr.it/tools/MARIAE/home

http://giove.isti.cnr.it/tools/MARIAE/home

6.1.1 ABSTRACT USER INTERFACE

137

this category can be a Description, which represents different types

of media, an Alarm a Feedback or a generic Object.

The different types of interactor-compositions are:

 Grouping a generic group of Interactor or InteractorComposition

elements.

 Relation a group where two or more elements are related to each

other.

 Composite Description that represents a group aimed to present

contents through a mixture of Description and Navigator elements.

 Repeater which is used to repeat the content according to data

retrieved from a generic data source

MARIA allows describing not only the presentation aspects but also the

associated behaviour. In addition, the interface definition contains also the

description of the data types that are manipulated by the user interface.

The interactors can be bound with elements of the data model, which means

that, at runtime, modifying the state of an interactor changes also the value

of the bound data element and vice-versa. This mechanism allows the

modelling of correlation between UI elements, conditional layout,

conditional connections between presentations, input values format. The

data model is defined using the standard XML Schema Definition

constructs.

MARIA has a set of features that allow the creation of multidevice

applications, in particular based on web services [110,113] or able to adapt

to the context of use [19].

 Generic Back End. The interface definition contains a set of External

Functions declarations, which represent functionalities exploited by

the UI but implemented by a generic application back-end support

(e.g. web services, code libraries, databases etc.). One declaration

contains the signature of the external function that specifies its name

and its input/output parameters.

 Event Model. Each interactor definition has a number of associated

events that allow the specification of UI reaction triggered by the

user interaction. Two different classes of events have been identified:

the Property Change Events that specify the value change of a

property in the UI or in the data model (with an optional

precondition), and the Activation Events that can be raised by

activators and are intended to specify the execution of some

application functionalities (e.g. invoking an external function).

CHAPTER 6 A GESTURAL CONCRETE USER INTERFACE IN MARIA 138

 Dialog Model. The dialog model contains constructs for specifying the

dynamic behaviour of a presentation, specifying which events can be

triggered at a given time. The dialog expressions are connected using

CTT operators in order to define their temporal relationships.

 Continuous update of fields. It is possible to specify that a given field

should be periodically updated invoking an external function.

 Dynamic Set of User Interface Elements. The language contains

constructs for specifying partial presentation updates (dynamically

changing the content of entire groupings) and the possibility to

specify a conditional navigation between presentations.

This set of features allow having already at the abstract level a model of the

user interface that is not tied to layout details, but it is complete enough

for reasoning on how UI supports both the user interaction and the

application back end.

6.1.2 Concrete User Interface

A Concrete User Interface (CUI) in MARIA provides platform-dependent

but implementation language independent details of a UI. A platform is, as

stated in [27], a set of software and hardware interaction resources that

characterize a given set of devices. MARIA currently supports the following

platforms:

 Desktop CUI: models graphical interfaces for desktop computers.

 Mobile CUI: models graphical interfaces for mobile devices.

 Multimodal Desktop CUI models interfaces that combine the

graphical and vocal modalities for desktop computers.

 Multimodal Mobile CUI models interfaces that combine the graphical

and vocal modalities for mobile devices.

 Vocal CUI models interfaces with vocal message rendering and speech

recognition.

Each platform meta-model is a refinement of the AUI, which specifies how

a given abstract interactor can be represented in the current platform. For

instance, if we consider a Single Choice interactor, it can be implemented

with a radio button, a drop down list or a list box in the graphical modality,

while on the vocal platform it can be rendered with a list of vocal messages

for each option associated to a given keyword.

The same applies for the interactor compositions: a grouping can be

implemented in a desktop platform using background colours, borders etc.,

6.2 GESTURAL CONCRETE USER INTERFACE

139

while in a vocal platform it is possible to e.g. use sounds before the first

group element.

The model definition can be exploited for creating (or deriving with a code

generator) final implementations in different target languages. Indeed, it is

possible to exploit the same mobile CUI for representing an interface for e.g.

iOS or Android devices.

6.2 Gestural Concrete User Interface

As it should be clear from the CAMELEON [27] reference framework

discussion, we extended MARIA with the definition of gestural interfaces

simply providing a refinement of the AUI language that covers the modelling

concepts needed by gestural interfaces.

In order to provide MARIA with these concepts, we have to create a set

of modelling entities for the following parts:

1. A description of the data provided by the device

2. The description of the gestures and the temporal relationships

between them

3. The description of the effects that the gestures have on the other

parts of the interface

4. The description of the interface layout

We recall that the interaction semantics (which kind of task is supported

by different interactors) is inherited from the AUI level.

The first point is needed in order to define the constraints and the effects

of the gestures according to the data received by the recognition device. The

description of such data needs to be abstract with respect to the actual

programming language or development toolkit.

The second point is covered by the gesture meta-model discussed in

Chapter 3. We detail in section 6.2.2 the entities we included in MARIA in

order to define gestures.

The third point deals with two different aspects of the UI model. The first

one is how it is possible to model the visual feedback that the user has to

receive during the gesture performance. The second aspect is the need to

provide the “glue” between the definition of the UI behaviour at the abstract

level and the recognition of the gestures at the concrete one (section 6.2.3).

The last point is related to the visual part of the gestural UI. In brief,

since MARIA already have a Concrete Desktop User Interface definition, we

describe what was missing in the existing definition of the graphic controls

CHAPTER 6 A GESTURAL CONCRETE USER INTERFACE IN MARIA 140

in order to be easily exploited also in the gestural model. It is worth pointing

out that the solution to modelling problems that we discuss in section 6.2.4

are general and they can be applied not only to MARIA, but also to all the

graphical control toolkits that are actually used in order to create the GUIs

that have a gestural support.

6.2.1 Modelling device data

The body data can be modelled with a structure that contains the collection

of the joint positions (a 3D point) and the joint orientation (a 3D vector) as

defined in section 3.3. One instance of such data structure is available for

each tracked user.

In addition, it is available for modelling the gestures also the history of

the body data at the previous steps during the recognition. Therefore, for

each user, the first instance provided by the runtime support is the current

body data, while the following ones are related to the previous recognition

step, providing access to what we called the gesture recognition support

state sequence in section 3.1.1.

This structure is referenced in both event handlers and the modelling of

the recognition constraints that are detailed in the following sections. The

implementation of the runtime support for has to provide the access to this

data in order to execute the model.

6.2.2 Gestures definition

In a gestural interface, the description of the gestures provides the temporal

sequence for the exchange of information between the user and the

application. Such sequence defines on the one hand how the application

reacts to the user inputs while, on the other hand, provides the description

of the set of actions that are available for the user in order to interact with

the application.

In MARIA, as already described in section 6.1.1, the Dialog Model

contains constructs for specifying the dynamic behaviour of a presentation,

specifying what events can be triggered at a given time. The dialog

expressions are connected using CTT [114] operators in order to define their

temporal relationships.

6.2.2 GESTURES DEFINITION

141

Figure 6.1 MARIA gesture description meta-model

A gesture description is a concrete example of such dialog expressions. In

its simplest form, the dialog expression is related to the recognition of a

ground term (see Chapter 3), which is an event triggered by the recognition

device. The complex gestures, can be defined simply connecting ground

terms and/or other complex gestures through the set of composition

operators.

Therefore, we identified the Dialog Model as the point to extend in the

gestural concrete user interface in order to define the gesture description. In

order to do this, we created a refinement of the dialog expression that

represents a generic expression in GestIT: the GestureExpression.

CHAPTER 6 A GESTURAL CONCRETE USER INTERFACE IN MARIA 142

Figure 6.1 show the UML class diagram for the DialogModel extension,

which introduces the gesture model in MARIA.

Using the same modelling approach we exploited in Chapter 5, the

GestureExpression has two attributes. The first one models the only unary

operator in the set: the iterative operator. The second one models the

minimum number of times that one gesture has to be recognized, the

minOccurs attribute.

Exploiting the combination of both attributes it is possible to specify the

short-hands defined in section 3.1.2.7, in order to model gestures that can

be repeated iteratively, but starting from a minimum number of times.

The abstract GestureExpression class is in turn refined into two different

classes: the SimpleGesture which represents the ground term expressions

and the ComplexGesture, which represent a composed gesture.

The SimpleGesture class has an associated feature attribute, which defines

the feature change that is recognized by the simple gesture. Such attribute

has an enumerated value for each feature described in section 3.3.

In addition, the SimpleGesture instances may specify some constraints on

the recognition of the ground term they represent. In MARIA, it is possible

to specify such constraints directly modelling them with instances of the

PropertyConditionGroup class, which represents a boolean expression. The

literals of the expression are represented by:

1. The value of an interactor attribute

2. The value of a data model element

3. The result of the execution of an ExternalFunction, which

represents a functionality that is external to the definition of the

UI model.

In particular, exploiting the external functions in order to model the

gesture predicates allows the designer to reuse the predicate definition across

various UI models. For instance, if the FUI exploits the GestIT library, it is

possible to define as external functions each one of the predicates involved

in the modeling of the common full-body gestures described in section 4.2.

The ComplexGesture class has an operator attribute, which specifies the

temporal operator used for combining the set of sub-gestures. This attribute

is specified through an enumeration that has one value for each one of the

operator discussed in section 3.1.2.

From the XML syntax point of view, we created an element for each one

of the features that can be recognized with a ground term. Therefore, the

instances of the SimpleGesture class are serialized in XML using a different

6.2.3 GESTURE EFFECTS

143

tag according to the feature attribute. This leads to a more readable XML

code.

For the same reason, we introduced an element for each one of the

composition operators. Therefore, the ComplexGesture instances are

serialized with different tags according to the operator attribute.

The relation between a composite gesture and its sub-components is

specified with the XML element hierarchy in the document tree.

6.2.3 Gesture effects

According to the discussion in Chapter 3, our modelling approach allows the

designer to attach the UI behaviour to both the successful recognition of a

gesture component and also in case of a recognition error.

In the same way, we need to include such possibility also in the MARIA

meta-model. In MARIA, the dynamic changes to the UI and to the data

model state are defined through the Script class, an element of the AUI

meta-model. It contains elements that represent expressions and statements

that define such changes at both the abstract and the concrete level.

In order to distinguish the behaviour for the successful recognition from

the error handling, we connected the GestureExpression class with two

instances of the Script class: the first one represent the reaction to the

complete event raised by a generic gesture expression, while the second one

defines the reaction to the error event.

It is worth pointing out that in MARIA the behaviour which is

independent from the concrete platform is already defined in the AUI model.

The concrete model inherits the definition of such behaviour. The

completion of a given gesture must be able not only to trigger the execution

of some concrete-platform dependent behaviour, but it should be also able

to activate the behaviour that is defined at the abstract level.

One simple example of the situation is represented by a presentation with

two different activators, each one associated to a different application

functionality, for instance save and new file. The triggering of the

functionalities is associated in the AUI to the abstract event activation.

When the AUI is refined to the concrete level, the activators can be in turn

refined into two buttons. The abstract event (and its handlers) are inherited

also in the CUI.

In a classical desktop interface, the buttons are activated using the mouse

pointer, which is a singleton for the entire window system. In addition, for

CHAPTER 6 A GESTURAL CONCRETE USER INTERFACE IN MARIA 144

activating them, the user (and obviously the designers) has the only option

of clicking one of the mouse buttons.

In the case of the gestural interaction, the designer may use different

paradigms for both the interactor selection and activation. The gestural

interaction provides a richer vocabulary for selecting and activating a

graphical control in general, and the buttons in particular. For instance, it

is possible that the user activates the first button raising the left hand, while

she activates the second one raising the right hand. Another possible

interaction is that the user points with the hand one of the two buttons and

closes the hand for activating it.

From the previous description, it should be clear that the binding between

the gestures and the abstract events cannot be derived implicitly as in the

classical desktop interfaces, but it has to be defined explicitly.

The way we identified for connecting the recognition of a gesture

expression with the behaviour defined at the abstract level is to explicitly

raise the abstract events inside the definition of the behaviour associated to

a gesture expression. Indeed the MARIA meta-model contains, among the

other statements for the definition of the UI behaviour, the Raise element.

This modelling construct allows raising a specific event (either abstract or

concrete) specifying the event name, the interactor identifier and the event

arguments (if needed).

Therefore, the schema for binding the definition of the behaviour

associated to the gestures to the abstract one consists of first managing the

changes that involve the concrete level (most of the times providing the

intermediate feedback) and then raising the abstract event that the designer

wants to trigger.

If we consider the hand-pointing interaction in our example, when the

user changes the hand position, the interface should give some feedback for

identifying which button she is currently pointing (e.g. drawing the button

border in a different colour). When she closes the hand, the behaviour

associated to the gesture completion has first to identify which is the button

currently pointed (and this part is related to the concrete level) and then it

is possible to raise the activation event of the selected button, executing the

behaviour defined at the abstract level. We provide a real modelling example

for such binding in section 6.4.

6.2.4 INTERACTORS

145

6.2.4 Interactors

The definition of the graphical part of the gestural CUI is based on the

interactors that are already defined for the graphical desktop CUI. In order

to do this, the meta-model of the gestural CUI imports the classes that refine

the abstract interactors as described in section 6.1.2.

As we already explained in the previous section, in a gestural interface

the binding between how the user selects the different interactors (e.g.

pointing them with the mouse) is not implicit anymore, and the designer

may select different ways for let the user start the interaction with a concrete

UI object.

From the modelling language point of view, the events defined by both

the concrete desktop interactors and the ones raised when the gestures are

completed in the dialog model are already sufficient for defining different

selection techniques. However, the resulting models are complex to define

and consequently to read and to understand. Indeed, the following

definitions are necessary:

 In the completion event of the interactor selection gesture, the

designer has to define how to calculate which interactor has been

selected by the user, according to a given selection logic. For

instance, it is possible to directly point one interactor (and

therefore specify a pick-correlation algorithm). Another example is

a list of interactors where the user can change the currently selected

one in a sequential manner. The previous one in the list may be

selected with a swipe gesture from right to left, while the following

one may be selected with a swipe from left to right.

 After that, the designer should define how to provide feedback to

the user for recognizing which interactor is currently selected,

tracking the currently selected interactor.

 Once an interactor has been selected, the UI has to execute a

conditional handler that behaves differently according to the

selection, in order to define different reactions.

This problem obviously recourses in different interfaces. Therefore, we

extended the definition of the Interactor Composition refinement in order

to ease the definition of such recurring interaction scheme.

We exposed a property called focusPoint, which can be used in order to

specify a specific point that currently focuses the user’s attention. When

such point is changed, the runtime support automatically calculates which

interactor is the currently selected one. With this protocol, the designer is

CHAPTER 6 A GESTURAL CONCRETE USER INTERFACE IN MARIA 146

no more in charge of defining the pick-correlation between the point and the

interactors. However, she can still define different ways for selecting the

interactors in a composite UI, modelling the selection of the actual point

with different strategies.

In addition, each refinement of the Interactor Composition category

contains a new element, which defines the style for showing which one is the

selected interactor. The element was added in the GroupingSettings class,

which contains the styles for rendering the grouping (and the other classes

of the Interactor Composition category). Such element contains attributes

for defining e.g. the border for the selected element, a different background

colour etc.

In addition, we added a property to the presentation class in order to

maintain which interactor currently has the interface focus. The property

has to be automatically updated by the runtime support, according to the

focus point selected. This eases the definition of the interaction making such

information always accessible without specifying the logic for the property

update.

6.3 Model to code transformation

Having defined the various components of the gestural CUI modelling

elements, we created a model to code transformation, which shows how it is

possible to exploit the modelling language for creating the FUI.

Differently from the other generators provided with the MARIAE tool,

which transform the models into running web applications, we defined one

of the first transformations that creates a standalone application.

The target implementation exploits the following technologies:

 Windows Presentation Foundation as presentation layer [89]

 C# for defining the application behaviour

 The GestIT library for defining full-body gestures

 The Kinect SDK [87] for managing the data coming from the

Kinect sensor device.

The transformation process consists of two steps. The first one transforms

the MARIA model, defined through the usual XML syntax into a XAML

[89] definition of the presentation layer.

The second step takes as input the same MARIA model and creates a C#

file that contains the definition of the application behaviour.

6.3 MODEL TO CODE TRANSFORMATION

147

Both files represent a partial definition of the application window, but

their combination defines the application completely (exploiting the partial

class definition mechanism [85]). The communication between the two parts

relays on a naming convention for the class methods, which is shared

between the two transformations (e.g. the event handler for a button

specified in the presentation layer is then implemented with the same name

in the behaviour file). Both transformations are defined using an XSLT [136]

stylesheet.

The whole interface is mapped into a single window, while the different

presentations are mapped into a separate panel in the window content.

For each one of the interactors and interactor compositions contained into

the different presentation, the transformation selects the corresponding

widget in the WPF framework. In particular:

 For each interactor that specifies the id attribute, the

transformation fills the Name attribute in the corresponding WPF

widget. In this way, the behaviour part (a C# file) can access the

interactor and its properties simply considering it as an instance

variable.

 The interactor composition refinements are mapped into different

WPF panels, according to their specification. For instance, if a

grouping is implemented using the Grid technique, it is mapped

into a grid panel in WPF, if a grouping is implemented with the

tab technique, it is mapped into a TabPanel in WPF etc.

Otherwise, the transformation uses a vertical StackPanel, which

positions the inner elements vertically, according to the their

definition order.

 The interactors are mapped into the correspondent widgets in

WPF (buttons, images, videos etc.).

 The connections between the different presentations are mapped a

change of the currently visualized content inside the main window.

 The event handlers, which are defined in the C# part of the UI,

are attached to the WPF widgets simply specifying the method

name in the XAML code.

The gesture model is mapped into the corresponding XAML elements

provided by the GestIT library, with a straightforward transformation. The

recognition constraints and the handlers for the successful or erroneous

performance of the gesture are attached to the expression definition

specifying the name of the corresponding method in the C# class.

CHAPTER 6 A GESTURAL CONCRETE USER INTERFACE IN MARIA 148

The second transformation defines the UI behaviour in C#. The first

part defines the overall structure of the class (importing the external

libraries, defining the class name and the constructors). After that, the class

defines a set of methods for changing the gesture model together with the

presentation: we recall that the gesture model is associated to a specific

presentation. Such methods are triggered in correspondence of the activation

of an interactor specified in a Connection.

The third part of the class contains the gesture recognition constraints,

associated to the accept property of the ground term expression. The C#

code implements the definition expressed with the PropertyCondition and

InvokeFunction constructs in the model (see section 6.2.2).

The fourth part symmetrically defines the UI reaction to the completion

of the gesture expression (both simple and composed). In the same way are

transformed also the reaction to the erroneous recognition of the different

gestures (if defined).

The last part is dedicated to the implementation of the event-handlers

associated to the different interactors. In this part are also considered the

handling of the connections among the presentations.

In the following section, we present a sample application generated from

a MARIA model definition.

6.4 Sample application

We show in this section a concrete modelling example in MARIA. We

modelled a simple gestural interface for controlling a digital TV.

We first describe the tasks that need to be supported by this application

and the implementation of the UI at the abstract level. After that, we

discuss the concrete gestural refinement and we show the final result.

The application allows the user to watch a TV show. In addition, the user

should be able to change the current TV channel and to retrieve information

on the program scheduling.

The temporal sequencing of the tasks supported by the application is

shown in Figure 6.2, using the CTT notation [114]: the application normally

shows a TV program, represented by the showChannel task, until the user

request the control of the device (the requestControl task).

The user can control the TV through two commands in choice: the first

one allows changing the current selected channel and the second one for

retrieving information on the program scheduling.

6.4 SAMPLE APPLICATION

149

The first functionality is the channel selection (the select channel task),

followed by the actual change of the channel performed by the application

(the save selection task).

The second functionality allows the user to browse the information (select

info), which is provided by the control application (the show info task).

Finally, the user goes back and watches again a TV show (back to tv).

Figure 6.2 Task model for the TV control application

At the AUI level, the interface can be modelled using four different

presentations, which are shown in Figure 6.3. The first one is dedicated to

watching the TV show. Inside this presentation, a description interactor

provides the information on the TV show (which will be obviously refined

in a video). In addition, the presentation contains the navigator for changing

the presentation to the second one, shown in Figure 6.3 (2).

The second presentation allows the user to select the two controls

functions: changing the current channel or retrieving the schedule

information.

The third presentation implements the first control functionality: the

selection, which consists in changing the current TV channel. The user

selects the current channel in a predefined list of values (Figure 6.3 part 3).

The fourth presentation provides the information about the TV show

scheduling (Figure 6.3 part 4).

 It is possible to go back to the first presentation after the completion of

the TV control task, in order to continue watching the show.

CHAPTER 6 A GESTURAL CONCRETE USER INTERFACE IN MARIA 150

1

2

3

4

Figure 6.3 TV application AUI

For providing a gestural refinement for the proposed AUI, we have to

select the concrete implementation for the different abstract interactors.

In the first presentation, the description is obviously refined into a video,

which allows watching the selected TV show. In our design, the navigator

is refined into a simple link that we do not want to be visible in the concrete

UI. Therefore, we set its hidden attribute to true, leaving the full screen to

the video. In order to activate the navigator, we chose to exploit the wave

gesture (see section 4.2.7), which has the effect to change the current

presentation, showing the second one. We selected the wave gesture because

it is more difficult to have false positive in the recognition. Watching the

TV show is the main task and it is important to avoid unwanted

interruptions.

The second presentation contains two different links: the first one takes

the user to the channel selection presentation, while the second one to the

6.4 SAMPLE APPLICATION

151

visualization of the show schedule. We decided to position the two links

horizontally, providing both an image and a textual label. The user can

select one between the two links pointing at the screen. The application

highlights the currently selected link showing a thick blue border around

the link. The link can be activated simply closing the hand. In summary,

we exploited in the dialog model of this presentation the grab gesture (see

section 4.2.2).

As in other applications discussed in this thesis, we exploited the turn

gesture (section 4.2.10) for mitigating the Midas touch problem: the user is

allowed to perform the grab gesture only if she is in front of the screen.

Otherwise, the application does not react to any gesture. Figure 6.4 shows

the interface for the functionality selection.

Figure 6.4 MARIA application: function selection presentation

If the user selects the show info functionality, the application shows the

presentation in Figure 6.5. The TV programs schedules are grouped per day.

The user can change the selected day with a swipe gesture (see section 4.2.8).

A left-to-right swipe selects the next day while a right to left the previous

one. Instead, if the user selects the channel selection functionality, the

channel list is shown using a grid (see Figure 6.6). It is again possible to

select among the different options (channels) pointing one of the elements

in the grid and confirming the selection closing the hand. Each element

changes the current value of the video URL contained in the first

presentation and then changes the currently visualized presentation.

CHAPTER 6 A GESTURAL CONCRETE USER INTERFACE IN MARIA 152

Figure 6.5 MARIA application: channel information presentation

Figure 6.6 MARIA application: channel selection presentation

6.4 SAMPLE APPLICATION

153

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

<bodyGesture name="channelSelectionGesture">
 <sequence iterative="true">
 <shoulderLeft>
 <accepts>
 <invoke_function name="Predicate.axisParallel">
 <parameter name="point1" data_ref="body:shoulderLeft"/>
 <parameter name="point2" data_ref="body:shoulderRight"/>
 <parameter name="axis" data_ref="x"/>
 </invoke_function>
 </accepts>
 <completed>
 <script>
 <change_property interactor_id="trackingState"
 property_name="properties/background/background_color"
 property_value="#CC00CC00"/>
 <change_property interactor_id="feedback"
 property_name="text/string"
 property_value="Tracking user !" />
 </script>
 </completed>
 </shoulderLeft>
 <disabling>
 <disabling iterative="true">
 <handRight iterative="true">
 <completed>
 <change_property interactor_id="channelMain"
 property_name="focusPoint"
 property_value="body:handRight"/>
 </completed>
 </handRight>
 <openHandRight>
 <accepts>
 <invoke_function name="Predicate.handClosed">
 <parameter name="point"
 data_ref="body:openHandRight"/>
 </invoke_function>
 </accepts>
 <completed>
 <script>
 <raise event_name="activation"
 interactor_id="ui:channelMain/focusInteractor"/>
 </script>
 </completed>
 </openHandRight>
 </disabling>
 <shoulderLeft>
 <accepts operator="not">
 <invoke_function name="Predicate.axisParallel">
 <parameter name="point1"
 data_ref="body:shoulderLeft"/>
 <parameter name="point2"
 data_ref="body:shoulderRight"/>
 <parameter name="axis" data_ref="x"/>
 </invoke_function>

CHAPTER 6 A GESTURAL CONCRETE USER INTERFACE IN MARIA 154

55
56
57
58
59
60
61
62
63
64
65
66
67

 </accepts>
 <completed>
 <change_property interactor_id="trackingState"
 property_name="properties/background/background_color"
 property_value="#CCCC0000"/>
 <change_property interactor_id="feedback"
 property_name="text/string"
 property_value="Not tracking... " />
 </completed>
 </shoulderLeft>
 </disabling>
 </sequence>
</bodyGesture>

Table 6.1: Channel selection gesture

We conclude this section describing in detail an XML excerpt from the

sample application definition in order to provide a complete view of the

different elements described in this section. The XML definition is shown in

Table 6.1 and it defines the gesture for selecting a channel in the

presentation shown in Figure 6.6.

The gesture definition is a sequence of two sub-gestures, that can be

repeated an indefinite number of times (line 2). The first one is exploited in

order to detect whether the user is in front of the screen or not through the

turn gesture (line 3). The ground term predicate test (represented by the

accept tag at line 4) is provided by a GestIT library function. Therefore, in

MARIA we can model this functionality through an external function, and

we can invoke it using the invoke function tag at line 4. Such function needs

two body points (namely the shoulder left and right) and the axis for the

comparison (X in our case, lines 5-9).

If this gesture completes successfully (line 11), we change the background

colour of the tracking state grouping (which is visible at the bottom of Figure

6.6) to green (lines 13-15) and then we change the text in the feedback label

to “Tracking user!” (lines 16-18).

The next step is modelling the hand pointing gesture (line 23-45), which

is disabled (line 22) if the user turns and she is no more in front of the screen

(line 46). The latter gesture is symmetric with respect to the one at line 3,

it exploits the same external function for computing the ground term

predicate (line 48). The only different is that this time the invocation result

is logically negated (the operator attribute at line 47). If this gesture is

recognized and the interaction is disabled, the tracking state grouping colour

is reset to red and the feedback label is reset to “Not tracking”, providing

6.4 SAMPLE APPLICATION

155

the user with a feedback on the system state (similar to the one shown at

the bottom of Figure 6.5).

The hand pointing gesture (line 23-45) is an iterative repetition of hand

movements (line 24-30), which is disabled by the hand closure (line 31-44).

For each change of the hand position, the gesture model updates the

focusPoint of the grouping containing all the presentation interactors, which

has id channelMain, using the current right hand position (line 25-29). As

already discussed in the previous sections, this has the effect of providing

feedback for identifying the currently pointed interactor (Figure 6.6).

Finally, the channel is selected closing the right hand. The ground term

accepts only the change from open to close provided that, at line 33, the

model exploits another library function that returns if the hand is closed or

not. If this is the case, it is possible to complete the interaction with the

current presentation.

In order to do this, it is sufficient to raise the activation event of the

currently pointed activator that, as already explained, it is possible simply

exploiting the raise statement. Such statement is specified at line 40: the

activator is maintained by the runtime support in the focusInteractor

property of the channelMain grouping.

Chapter 7

Discussion

In this chapter, we discuss how it is possible to address a set of problems in

the engineering and development of gestural interfaces, how they can be

addressed by declarative approaches and, in particular, the one proposed in

this thesis. The discussion contained in this chapter has been published in

[124].

The first and the second problem are related to the gesture modelling in

general, while the third is related to the compositional approach for gesture

definition. The three problems we address can be summarized as follows:

1. It is difficult to model a gesture only with a single event raised when

its performance is completed. The need for intermediate feedback

forces the developer to redefine the tracking part. From now on, we

refer to this issue as the granularity problem.

2. In [72], the authors state “Multiouch gesture recognition code is split

across many locations in the source”. This problem is even worse if

we consider full-body gesture recognition, which has a higher number

of points to track, in addition to the other features (e.g. joints

orientation, voice etc.). We refer to this issue as the spaghetti code

problem.

3. A compositional approach for gestures has to deal with the fact that

“Multiple gestures may be based on the same initiating sequence of

events” [72]. This means that a support for the gesture composition

has to manage possible ambiguities in the resulting gesture definition.

We refer to this issue as the selection ambiguity problem.

In this chapter, we discuss the advantages of a declarative and

compositional approach for gestural interaction, which are able to solve the

aforementioned problems and we discuss how it is possible to support a

cross-platform gesture definition exploiting the discussed approach.

CHAPTER 7 DISCUSSION 158

7.1 Granularity problem

The granularity problem derives from the modelling of complex gestures

with a single event notification when it completes. Due to the time duration

of the interaction gestures, it is usually needed to provide intermediate

feedback during the performance, with the consequent need to split the

complex gesture in smaller parts.

In order to show the impact of such problem even for simple interactions,

here we focus on two specific hand gestures we exploited in the touchless

recipe browser (see section 5.4.4): the first one is a simple hand grab, which

is used in the first and the second presentation for selecting an object. The

second one is a hand-drag gesture we used for controlling the recipe

preparation video: the user grabs the knob of the video timeline and then it

moves it back and forth before “releasing” it by simply opening the hand.

Table 7.1 shows how it is possible to model such gestures with GestIT.

The grab gesture is composed by an iteration of the hand movement (𝑚𝐻𝑟
∗),

which is disabled by a change on the feature that tracks the opened or closed

status of the hand (𝑐𝐻𝑟 in the expression).

We force the recognition only of a hand closure specifying the 𝑐𝑙𝑜𝑠𝑒𝑑

predicate, which accepts only changes from opened to closed. The grab

gesture is a prefix for the drag one. Indeed, it is defined by a grab gesture

followed in sequence by an iterative movement of the hand, disabled again

by a change on the hand status, this time from opened to closed (modelled

by the 𝑜𝑝𝑒𝑛 predicate).

Grab 𝑚𝐻𝑟
∗ [> 𝑐𝐻𝑟

 [𝑐𝑙𝑜𝑠𝑒𝑑]

Drag 𝐺𝑟𝑎𝑏 ≫ 𝑅𝑒𝑙𝑒𝑎𝑠𝑒
𝑅𝑒𝑙𝑒𝑎𝑠𝑒 = 𝑚𝐻𝑟

∗[> 𝑐𝐻𝑟[𝑜𝑝𝑒𝑛]
Table 7.1 Grab and Drag gestures defined with GestIT

With GestIT it is possible to reuse the definition of the grab gesture for

defining the drag one, as it is shown Table 7.1. However, the possibility to

compose gestures with a set of operators does not guarantee the reusability

of the definition.

Indeed, even in this simple example, the programmer needs a fine-grained

control not only on the gesture itself, but also on it subparts. In the first

two screens of the recipe browser application the grab gesture is exploited

for an object selection, and the user has to be aware of which object she is

currently pointing. Therefore, there is the need to provide intermediate

feedback during the grab gesture execution. This is supported in the

7.2 SPAGHETTI CODE PROBLEM

159

application exploiting the fact that GestIT notifies the completion of the

gesture sub-parts.

With this mechanism, the application receives a notification when each

time 𝑚𝐻𝑟
 is completed, highlighting the pointed object. The handler

associated to the completion of the entire gesture performs the recipe

selection and the presentation change.

It is worth pointing out that our meta-model does not make any

assumption on the distance in time between two notifications for an iterative

gesture. Since all device notifications are external with respect to the Petri

Net that models the gesture, the device controls the event notification rate.

If needed, the designer may specify some timing constraint using the

predicates associated to the ground terms.

While performing the drag gesture, there is no need to attach a handler

to the hand movement in the grab part, but it is sufficient to specify that

the position in the video stream is changing after the grab completion, and

to update it during the movement of the hand in the release part of the

gesture.

It should be clear now how the declarative and compositional pattern

offered by GestIT solves the granularity problem: the application developer

is not bound to receiving a single notification when the whole gesture is

completed. If needed, she is able to attach the behaviour also to the gesture

sub-parts, handling them at the desired level of granularity.

In our approach, the finest granularity is represented by ground terms-

They cannot be further decomposed into smaller components since they

represent the features tracked by the recognition device.

7.2 Spaghetti code problem

The previous example may be used also for showing how it is possible to

solve the problem of having the gesture recognition code spread in many

places (spaghetti code problem). Indeed, the declarative and compositional

approach to the gesture definition allow the developer to separate the

temporal sequencing aspect from the UI behaviour while defining a gesture.

This allows maintaining the gesture recognition code isolated in a single

place.

In the example, the recognition code corresponds to the declaration of the

gesture expression. The handlers define the UI behaviour, but they are not

CHAPTER 7 DISCUSSION 160

part of the recognition code, since they are simply attached to the run-time

notification of the gesture completion (or its sub-parts).

 In this way it is not only possible to isolate the recognition code into a

single application, but it is also possible to provide a library of complex

gesture definitions, which may be reused in different scenarios, maintaining

the possibility to attach the UI behaviour at the desired level of granularity.

In addition, the definition of the gesture is separated from the UI graphic

control: it is not shipped with a particular image viewer or canvas, but it

can be exploited in different UI configurations.

In this particular example, it would be possible to model the entire

interaction instantiating a single complex gesture. Indeed, the Grab and the

Release gestures differ only for the predicate on the change of the hand

status feature. Therefore, it is possible to define with GestIT a complex

gesture that is parametric with respect to this predicate.

Table 7.2 shows a different definition of the gestures in Table 7.1, which

demonstrates the level of flexibility in the factorization of the gesture

recognition code in the proposed framework.

Hand Status 𝐻𝑎𝑛𝑑𝑆𝑡𝑎𝑡𝑢𝑠[𝑝] = 𝑚𝐻𝑟
∗ [> 𝑐𝐻𝑟

 [𝑝]

Grab 𝐻𝑎𝑛𝑑𝑆𝑡𝑎𝑡𝑢𝑠[𝑐𝑙𝑜𝑠𝑒𝑑]

Drag 𝐻𝑎𝑛𝑑𝑆𝑡𝑎𝑡𝑢𝑠[𝑐𝑙𝑜𝑠𝑒𝑑]
 ≫ 𝐻𝑎𝑛𝑑𝑆𝑡𝑎𝑡𝑢𝑠[𝑜𝑝𝑒𝑛]

Table 7.2: Grab and Drag gestures e parametric definition

7.3 Selection Ambiguity Problem

In this section, we show how the problem of possible ambiguities that may

arise when composing gestures is handled in GestIT. We exemplify the

problem through the simple 3D viewer application we introduced in section

5.4.3.

The interaction with the 3D model is the following: the user can change

the camera position performing a “grabbing” the model gesture with a single

hand and moving it, while it is possible to rotate the model executing the

same gesture with both hands. The complete definition is shown Table 7.3.

7.3 SELECTION AMBIGUITY PROBLEM

161

𝑀𝑜𝑣𝑒 [] 𝑅𝑜𝑡𝑎𝑡𝑒
𝑀𝑜𝑣𝑒 = 𝑐𝐻𝑟[𝑐𝑙𝑜𝑠𝑒𝑑] ≫ (𝑚𝐻𝑟

∗ [> 𝑐𝐻𝑟
 [𝑜𝑝𝑒𝑛])

𝑅𝑜𝑡𝑎𝑡𝑒 = (𝑐𝐻𝑟[𝑐𝑙𝑜𝑠𝑒𝑑]||𝑐𝐻𝑙[𝑐𝑙𝑜𝑠𝑒𝑑]) ≫
 ((𝑚𝐻𝑟[𝑑]||𝑚𝐻𝑙[𝑑])∗[>
 (𝑐𝐻𝑟[𝑜𝑝𝑒𝑛]||𝑐𝐻𝑙[𝑐𝑙𝑜𝑠𝑒𝑑]))
Table 7.3 Gesture definition for the 3D viewer application

The Move and the Rotate gestures are composed through a choice operator

but, as it is possible to see in the definition, both gestures start with

𝑐𝐻𝑟[𝑐𝑙𝑜𝑠𝑒𝑑]. Therefore, it is not possible to perform the selection

immediately after the recognition of the first ground term, but the

recognition engine needs at least one “look ahead” term, and the selection

has to be postponed to the next event raised from the device. However, the

two instances of 𝑐𝐻𝑟[𝑐𝑙𝑜𝑠𝑒𝑑] may have different handlers attached to the

completion event, which should be executed in the meantime.

In general it is possible that, when composing a set of different gestures

through the choice operator, two or more gestures have a common prefix,

which does not allow an immediate choice among them. We identified three

possible ways for addressing this problem. The different solutions have an

impact on the recognition behaviour while traversing the prefix.

The first solution is the one proposed in [72], where the authors define an

algorithm for extracting the prefix at design time. After having identified it,

it is possible to apply a factorization process to the gesture definition

expression, removing the ambiguity. This solution has the advantage that,

since there is no ambiguity anymore, the recognition engine is always able

perform the selection among the gestures immediately. The main drawback

is that it breaks the compositional approach: after the factorization the two

gesture definitions are merged and it is difficult for the designer to clearly

identify them in the resulting expression. This leads to a lack of reusability

of the resulting definition.

The second possible solution is again to calculate the common prefix at

design time, without changing the gesture definition. In this case, the

recognition support is provided with both the gesture definition and the

identified prefix. During the selection phase at runtime, the support buffers

the raw device events until only one among the possible gestures can be

selected according to the pre-calculated prefix, and then flushes the buffer

considering only the selected gesture.

This approach has the advantage of maintaining the compositional

approach, while selecting the exact match for the gestures in choice: the

CHAPTER 7 DISCUSSION 162

runtime support suspends the selection until it receives the minimum

number of events for identifying the correct gesture to choose. Once the

gesture has been selected, the application receives the notification of the

buffered events.

The latter is the main drawback of this approach: the buffering causes a

delay on the recognition that is reflected on the possibility to provide

intermediate feedback while performing the common prefix gesture. Another

drawback is that the common prefix has to be calculated at design time,

which may need an exponential procedure for enumerating all the possible

recognizable event sequences, which are needed for extracting the common

prefix. For instance, an order independence expression with n operands in

GestIT recognizes n! event sequences, since we should consider that the

operands can be performed in any order.

The third solution is based on a best effort approach, and is the one

implemented by GestIT. When two or more expressions are connected with

a choice operand, the recognition support executes them as if they were in

parallel. If the user correctly performed one of the gestures in choice, when

the parallel recognition passes the common prefix only one among the

operands can further continue in the recognition process.

At this point the choice is performed and only one gesture is successfully

recognized, and the support stops trying to recognize the others. This

approach solves the buffering delay problem of the previous solution, since

the effects of the gestures contained into the common prefix is immediately

visible for the user.

However, in this case the recognition support notified the recognition of

the gestures included in the common prefix of all the operands involved in

the choice. Consequently, the UI showed the effects associated to all of them,

while only the ones related to the selected gesture should be visible. In order

to have a correct behaviour, we need a mechanism to compensate the

changes made by the gestures that were not selected by the recognition

support, which means to revert the effects they had on the UI. Such

mechanism can be supported through another notification, signalling that

the recognition of a gesture (ground term or complex) has been interrupted.

In this way, it is possible for the developer to specify how to compensate

the undesired changes. This is the main drawback for this solution: the

developer is responsible of handling the compensating actions.

In order to better explain how this solution works, we present a small

example of compensation. We consider the gesture model in Table 7.3, which

7.3 SELECTION AMBIGUITY PROBLEM

163

allows the user to move and to rotate a 3D model. The UI provides

intermediate feedback during the gesture execution in the following way: a

four-heads arrow while the camera position is changing, and a circular arrow

while the user is rotating the model.

We suppose in our example that the user performs the grab gesture with

both hands and we describe the behaviour of the recognition support during

the recognition of the common prefix (in this case 𝑐𝐻𝑟[𝑐𝑙𝑜𝑠𝑒𝑑]) and after

the gesture selection has been performed.

Figure 7.1 Common prefix handling for the choice operator (1)

The common prefix handling is depicted in Figure 7.1: the upper part

represents the stream of updates that comes from the device, the black arrow

highlights the one that is currently in progress. The central part shows the

gesture expression represented as a tree, with the ground terms that can be

recognized immediately highlighted in black (we do not show the predicates

associated to the ground terms, since for this example we suppose that they

are always verified).

Some tree nodes are associated to rectangular and circular badges, which

represent respectively the completion and the compensation behaviour. Such

handlers are external with respect to the gesture description and are defined

by the developer. The lower part shows the effects on the UI of the gesture

CHAPTER 7 DISCUSSION 164

recognition. The left part depicts the UI before the recognition, the middle

part shows the intermediate effects, while the right one shows the resulting

state after the recognition.

During the recognition of the common prefix, the support behaves as

follows: after receiving the update coming from the device, the support

executes the two instances of 𝑐𝐻𝑟, highlighted by the black arrows in Figure

7.1, central part. Since the leftmost one has an associated completion

handler (the A rectangular badge), the recognition support executes it.

Therefore the UI changes its state and an arrow is shown above the 3D

model (Figure 7.1, lower part).

After that, the expression state changes (two ground terms have been

recognized) and we have the situation depicted in Figure 7.2: the ground

terms with a grey background have been completed, therefore the ground

terms that may be recognized at this step are 𝑚𝐻𝑟 or 𝑐𝐻𝑙. Since the next

device update we are considering is 𝑐𝐻𝑙 (Figure 7.2, upper part), the

recognition support is now able to perform the selection of the right-hand

part of the expression tree, while the left-hand part cannot be further

executed.

Figure 7.2 Common prefix handling for the choice operator (2)

7.4 CROSS-PLATFORM GESTURE MODELLING

165

Therefore, the latter sub-tree needs compensation, which consists of

invoking the handlers associated to all the expressions previously completed

(𝑐𝐻𝑟). In our example, this corresponds to the execution of the handler

identified with the B circular badge, which hides the four-heads arrow. After

that, it is possible to continue with recognition of the gesture: the 𝑐𝐻𝑙 ground

term in the right-hand part of the expression is completed and also the

parallel expression highlighted with a black arrow in Figure 7.2.

Consequently, the recognition support executes the completion handler

represented with the C rectangular badge, which shows the circular arrow

for providing the intermediate feedback during the model rotation, and the

gesture recognition continues taking into account only the Rotate gesture.

The effects of the handlers on the UI for this step are summarized by the

lower part of Figure 7.2: before the recognition of the ground term, it was

visible on the UI the four-head arrow, which has been hidden by the B

compensation handler. The C completion handler instead showed the

circular arrow that determines the state of the UI after the ground term

recognition.

From a theoretical point of view, the proposed solution considers the set

of gestures in choice as instances of long-running transactions [47] but in

this case the components involved are not distributed. In case of failure of

such kind of transactions, it is not possible in general to restore the initial

state, as happens with the effects on the UI of the gestures that are not

selected by the choice. Instead, a compensation process is provided, which

handles the return to a consistent state. There is a large literature on how

to manage long-running transactions, in [34] the authors provide a good

survey on this topic.

7.4 Cross-platform gesture modelling

In this section, we discuss an advantage provided by the compositional and

declarative approach for modelling gestural interaction. Since such definition

is based on a set of building blocks (ground terms), connected through a set

of well-defined composition operators, it is possible to create interfaces that

share the same gesture definition across different recognition platforms

finding a meaningful translation of the source platform ground terms

towards the target one.

This opens the possibility to reuse the gesture definition not only for

different applications that exploit the same recognition device but also, if

CHAPTER 7 DISCUSSION 166

the interaction provided still makes sense, with different devices that have

different recognition capabilities.

In order to explain how such reuse is possible, we report here on a first

experiment we conducted with the two platforms supported by GestIT:

multitouch and full-body.

We started from the simple drawing canvas application for iPhone we

described in section 5.4.1, which supported the pan gesture for drawing and

the pinch gesture for zooming. Such gestures were connected through the

choice operator (see Table 7.4).

𝑃𝑎𝑛 []𝑃𝑖𝑛𝑐ℎ
𝑃𝑎𝑛 = 𝑆𝑡𝑎𝑟𝑡1 ≫ 𝑀𝑜𝑣𝑒1

∗ [> 𝐸𝑛𝑑1
𝑃𝑖𝑛𝑐ℎ = (𝑆𝑡𝑎𝑟𝑡1|=| 𝑆𝑡𝑎𝑟𝑡2) ≫ (𝑀𝑜𝑣𝑒1

∗ | |𝑀𝑜𝑣𝑒2
∗) [>

 (𝐸𝑛𝑑1|=| 𝐸𝑛𝑑2)

Table 7.4 Simple drawing canvas gesture modelling

In order to create a Kinect version it is not possible to reuse directly the

gesture definition, because concepts as pan, pinch, touch etc. do not have

any meaning in such device. However, having a precise definition or the

gestures allows us also to define precisely new concepts. In our case, what is

missing is a precise definition of what a touch start, a touch move and a

touch end are. If we add a precise definition of these concepts, all the

gestures that have been constructed starting from such building blocks will

be defined consequently.

One simple idea is to associate a point that represents a finger position on

the iPhone to the position of one hand with the Kinect (therefore, the

maximum number of touch points is two). In addition, we have to define a

criterion for distinguish when the touch starts and when the touch ends. A

simple way we discussed many times in this thesis, is to rely on the depth

value of the position of a given hand: if it is under a certain threshold, we

can consider that the user is “touching” our virtual screen, otherwise we do

not consider the current hand position as a touch.

More precisely, we need to define the multitouch basic gestures according

to the 3D position of the left and right hand, indicated respectively as 𝑙 =

(𝑥𝑙, 𝑦𝑙 , 𝑧𝑙) and 𝑟 = (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟). Moreover, we have to define a plane, which

represents the depth barrier for the touch emulation, as 𝑇𝑝 = (𝑥, 𝑦, 𝑘) where

𝑘 is a constant. The complete definition can be found in Table 7.5.

It is worth pointing out that, even if we used such definition for a quite

“extreme” change of platform, the redefinition of the ground term allows us

7.4 CROSS-PLATFORM GESTURE MODELLING

167

to support with the Kinect platform all the multitouch gestures that involve

no more than two fingers, which are the large majority of those used in such

kind of applications.

Obviously, from the interaction design point of view it may be a bad idea

to port multitouch gestures to the full body gesture recognition support

directly, and the example should be considered only as a proof of concept.

However, such kind of approach may be used for those devices that are

exploited for recognizing gestures in similar settings.

For instance, it can be useful for designing applications that recognize the

same full body gestures with a remote or a depth camera-based optical

device. In this case, having such kind of homomorphism may reduce the

complexity in supporting different devices.

M ultitouch Ground Term Interaction

𝑆𝑡𝑎𝑟𝑡1 = 𝑟[𝑧𝑟(𝑡 − 1) > 𝑘 ∧ 𝑧𝑟(𝑡) ≤ 𝑘]
𝑆𝑡𝑎𝑟𝑡2 = 𝑙[𝑧𝑙(𝑡 − 1) > 𝑘 ∧ 𝑧𝑙(𝑡) ≤ 𝑘]

𝑀𝑜𝑣𝑒1 = 𝑟[𝑧𝑟(𝑡 − 1) ≤ 𝑘 ∧ 𝑧𝑟(𝑡) ≤ 𝑘]
𝑀𝑜𝑣𝑒2 = 𝑙[𝑧𝑙(𝑡 − 1) ≤ 𝑘 ∧ 𝑧𝑙(𝑡) ≤ 𝑘]

𝐸𝑛𝑑1 = 𝑟[𝑧𝑟(𝑡 − 1) ≤ 𝑘 ∧ 𝑧𝑟(𝑡) > 𝑘]
𝐸𝑛𝑑2 = 𝑙[𝑧𝑙(𝑡 − 1) ≤ 𝑘 ∧ 𝑧𝑙(𝑡) > 𝑘]

Table 7.5 Mapping multitouch ground terms to the full-body platform

Chapter 8

Evaluation

The definition of methods and techniques for the evaluating a new user

interface description language or tool is an open problem for the HCI

community [105]. An evaluation with real users (gesture interface developers

in our case) requires time for setting-up a community around the new tool,

waiting for the development of real-world applications with the proposed

solution. Therefore, in this thesis we opted for an inspection-based approach,

similar to a heuristic evaluation [100].

The inspection we report in this chapter follows three list of criteria:

1. A review of the meta-model requirements that we identified from

the state of the art analysis, detailed in section 8.1.

2. The five themes identified by Myers et al. [97] for assessing a

specification tool: the tool target, the threshold and ceiling, the

path of least resistance, predictability and the adaptation to

moving targets. In section 8.2, we define each one of these aspects

and we inspect our modelling language accordingly.

3. The Cognitive Dimensions Framework by Green and Petre [51],

which sets a small vocabulary for cognitive aspects of a language

structure. In section 8.3, we provide the definition of the different

dimensions and we discuss the weakness and the strength of our

approach.

Finally, we provide some data on the recognition library performance,

comparing a version of the 3D viewer application created tracking gestures

with a simple Finite State Machine and the version we created with GestIT.

CHAPTER 8 EVALUATION 170

8.1 Requirements review

In this section, we review the requirements for definition of the gesture meta-

model, which have been identified through an analysis of the state of the

art in section 2.3.

8.1.1 Temporal evolution

The meta-model must describe the gesture temporal

evolution. The developers should be able to define the

behaviour of the user interface according to this temporal

evolution, without the need of tracking explicitly the

different stages of the gesture performance outside the

model definition.

The meta-model proposed in this thesis describes the temporal evolution of

different gestures through a compositional approach. Gestures are modelled

starting from a set of ground terms, which are connected together through

a set of formally defined composition operators.

Each one of the different terms that compose the gesture (either simple

or complex) provides an event for its recognition. The developer can attach

the definition of the UI behaviour to this event, separating it from the

gesture definition.

In addition, each term provides an event for notifying an error during its

recognition, in order to allow the developer to recover the UI changes due

to a partial recognition of the considered gesture.

8.1.2 Granularity

Provided that a gesture may take seconds to complete, it

must be possible for developers to define user interface

reactions to partially completed gestures, not only to their

complete recognition.

Each one of the terms that compose a gesture definition compliant with the

meta-model proposed in this thesis provides a notification for its successful

completion. Therefore, the developer can attach handlers not only to the

completion of the whole gesture, but also to all its sub parts. Such handlers

define the UI behaviour with different levels of granularity, allowing to

provide intermediate feedback during the gesture performance.

8.1.5 PARALLEL INTERACTION

171

The maximum level of granularity is provided by the ground terms, which

correspond to all the features that may be tracked by the gesture recognition

device (e.g. the position of the touches for multitouch screens, the joint

position for depth cameras etc.).

8.1.3 Separation of concerns

The definition of gestures and the user interface

behaviour must be separated, in order to allow the reuse of

the same gesture model in different applications.

The definition of a gesture model does not contain any information on the

associated behaviour. That aspect of the UI can be defined specifying a set

of event handlers for the completion of the whole gesture or its subparts.

Such notification mechanism allows reusing the definition of the same

gesture in different applications with different effects.

8.1.4 Multiple recognition devices

The meta-model must support different recognition

devices, abstracting from a particular recognition

technology.

The proposed meta-model is abstract with respect to a particular recognition

device. In this thesis, we discussed how it is possible to support multitouch

and full-body interaction. In the same way, it is possible to add further

recognition platforms: through the definition of the set of ground terms that

are specific to the new platform.

The proposed set of composition operators has been defined independently

from any recognition technology.

8.1.5 Parallel interaction

The meta-model must handle the recognition of different

gestures at the same time, in order to allow parallel

interactions with the same application.

We included a parallel composition operator in our meta-model. Such

operator allows the simultaneous recognition of the different connected

terms. The parallel operator support parallel interactions for both single and

multiple users.

CHAPTER 8 EVALUATION 172

8.1.6 Equivalent descriptions

The same gesture can be performed in different ways

(e.g. a pinch may be performed either with one hand or

with two hands). The meta-model must support the

definition of equivalent gestures.

It is possible to specify two equivalent gestures connecting them with the

choice operator, which guarantees the recognition of exactly one among the

connected terms. In this way, it is possible to provide different gestures with

an equivalent effect.

8.1.7 Selection ambiguity

The recognition support must provide means for

identifying or managing the selection between two

different gestures that shares the same initial sequence.

GestIT provides a best-effort solution for the selection ambiguity problem:

when two gestures are connected in choice and they share a common prefix,

the library supports the parallel recognition of both gestures. When such

prefix has been entirely recognized, only one between the two gestures can

continue its recognition. The other one raises an event related to its

erroneous recognition, which can be exploited by the developer for

compensating the previous changes to the UI. In this way, the support allows

the developer to identify such situation. For further details, see section 7.3.

8.2 Five themes in evaluating tools

The work by Myers et al [97] contains a review of different tools that have

been used in both research and industrial settings for creating user

interfaces. The authors identify a set of themes that help in identifying

strength and weaknesses and in explaining the reasons behind the success

or the failure of different approaches.

In this section, we report the definition of the five themes and we inspect

GestIT accordingly.

8.2.2 THRESHOLD AND CEILING

173

8.2.1 Parts of the user interface that are
addressed

In [97], Myers et al. stated that the successful tools in the development of

UIs had a precise target, and they limited their scope only to the task that

was needed.

Our modelling approach is focused on the description of gestures, limiting

to their temporal evolution. We do not aim to redefine again the other parts

of the UI, such as the layout or the behaviour. Instead, we provide a different

approach for describing an aspect of the UI definition that is currently

spread among different parts of the code, creating what we call the spaghetti

code problem (see section 7.2).

In addition, the proposed modelling technique allows reusing a gesture

definition in different applications, since it is possible to attach the

behaviour not only to the whole gesture, but also to its sub-parts (the

granularity problem see section 7.1).

The proposed solution, as demonstrated by the supporting library, can be

employed with different UI toolkits and do not enforce the developers to

select a specific technology, therefore it does not interfere with others aspects

of the development.

8.2.2 Threshold and ceiling

According to [97], the threshold is “how difficult is to learn how to use the

system”, while the ceiling is “how much can be done using the system”.

In the ideal tool, the threshold is low, while the ceiling is high. This means

that the developer or the designer are able to use the tool with little or no

training at all and the tool is able to cover appropriately every type of UI

that should be created.

In order to evaluate the threshold we should have data on the time needed

for learning how to model gestures with GestIT, starting from scratch.

Unfortunately, at the time of writing we have no sufficient data for drawing

any conclusion. However, we can point out here that the model is based on

two different concepts that are familiar for UI developers.

The first are the device related events (e.g. the one related to the touches

or the joint positions) that should be understandable for people who design

gestural interaction, since they are commonly used in all toolkits.

The second concept is the description of the evolution of the gesture

through the time with a set of temporal operators. Such operators are well

CHAPTER 8 EVALUATION 174

known in other contexts and languages, for instance such the CTT [114] for

task modelling or LOTOS [18] for process modelling. Therefore, people who

already know the semantics of the different temporal operators may apply

such knowledge in a different context. Otherwise, the learning path should

not take longer with respect to the aforementioned languages and, since they

are widely applied in their respectively areas, it should be reasonable to

claim that the temporal operators will not constitute a problem for adopting

GestIT.

With respect to the ceiling aspect, we can claim that the proposed

modelling technique covers adequately the target interaction. This is

supported by the different examples of models that we provided in Chapter

4, which cover a broad set of gestures. In addition, we demonstrated that it

is possible to apply the model to different existing gesture recognition

platforms and that the approach can be easily extended for new ones.

8.2.3 Path of Least Resistance

This path of least resistance aspect is about how “tools influence the kinds

of user interfaces that can be created. Successful tools use this for their

advantage, leading implementers towards doing the right things, and away

from doing the wrong things” [97].

We are confident that our modelling technique is able to “force” the

developers to:

1. Create gesture definitions separated from other UI aspects, such as

the layout and the behaviour (see section 7.2)

2. Provide means for inspecting the gesture definition and to define

reactions at the desired level of granularity (see section 7.1).

Such advantages are provided by the way the developer creates the

gesture definition in GestIT, and they require the only effort of adopting

the model, without assuming any additional technique or pattern.

8.2.4 Predictability

The predictability aspect is about the fact that “tools which use automatic

techniques that are sometimes unpredictable have been poorly received by

programmers”.

Although we do provide an automatic support for recognizing gestures

modelled through the proposed notation, we can claim that such aspect do

not represent an issue for GestIT. Indeed, we provided a precise formal

8.2.5 MOVING TARGETS

175

definition of both the terms and the composition operators that are involved

in a gesture definition. This helps the developers in understanding and

predicting the runtime behaviour of the defined model.

However, we are aware that not all developers may be interested in

studying the formal definition of the meta-model. Therefore, it may be useful

to provide an high level (but obviously imprecise) description of the

compositional operators and support the development with an interactive

simulator, that may help the developer in finding out himself the recognizer

behaviour against a particular event sequence. Such approach has been

proved useful for the same set of composition operators in task modelling

[114].

8.2.5 Moving Targets

The moving targets aspect is related the fact that, in order to provide a

useful support, designer must have a different understating of the target

tasks. However, since the development of UI evolves with at a high speed,

once the knowledge about how to support a given task is mature, it is

possible that such support is no more needed, since the task has become

obsolete.

In our case, the moving targets problems does not apply to the gestural

interaction itself, since it exists from at least 30 years now, and we can be

positive that it will last for a long time. However, it may be related to the

change of the supporting technology for recognizing gestures. Indeed, this

field proposes an increasing number of recognition devices, and it may

happen that a new one device overtakes the capabilities of the existing ones.

Therefore, it may be reasonable to shift the development towards a new

device even if the supporting tools for the old one are more mature and

stable.

We tried to create a model that can be tailored for supporting new devices,

providing a definition of ground term that can already cover devices that

employ different technologies for tracking gestures. We considered this

aspect from the very beginning in order to create a modelling technique able

to last more than the recognition devices.

CHAPTER 8 EVALUATION 176

8.3 Cognitive Dimensions Framework

The cognitive dimensions [51] define set of cognitive-related aspects that

capture how the structure of a notation influence their usability. The aspect

are called “dimensions” since they are supposed to be orthogonal

characteristics of a given notation, which may need a trade-off against each

other.

Such kind of evaluation enables scientists to broaden the scope while

evaluating a given notation, without limiting to the notation expressiveness.

The framework is applied usually to visual notations but, as stated by the

authors, may be used also for non-interactive notations.

The methodology we followed is similar to a heuristic evaluation [100]: we

inspected our notation considering each one of the cognitive dimensions and

we report on the results of such inspection. In order to guide our inspection,

we used the questionnaire in [13], which has been created by the cognitive

dimensions framework authors.

8.3.1 Abstraction gradient

What are the minimum and maximum levels of

abstraction? Can fragments be encapsulated?

The minimum level of abstraction depends on the feature that can be

tracked by a specific device. Obviously, this is a lower bound for the

notation, since it is no possible to split in sub-parts such features.

We do not impose any upper bound to complex gestures, they can ideally

consist of any combination of complex and simple gestures. However, the

fact that we are modelling interactive applications sets an upper bound for

the model complexity: the feedback has to be delivered in a timely manner

during the gesture performance, otherwise the abstractions are useless.

8.3.2 Closeness of mapping

What ‘programming games’ need to be learned?

This aspect is related to the distance between the mental model that a

developer has about a specific notation and the construct that such notation

provides.

The elements of our model corresponds exactly to the notation we provided.

The different phases of a gesture performance can be mapped to those

8.3.5 ERROR PRONENESS

177

different terms that can be connected together, according to the gesture

analysis. We provide different examples of such kind of mapping while we

describe how we modelled different gestures for multitouch and the full-body

interaction in Chapter 4: we provide a high level description of the different

phases and then we map them to different terms, composed through

temporal operators.

8.3.3 Consistency

When some of the language has been learnt, how much

of the rest can be inferred?

The notation exploits similar programming language constructs for similar

elements in the model, which would help the developers in inferring i.e. how

it is possible to connect complex gestures starting from the knowledge they

acquire connecting ground terms.

Understanding such compositional concept through ground terms is easier,

since the space of all possible combinations that can be recognized remains

small. In order to stress such similarity, simple and complex gestures share

the same base class. Consequently, they can be connected through temporal

operators in the same way even at the programming level.

8.3.4 Diffuseness

How many symbols or graphic entities are required to

express a meaning?

The notation is reasonably brief and it contains an element for each of the

different ground terms that need to be composed and for all the temporal

relations that need to be expressed.

The predicates take more space to define, since they may include different

accesses to the gesture state and may contain a complex logic.

8.3.5 Error proneness

Does the design of the notation induce ‘careless

mistakes’?

CHAPTER 8 EVALUATION 178

The most common mistake so far is forgetting to set the iterative flag to a

term. This obviously causes a strange UI behavior, and sometimes it results

difficult to find exactly where this slip happened

In addition, the object-oriented notation has the problem of connecting

the objects through variable names that may be in a high number.

Therefore, it is possible that the developer erroneously connects two or more

terms that should not be connected.

8.3.6 Hard mental operations

Are there places where the user needs to resort to

fingers or pencilled annotation to keep track of what’s

happening?

Most mental effort is required for identifying the different parts of the

gesture performance and to generalize them in a way that is appropriate for

different “styles” that may be encountered with different people. Therefore,

it may be useful to sketch on paper or on different media some graphs or

schemas for identifying such different parts.

In addition, it may be difficult to work out all the different combinations

that are possible when two gestures are connected in parallel. This may have

consequences if the UI resources they access enter in conflict.

8.3.7 Hidden dependencies

Is every dependency overtly indicated in both

directions? Is the indication perceptual or only symbolic?

In our notation, it is possible to have hidden dependencies among the

predicates associated to the different ground terms. Indeed, some of them

may depend on each other (e.g. one is the logical negation of the other) but,

since the different predicates are referenced by name, such kind of

relationships are not immediately visible. The same holds for the behavior

definition, but is less frequent to reuse exactly the same definition.

8.3.8 Premature commitment

Do programmers have to make decisions before they

have the information they need?

8.3.11 SECONDARY NOTATION

179

The programmers can follow different paths for reaching the same model.

They can start by defining all the terms that need to be composed and then

define the associated predicates, or they can choose to define completely

each one of the terms before composing them. In addition, they may also

choose to define the effects of the different commands in advance and to

provide gestures for executing them, or they can first select the gestures and

then define the effects.

This means that the developer may take decisions about the interaction

when he has all the information needed.

8.3.9 Progressive evaluation

Can a partially complete program be executed to obtain

feedback on ‘How am I doing?’

The compositional structure enables you to create the whole gesture

definition iteratively, trying the different parts in isolation, or composed

with a subset of terms. This allows achieving a good gesture model even by

trial and error.

8.3.10 Role expressiveness

Can the reader see how each component of a program

relates to the whole?

The different modelling constructs are mapped on different syntactical

elements in both the XML and the code notation. However, the tree

structure of the XML notation allows the developer to visualize the relations

between the different gestures and sub-gestures in the whole expression.

Understanding such relationship through the code notation is more

difficult, since the developer has more freedom on the declaration structure

and may interleave the gesture specification logic with code related to other

aspects of the UI (e.g. graphics controls).

8.3.11 Secondary notation

Can programmers use layout, colour, other cues to

convey extra meaning, above and beyond the ‘official’

semantics of the language?

CHAPTER 8 EVALUATION 180

Whit the current notation, it is not possible to provide hints to the developer

for identifying different parts of the model other than writing some

comments on the XML or object-oriented code.

This is an aspect that can be considered in future work in an appropriate

authoring environment, since it would be useful to immediately identify

expressions that belong to two different complex gestures that are composed

in order to define the whole gestural interaction. For instance, if we consider

the 3D viewer application in section 5.4.3, there should be some way for

differentiating the sub-expression belonging to the Grab from those

belonging to the Roll gesture.

8.3.12 Viscosity

How much effort is required to perform a single change?

Making a change is easy once the expression corresponding to the phase of

the gesture performance has been identified. It may be difficult to find the

phase if predicates or the attached methods for defining the behavior does

not have meaningful names. Eventually, for really long expressions, it is

possible to use comments for identifying the expression parts.

There are no changes that are more difficult than others, all of them

require about the same effort.

8.3.13 Visibility

Is every part of the code simultaneously visible

(assuming a large enough display), or it is at least possible

to juxtapose any two parts side-by-side at will? If the code

is dispersed, is it at least possible to know in what order

to read it?

The various part of the notation can be identified easily, since only the

different terms of the expression can be instantiated as objects, while the

connection between the different terms are possible through methods. In the

XML definition, the tag names and their structure allow to distinguish the

different parts of the defined gestures.

If the gesture is defined through the XML notation, there can be some

difficulties in identifying the predicates that can be optionally attached to

the ground terms and the methods that define the behavior, since they are

defined in a different file.

8.4 PERFORMANCE ANALYSIS

181

There is space for improvement, and in a possible authoring tool it should

be possible to navigate from the XML definition to the code behind.

It is possible to see the different parts if they are defined in the same UI

(e.g. the same code file). Otherwise, the user should work of two different

files before the combination. The same holds for the comparison.

8.4 Performance analysis

In this section, we discuss the results of a preliminary analysis of the GestIT

library performance. Even if the implementation described in this thesis is

a proof of concept, we show here that the overhead introduced by the library

does not invalidate the entire application performance.

The discussed analysis is not complete, but it shows that the required

resources are reasonable for the advantages provided by the library. A

throughout discussion of how to create a high-performance version of the

library is beyond the scope of this thesis.

We analyze the performance of the 3D car viewer application, discussed

in section 5.4.3. We recall that the application is able to show a 3D model

of a car, which can be moved through a grab gesture and/or rotated through

a roll gesture. The application tracks the user only if she stands in front of

the screen (with the shoulders contained in a plane roughly parallel to the

one of the sensor).

Using the GestIT notation, the interaction can be modelled with the

equation 8.1.

𝐹𝑟𝑜𝑛𝑡 ≫ (𝑚𝐻𝑟

∗ | |𝑚𝐻𝑙
∗| | (𝐺𝑟𝑎𝑏 [] 𝑅𝑜𝑙𝑙)))∗[> 𝑁𝑜𝑡𝐹𝑟𝑜𝑛𝑡

𝐹𝑟𝑜𝑛𝑡 = (𝑆𝑙[𝑝]| | | 𝑆𝑟 [𝑝])
𝑁𝑜𝑡𝐹𝑟𝑜𝑛𝑡 = (𝑆𝑙[! 𝑝]| | | 𝑆𝑟 [! 𝑝])
𝐺𝑟𝑎𝑏 = 𝑜𝐻𝑟[𝑐] ≫ (𝑚𝐻𝑟

∗ [> 𝑜𝐻𝑟
 [𝑜])

𝑅𝑜𝑙𝑙 = (𝑜𝐻𝑟[𝑐]||𝑜𝐻𝑙[𝑐]) ≫
 ((𝑚𝐻𝑟[𝑑]||𝑚𝐻𝑙[𝑑])∗[> (𝑜𝐻𝑟[𝑜]||𝑜𝐻𝑙[𝑜]))

(8.1)

In order to estimate the overhead introduced by the library, we created a

version of the 3D viewer without using the GestIT library, which recognizes

the gestures through a simple Finite State Machine (FSM). This application

provides the same interaction capabilities with respect to the GestIT

version, thus it can be considered as a baseline implementation for the 3D

viewer.

CHAPTER 8 EVALUATION 182

The FSM defined in the baseline version of the 3D viewer application is

shown in Figure 8.1. The recognition starts with the not front state, where

the application the position and the rotation of the 3D model cannot be

changed. When the users is in front of the screen, the current state changes

to front (firing the parallel transition). The application is now ready for

accepting the input through the grab and the roll gestures. In this state, the

UI shows a green label with the text “Tracking” for informing the user that

the application is ready for tracking gestures.

From this state, the FSM is able to recognize the grab gesture firing a

transition for each hand. If the user closed the right hand (close DX), the

state is updated to DX closed, and the interface shows a four arrow icon,

indicating that the 3D model can be moved iteratively. The firing of the

move DX transition updates the model position. The recognition of the grab

gesture for the left hand is symmetric (close SX – SX closed – move SX).

Figure 8.1 Finite State Machine for the 3D viewer interaction

The roll gesture can be recognized closing right or the left hand when the

current state is respectively SX closed or DX closed. The associated

transitions close DX and close SX changes the current state to both closed,

where the model can be rotated and the application shows a circular arrow

for suggesting that the rotation angle can be updated moving both hands

(the move transition). From all the states included in the FSM, if the user

is no more in front of the screen, the gesture recognition is interrupted and

the current state is set to not front.

In the following sections, we report the resources (CPU and memory)

consumed by both versions of the application. In order to remove the input

variability in the comparison, we recorded the interaction sequence with

Kinect Studio [90]. After that, we profiled with Visual Studio 2012 [94] both

8.4.1 CPU (SAMPLING)

183

versions of the applications in order to collect the CPU and memory

consumption data.

All tests were performed with the following configuration:

 CPU: Intel Core i5-3470, 3.20 GHz

 RAM: 8.00 Gb

 OS: Windows 8 Pro, x64

 Kinect for XBOX 360

8.4.1 CPU (sampling)

In this section, we report the CPU profiling data, obtained through

sampling. This profiling method interrupts the processor at set intervals,

collecting the list of functions contained in the call stack. At the end of the

profiling session, we obtain for each function the number of times that it

was contained in the call stack. Therefore, the functions using more CPU

have a higher sample count.

We start the analysis from the overall CPU usage percentage. Figure 8.2

shows the CPU consumption for the FSM-based version, while Figure 8.3

shows it for the GestIT version. As it is possible to see, there is no

meaningful difference between the two line graphs, which have a similar

trend. In both versions, the CPU consumption never went above the 40%.

The overall trend of the two lines indicates that the resources consumed by

the GestIT library does not have a sensible impact on the overall

performance of the application.

In order to analyse this aspect more in detail, we report in Table 8.1 and

Table 8.2 the sample count respectively for the FSM and the GestIT

versions. In both tables, the counters are grouped by DLL, since we are not

interested in establishing exactly which function is consuming more

resources, but we limit granularity of our analysis at the software component

level. For the FSM version, we isolated the state machine definition into a

specific library, the FsmGestureRecognition.dll. In order to evaluate the

consumption for the GestIT version, we have to consider two different DLLs:

the Gestit.dll, which contains the definition of the temporal operators and

the abstract classes for the ground terms, and the BodyGestit.dll, which

contains the extension of the base classes for supporting the Kinect device

through our modelling approach. The FsmGestureRecognition.dll is

highlighted in Table 8.1 while the Gestit.dll and the BodyGestit.dll are

highlighted in Table 8.2

CHAPTER 8 EVALUATION 184

Figure 8.2 3D viewer CPU usage (FSM version)

Figure 8.3 3D viewer CPU usage (GestIT version)

In both tables we report the following data, as defined in [91]:

 Inclusive samples: the total number of samples that are collected

during the execution of the target function. It includes the samples

collected during the execution of child functions, which have been

called by the target one.

 Exclusive samples: the total number of samples that are collected

during the execution of the instructions of the target function,

without counting those belonging to child functions.

 Inclusive percent: the percentage of the total number of inclusive

samples in the profiling run.

 Exclusive percent: the percentage of the total number of exclusive

samples in the profiling run.

As it is possible to see in Table 8.1 and Table 8.2 the gesture recognition

DLLs produced similar results for both versions: the state machine DLL was

included in the 18.07% of the samples and occupied exclusively the CPU for

the 0.02%. The BodyGestit functions inclusively occupied the CPU for the

19.22% and exclusively for the 0.07% of the samples, while the Gestit

functions for the 0.18% inclusively and 0.01% exclusively.

The difference is about 1.5% for the inclusive samples and the 0.08% for

the exclusive samples.

8.4.1 CPU (SAMPLING)

185

Name
Inclusive

Samples
Exclusive

Samples
Inclusive

Samples %
Exclusive

Samples %

nvd3dum.dll 9253 7542 51.40 41.90

PresentationFramework.ni.dll 8747 2593 48.59 14.40

CarViewer.exe 8747 19 48.59 0.11

FsmGestureRecognition.dll 3252 3 18.07 0.02

Microsoft.Kinect.Toolkit.Interaction.dll 3050 3050 16.94 16.94

PresentationCore.ni.dll 2066 2066 11.48 11.48

d3d9.dll 1505 1505 8.36 8.36

Microsoft.Kinect.dll 720 720 4.00 4.00

ntdll.dll 163 163 0.91 0.91

WindowsBase.ni.dll 145 142 0.81 0.79

Microsoft.Kinect.Toolkit.dll 132 1 0.73 0.01

clr.dll 117 117 0.65 0.65

mscorlib.ni.dll 36 36 0.20 0.20

gdi32.dll 21 21 0.12 0.12

nvSCPAPI.dll 16 0 0.09 0.00

nvapi.dll 9 0 0.05 0.00

3DTools.dl 8 0 0.04 0.00

setupapi.dll 5 5 0.03 0.03

user32.dll 5 5 0.03 0.03

KernelBase.dl 4 4 0.02 0.02

wow64cpu.dll 4 4 0.02 0.02

kernel32.dll 2 2 0.01 0.01

msvcrt.dl 2 2 0.01 0.01

dxgi.dll 1 1 0.01 0.01

rxinput.dll 1 0 0.01 0.00

Table 8.1 3D viewer CPU profiling (sampling, FSM version)

CHAPTER 8 EVALUATION 186

Name
Inclusive
Samples

Exclusive
Samples

Inclusive
Samples %

Exclusive
Samples %

PresentationFramework.ni.dll 9470 2623 52.67 14.59

CarViewer.exe 9470 23 52.67 0.13

nvd3dum.dl 8508 5710 47.32 31.76

BodyTmpLib.dll 3455 13 19.22 0.07

Microsoft.Kinect.Toolkit.Interaction.dll 3217 3217 17.89 17.89

d3d9.dll 2648 2648 14.73 14.73

PresentationCore.ni.dll 2406 2406 13.38 13.38

Microsoft.Kinect.dll 865 865 4.81 4.81

WindowsBase.ni.dl 144 140 0.80 0.78

Microsoft.Kinect.Toolkit.dll 141 5 0.78 0.03

clr.dll 137 137 0.76 0.76

ntdll.dll 123 123 0.68 0.68

mscorlib.ni.dll 40 40 0.22 0.22

TmpLib.dll 32 1 0.18 0.01

gdi32.dll 17 17 0.09 0.09

wow64cpu.dll 7 7 0.04 0.04

3DTools.dll 3 0 0.02 0.00

kernel32.dl 2 2 0.01 0.01

msvcrt.dll 2 2 0.01 0.01

nvSCPAPI.dll 1 0 0.01 0.00

Table 8.2 3D viewer CPU profiling (sampling, GestIT version)

8.4.2 CPU (instrumentation)

We repeated the profiling experiment using the instrumentation profiling

method, which records detailed timing information about the execution of

the application code, injecting some profiling code at the start and the end

of each target function [92]. We again grouped all the counters by the

containing DLL.

The values recorded in this second experiment are the following:

 Number of calls: the total number of calls to the target function

 Elapsed inclusive time percentage: the percentage of time spent

executing the target and the child functions

 Elapsed exclusive time percentage: the percentage of time spent in

executing the target function, without considering child functions

 Elapsed inclusive time: the total time spent in the target and the

child functions (milliseconds).

 Elapsed exclusive time: the total time spent in the target function,

without considering child functions (milliseconds)

8.4.2 CPU (INSTRUMENTATION)

187

The profiling results show that the GestIT version requires 0.78% more

inclusive time and 0.16% more exclusive time with respect to the overall

application time, which can be considered a low impact. However, it is

possible to notice a sensibly higher elapsed inclusive time and total number

of calls for the functions contained in BodyGestit.dll. Therefore, it may be

reasonable to optimize the code that translates the data coming from the

Kinect sensor into a format manageable by the GestIT library.

Name
Number of
Calls

Elapsed
Inclusive
Time %

Elapsed
Exclusive
Time %

Elapsed
Inclusive
Time

Elapsed
Exclusive
Time

CarViewer.exe 207615 100.00 0.07 99191.85 72.60

PresentationFramework.dll 657 100.00 89.98 99188.71 89257.71

FsmGestureRecognition.dll 24331 3.80 0.02 3758.85 2045

Microsoft.Kinect.Toolkit.
 Interaction.dll

116875 3.57 3.57 3542.77 3541.90

Microsoft.Kinect.dll 1320554 3.28 3.28 3253.83 3253.83

PresentationCore.dll 125643 2.06 2.06 2041.67 2041.67

Microsoft.Kinect.Toolkit.dll 24 0.65 0.65 646.81 646.81

mscorlib.dll 302814 0.34 0.34 333.60 333.60

3DTools.dll 325 0.02 0.02 17.76 17.76

WindowsBase.dll 142961 0.00 0.00 8.50 2.31

System.dll 4 0.00 0.00 3.21 3.21

Table 8.3 3D viewer CPU profiling (instrumentation, FSM version)

Name
Number of
Calls

Elapsed
Inclusive
Time %

Elapsed
Exclusive
Time %

Elapsed
Inclusive
Time

Elapsed
Exclusive
Time

CarViewer.exe 204464 100.00 0.08 98.356.87 74.82

PresentationFramework.dll 449 100.00 89.33 98.353.59 87.864.40

BodyGestit.dll 119676 4.25 0.15 4179.38 151.93

Microsoft.Kinect.Toolkit.
 Interaction.dll

134141 3.75 3.75 3.684.37 3.683.89

Microsoft.Kinect.dll 3715440 3.38 3.38 3.325.18 3.325.18

PresentationCore.dll 122.804 2.25 2.25 2.215.43 2.215.43

Microsoft.Kinect.Toolkit.dll 24 0.66 0.66 649.62 649.62

mscorlib.dll 685086 0.36 0.36 352.09 352.09

Gestit.dll 174359 0.33 0.03 225.13 18.30

3DTools.dll 213 0.01 0.01 13.02 13.02

WindowsBase.dll 142423 0.00 0.00 3.23 3.23

System.dll 16 0.00 0.00 0.01 0.01

Table 8.4 3D viewer CPU profiling (instrumentation, GestIT version)

CHAPTER 8 EVALUATION 188

8.4.3 Memory

The memory profiler included in Visual Studio 2012 [93] provides

information about the size and the number of objects created during the

execution of the target function code.

We again grouped all the counters by DLL, and we report here the

following data:

 Inclusive allocations: the number of allocations made in the target

function and its children.

 Exclusive allocations: the number of allocations made in the target

function, without considering its children.

 Inclusive bytes: the number of bytes allocated in the target

function and its children.

 Exclusive allocations: the number of bytes allocations in the target

function, without considering its children.

The comparison of the two profiling session data shows an increase of the

allocation and bytes counters for the BodyGestit.dll with respect to the

baseline implementation. Such increase is especially high for the exclusive

allocation number and bytes (respectively 52% and 28%), confirming the

need of an optimization in the library code that connects the Kinect sensor

with the GestIT library. Instead, the part of the library that defines the

temporal operators and the ground terms (the Gestit.dll) has a low impact

on the memory consumption increase.

However, the amount of memory consumed by the FSM and GestIT DLLs

are two orders of magnitude below the amount consumed by the Kinect

sensor driver, which is the main responsible for the memory consumption in

this application. This means again that the overall impact of using the

GestIT library on whole application as a whole cannot be considered high.

8.4.3 MEMORY

189

Name
Inclusive
Allocations

Exclusive
Allocations

Inclusive
Bytes

Exclusive
Bytes

CarViewer.exe 3129945 148232 159320630 3285646

PresentationFramework.ni.dll 3129942 231986 159320424 19016158

FsmGestureRecognition.dll 1287576 5126 23208425 164104

Microsoft.Kinect.dll 1151146 1151146 23362566 23362566

PresentationCore.dll 951919 951919 97159963 97159963

Microsoft.Kinect.Toolkit.
 Interaction.dll

526203 521090 12891040 12727424

mscorlib.ni.dll 73514 73514 2365703 2365703

WindowsBase.ni.dll 41806 41070 1127672 1101122

Microsoft.Kinect.Toolkit.dll 21048 4740 1925101 78042

3DTools.dll 1735 651 46084 15828

clr.dll 468 468 44014 44014

System.ni.dll 3 3 60 60

PresentationFramework.Aero2.ni.dll 0 0 0 0

System.Core.ni.dll 0 0 0 0

System.Xaml.ni.dll 0 0 0 0

UIAutomationTypes.ni.dl 0 0 0 0

Table 8.5 3D viewer memory profiling (FSM version)

Name
Inclusive
Allocations

Exclusive
Allocations

Inclusive
Bytes

Exclusive
Bytes

CarViewer.exe 3424747 143.210 171514376 3204490

PresentationFramework.ni.dll 3424744 488085 171514178 33889952

BodyGestit.dll 1336355 7794 24872174 208982

Microsoft.Kinect.dll 1131988 1131988 22977390 22977390

PresentationCore.ni.dll 944591 944591 92900375 92900375

Microsoft.Kinect.Toolkit.
 Interaction.dll

517574 512485 12696600 12533752

mscorlib.ni.dll 144819 144819 4427685 4427685

WindowsBase.ni.dll 39389 38653 1063468 1036918

Gestit.dll 30427 55 941082 1812

Microsoft.Kinect.Toolkit.dll 20853 4155 1927916 68658

USER32.dll 8012 8012 208312 208312

3DTools.dll 1120 427 29988 10452

clr.dll 470 470 45538 45538

System.ni.dll 3 3 60 60

PresentationFramework.Aero2.ni.dll 0 0 0 0

System.Core.ni.dll 0 0 0 0

System.Xaml.ni.dll 0 0 0 0

UIAutomationTypes.ni.dll 0 0 0 0

Table 8.6 3D viewer memory profiling (GestIT version)

CHAPTER 8 EVALUATION 190

8.5 Summary

In this chapter, we provided an evaluation of the proposed gesture modelling

approach, which consisted of three different sets of inspection criteria.

We first assessed the requirements we identified for the development of

gestural interfaces, showing that we advanced the state of the art, providing

a meta-model able to describe the temporal evolution of gestures in a

reusable and compositional way. We support different gesture recognition

devices, defining a programming model that can be instantiated even to

other recognition supports that are not covered by our work.

The second set of criteria has been defined in [97], reviewing different tools

that have been used for defining UIs and the reasons behind their success or

failure. We showed that our modelling technique did not repeated well-

known errors, even if some aspects will need further investigation (e.g. how

difficult is to learn our modelling technique from scratch).

The third set of criteria is represented by the Cognitive Dimension

Framework, defined in [51]. The analysis highlighted the need for a clearer

representation of the dependencies among the different predicates associated

to the ground terms. In addition, if a gesture model is created

programmatically (i.e. without using XML or another declarative notation),

it is more likely to have modelling errors, since the composition aspect is

not explicit in the notation. Therefore, it may be reasonable to provide a

graphical notation that solves these problems in the future.

Finally, we provided a preliminary analysis of the GestIT library

performance, comparing two versions of the 3D viewer application. The first

one was implemented with a simple FSM and represents the baseline for the

application performance. The second version defined the gestural interaction

through the GestIT notation.

The comparison results show that the GestIT version requires a low

increase of the CPU usage and a sensible increase of the memory

consumption. Provided that the main responsible for the increment is the

part connecting the Kinect sensor the GestIT temporal operators, the

optimization work should start from that part of the library.

Chapter 9

Conclusion

The lack of proper programming models for defining gestures is a major

issue in defining gesture-based interfaces and it limits significantly the

ability to fully exploit the new multitouch and 3D input devices, now

becoming widely available. The observer pattern underlying the traditional

event-based programming is largely inadequate for tracking gestures made

of multiple inputs over time, forcing the programmer to choose between

handling the complexity of this process or picking one of a pre-defined

gestures recognized by the framework used.

In this thesis, we proposed GestIT, a declarative, compositional meta-

model for defining gestures, addressing this key issue and allowing for

simultaneous recognition of multiple gestures and sub-gestures under control

of the programmer rather than the framework. The meta-model elements

contain ground terms and composition operators that have been

theoretically defined using Non Autonomous Petri Nets.

It allows reusing and composing the definition of gestures in different

applications, providing the possibility to define UI reactions for the

recognition not only for the entire gesture, but also for its sub-components.

The declarative and compositional approach proposed in this thesis for

gesture definition solves the single-event granularity problem and provides

a separation of concerns (the temporal sequence definition is separated from

the behaviour), which allows a more understandable and maintainable code.

In addition, we discussed the selection ambiguity problem, which affects the

composition of gestures that have a common prefix through a choice

operator. The recognition support has different possibilities for dealing with

the uncertainty in the selection while performing this common prefix. We

discussed different solutions and we adopted the compensation approach in

GestIT.

CHAPTER 9 CONCLUSION 192

Moreover, we reported on a proof-of-concept library, which has been

exploited for managing two different gesture recognition supports

(multitouch and full-body), showing the flexibility and the generality of the

approach. We developed different sample applications for demonstrating the

advantages of the proposed modelling technique in reusing gesture

definitions, which can be exploited at the desired level of granularity.

Finally we extended MARIA [111], a state of the art User Interface

Description Language, providing it with a concrete user interface model that

is able to exploit gestural interaction, according to the proposed meta-model.

9.1 Future work

The work discussed in this thesis can be extended in different directions.

The first one it the most obvious: we did not cover the entire set of devices

that can be used for recognizing gestures. Adding both the formal modelling

and the library support for existing devices, such as remotes and floor

boards, or new ones such as the Leap Motion or the new version of Microsoft

Kinect, may enforce the validity of the proposed modelling technique and

also provide the source for enhancing the model with other features.

We already started this work, through an optimized implementation of

the modelling technique that supports web applications (through javascript)

and that will be ready for supporting commercial and production-level

applications. In addition, such more engineered version of the library will

provide a way for creating personalised combination of sensors providing a

way for defining new ground terms in a simple way, in order to increase the

flexibility of the approach. The implementation of this new version will be

open source and available at http://gestit.github.io/GestIT/.

Another research direction is the investigation of the impact that such

modelling techniques may have on tools and authoring environments for

creating gestural interaction. The compositional approach may be exploited

for creating a sort of workflow visualization that can be interactively

explored for analysing the defined interaction.

A declarative description can be also exploited for describing not only the

interaction, but also for estimating different parameters connected to

gesture performance. For instance, it is possible define a cost model based

on the composition of ground terms and complex gestures. The cost model

may predict different types of efforts that users put in gesture performance:

from physical (which may assess ergonomics aspects) to cognitive. An

9.1 FUTURE WORK

193

effective prediction based on the declarative definition may be successfully

exploited in both UI design and analysis tools.

In addition, the gesture modelling can be applied for emotion analysis,

defining a set of gestures or postures that communicate implicit information

on the user’s emotional state.

Last but not least, the main future direction that we foresee for this work

is its refinement and application in UI toolkits for both desktop and mobile

devices. In the future, we believe that this kind of interaction will be

embedded in different everyday use devices, such as televisions, home

appliances etc., enhancing their interaction possibilities. We think that the

proposed approach can have a role on the creation of the future UI toolkits,

that will host such kind of interaction as a first-class citizen, as happened

for instance for the animation support.

In order to do that, we think that it is necessary to apply the modelling

technique in a large-scale application scenario, in order to test it outside the

research environment and inside an industrial setting. The feedback

provided by such kind of application may benefit both the industry, which

will exploit a more efficient and effective way for creating gestural

interaction, but also the research per se, since it may provide an engineering

pattern that can be applied for all the different continuous input sources we

use for interacting with computers.

Beyond further enhancements of the meta-model and a more deep

evaluation of the proposed approach, it would be interesting to investigate

if our approach provides advantages not only for developers but also for

end-users. Our hypothesis is that providing a way for reuse existing gesture

definitions encourages developers in reapplying tested definitions against

naïve implementations that may be incomplete. In addition, this promotes

the adoption of commonly-used gestures for similar functionalities, which

may have a positive influence on the overall gesture interface usability

Bibliography

1. Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S.M.,

and Shuster, J.E. UIML: an appliance-independent XML user

interface language. Computer Networks 31, 11-16 (1999), 1695–1708.

2. Accot, J., Chatty, S., and Palanque, P.A. A Formal Description of

Low Level Interaction and its Application to Multimodal Interactive

Systems. DSV-IS, Springer (1996), 92–104.

3. Appert, C. and Beaudouin-Lafon, M. SwingStates: adding state

machines to the swing toolkit. Proceedings of the 19th annual ACM

symposium on User interface software and technology, ACM (2006),

319–322.

4. Apple. iPhone. Available online: http://www.apple.com/iphone/.

(Accessed: 27-May-2013).

5. Apple. Create Apps for iOS. Available online:

https://developer.apple.com/devcenter/ios/checklist//. (Accessed:

02-Apr-2013).

6. Apple. UIKit Reference. Available online:

http://developer.apple.com/library/ios/#documentation/UIKit/Ref

erence/UIKit_Framework/_index.html. (Accessed: 02-Apr-2013).

7. Arnaud, H., Palanque, P., Silva, J.L., Deleris, Y., and Navarre, D.

Formal Description of Multi-Touch Interactions. Fifth ACM

SIGCHI Symposium on Engineering Interactive Computing Systems,

ACM Press (2013).

BIBLIOGRAPHY 196

8. ASUS. Xtion PRO. Available online:

http://www.asus.com/Multimedia/Xtion_PRO/. (Accessed: 28-

Mar-2013).

9. Augsten, T., Kaefer, K., Meusel, R., et al. Multitoe: high-precision

interaction with back-projected floors based on high-resolution

multi-touch input. UIST, (2010), 209–218.

10. Bau, O. and Mackay, W.E. OctoPocus: a dynamic guide for learning

gesture-based command sets. Proceedings of the 21st annual ACM

symposium on User interface software and technology, ACM (2008),

37–46.

11. Den Bergh, J., Luyten, K., and Coninx, K. CAP3: context-sensitive

abstract user interface specification. Proceedings of the 3rd ACM

SIGCHI symposium on Engineering interactive computing systems,

ACM (2011), 31–40.

12. Den Bergh, M., Carton, D., de Nijs, R., et al. Real-time 3D hand

gesture interaction with a robot for understanding directions from

humans. RO-MAN, 2011 IEEE, (2011), 357–362.

13. Blackwell, A.F. and Green, T.R.G. A Cognitive Dimensions

Questionnaire Optimised for Users. 12th Workshop of the

Psychology of Programming Interest Group, (2000), 137–152.

14. Blanch, R. and Beaudouin-Lafon, M. Programming rich interactions

using the hierarchical state machine toolkit. Proceedings of the

working conference on Advanced visual interfaces, ACM (2006), 51–

58.

15. Bleser, T. and Foley, J.D. Towards specifying and evaluating the

human factors of user-computer interfaces. Proceedings of the 1982

Conference on Human Factors in Computing Systems, ACM (1982),

309–314.

16. Bo, H., Bing-yi, Z., Fang, Z., and Ya-min, S. Modeling multimodal

integration based on colored Petri nets and feature structures.

BIBLIOGRAPHY

197

Control, Automation, Robotics and Vision Conference, 2004.

ICARCV 2004 8th, (2004), 514–516 Vol. 1.

17. Bobick, A.F. and Wilson, A.D. A state-based approach to the

representation and recognition of gesture. Pattern Analysis and

Machine Intelligence, IEEE Transactions on 19, 12 (2002), 1325–

1337.

18. Bolognesi, T. and Brinksma, E. Introduction to the ISO specification

language LOTOS. Computer Networks and Systems 14, 1 (1987),

25–59.

19. Bongartz, S., Jin, Y., Paternò, F., Rett, J., Santoro, C., and Spano,

L. Adaptive User Interfaces for Smart Environments with the

Support of Model-Based Languages. In F. Paternò, B. Ruyter, P.

Markopoulos, C. Santoro, E. Loenen and K. Luyten, eds., Ambient

Intelligence. Springer Berlin Heidelberg, 2012, 33–48.

20. Boyer, J.M. XForms 1.1. Available online:

http://www.w3.org/TR/2009/REC-xforms-20091020/. (Accessed:

02-Mar-2013).

21. Bradski, G. and Kaehler, A. Learning OpenCV: Computer vision

with the OpenCV library. O’Reilly Media, Incorporated, 2008.

22. Bragdon, A., DeLine, R., Hinckley, K., and Morris, M.R. Code

space: touch + air gesture hybrid interactions for supporting

developer meetings. Proceedings of the ACM International

Conference on Interactive Tabletops and Surfaces, ACM (2011),

212–221.

23. Bränzel, A., Holz, C., Hoffmann, D., et al. GravitySpace: tracking

users and their poses in a smart room using a pressure-sensing floor.

Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, ACM (2013), 725–734.

24. Broccia, G., Livesu, M., and Scateni, R. Gestural Interaction for

Robot Motion Control. Eurographics Italian Chapter Conference,

(2011), 61–66.

BIBLIOGRAPHY 198

25. Buxton, B. Multi-Touch Systems that I Have Known and Loved.

Available online:

http://www.billbuxton.com/multitouchOverview.html. (Accessed:

01-Jun-2013).

26. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L.,

and Vanderdonckt, J. A unifying reference framework for multi-

target user interfaces. Interacting with Computers 15, 3 (2003), 289–

308.

27. Calvary, G., Coutaz, J., Thevenin, D., et al. The CAMELEON

reference framework. Deliverable D 1, (2002).

28. Calvary, G. and Demeure, A. Context-aware and mobile interactive

systems: the future of user interfaces plasticity. Proceedings of the

1st ACM SIGCHI symposium on Engineering interactive computing

systems, ACM (2009), 243–244.

29. Cam-Trax. CamSpace. Available online:

http://www.camspace.com/. (Accessed: 27-May-2013).

30. Card, S.K., Moran, T.P., and Newell, A. The psychology of human-

computer interaction. CRC, 1983.

31. Carpenter, R.L. The logic of typed feature structures: with

applications to unification grammars, logic programs and constraint

resolution. Cambridge University Press, 2005.

32. Chen, M., Mountford, S.J., and Sellen, A. A study in interactive 3-D

rotation using 2-D control devices. SIGGRAPH Comput. Graph. 22,

4 (1988), 121–129.

33. Cheng, L., Sun, Q., Su, H., Cong, Y., and Zhao, S. Design and

implementation of human-robot interactive demonstration system

based on Kinect. Control and Decision Conference (CCDC), 2012

24th Chinese, (2012), 971–975.

34. Colombo, C. and Pace, G. Long Running Transaction. ACM

Computing Surveys 4, 3 (2013), (accepted paper).

BIBLIOGRAPHY

199

35. Cuccurullo, S., Francese, R., Murad, S., Passero, I., and Tucci, M. A

gestural approach to presentation exploiting motion capture

metaphors. Proceedings of the International Working Conference on

Advanced Visual Interfaces, ACM (2012), 148–155.

36. David, R. and Alla, H. Discrete, continuous, and hybrid Petri nets.

Springer, 2010.

37. Dietz, P. and Leigh, D. DiamondTouch: a multi-user touch

technology. Proceedings of the 14th annual ACM symposium on

User interface software and technology, (2001), 219–226.

38. Dillon, R., Wong, G., and Ang, R. Virtual Orchestra: an immersive

computer game for fun and education. Proceedings of the 2006

international conference on Game research and development, (2006),

215–218.

39. Echtler, F. and Butz, A. GISpL: gestures made easy. Proceedings of

the Sixth International Conference on Tangible, Embedded and

Embodied Interaction, ACM (2012), 233–240.

40. Farley, H. and Steel, C. A quest for the Holy Grail: Tactile

precision, natural movement and haptic feedback in 3D virtual

spaces. Same places, different spaces, (2009), 285.

41. Foley, J. and Sukaviriya, P. History, Results and Bibliography of

the User Interface Design Environment (UIDE), an Early Model-

based System for User Interface Design and Implementation.

Proceedings of DSV-IS, 3–14.

42. Forlines, C., Wigdor, D., Shen, C., and Balakrishnan, R. Direct-

touch vs. mouse input for tabletop displays. Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems,

ACM (2007), 647–656.

43. Franke, T., Olbrich, M., and Fellner, D.W. A flexible approach to

gesture recognition and interaction in X3D. Proceedings of the 17th

International Conference on 3D Web Technology, ACM (2012), 171–

174.

BIBLIOGRAPHY 200

44. Gabbay, D. Labelled deductive systems and situation theory. 1993.

45. Gallo, L., Placitelli, A.P., and Ciampi, M. Controller-free

exploration of medical image data: Experiencing the Kinect.

Computer-Based Medical Systems (CBMS), 2011 24th International

Symposium on, (2011), 1–6.

46. García Frey, A., Céret, E., Dupuy-Chessa, S., Calvary, G., and

Gabillon, Y. UsiComp: an extensible model-driven composer.

Proceedings of the 4th ACM SIGCHI symposium on Engineering

interactive computing systems, ACM (2012), 263–268.

47. Garcia-Molina, H., Gawlick, D., Klein, J., Kleissner, K., and Salem,

K. Modeling long-running activities as nested sagas. Data Eng. 14, 1

(1991), 14–18.

48. Garzotto, F. and Valoriani, M. “Don’t touch the oven”: motion-based

touchless interaction with household appliances. Proceedings of the

International Working Conference on Advanced Visual Interfaces,

ACM (2012), 721–724.

49. Gil-Gomez, J.-A., Lozano, J.-A., Alcaniz, M., and Perez, S.A.

Nintendo Wii Balance board for balance disorders. Virtual

Rehabilitation International Conference, 2009, (2009), 213.

50. Gorg, M.T., Cebulla, M., and Garzon, S.R. A Framework for

Abstract Representation and Recognition of Gestures in Multi-touch

Applications. Advances in Computer-Human Interactions, 2010.

ACHI ’10. Third International Conference on, (2010), 143–147.

51. Green, T.R.G. and Petre, M. Usability Analysis of Visual

Programming Environments: A ‘Cognitive Dimensions’ Framework.

Journal of Visual Languages & Computing 7, 2 (1996), 131–174.

52. Gyration. Gyration in-air mouse. Available online:

http://www.gyration.com/. (Accessed: 27-May-2013).

53. De Haan, G., Griffith, E.J., and Post, F.H. Using the Wii Balance

Board™ as a low-cost VR interaction device. Proceedings of

BIBLIOGRAPHY

201

the 2008 ACM symposium on Virtual reality software and

technology, ACM (2008), 289–290.

54. Han, J.Y. Low-cost multi-touch sensing through frustrated total

internal reflection. Proceedings of the 18th annual ACM symposium

on User interface software and technology, (2005), 115–118.

55. Helms, J. and Abrams, M. Retrospective on UI description

languages, based on eight years’ experience with the User Interface

Markup Language (UIML). International Journal of Web

Engineering and Technology 4, 2 (2008), 138–162.

56. Henry, T.R., Hudson, S.E., and Newell, G.L. Integrating gesture and

snapping into a user interface toolkit. Proceedings of the 3rd annual

ACM SIGGRAPH symposium on User interface software and

technology, ACM (1990), 112–122.

57. Hinckley, K., Czerwinski, M., and Sinclair, M. Interaction and

modeling techniques for desktop two-handed input. Proceedings of

the 11th annual ACM symposium on User interface software and

technology, ACM (1998), 49–58.

58. Hirte, S., Seifert, A., Baumann, S., Klan, D., and Sattler, K.-U.

Data3 -- A Kinect Interface for OLAP Using Complex Event

Processing. Data Engineering (ICDE), 2012 IEEE 28th International

Conference on, (2012), 1297–1300.

59. Hoste, L., Dumas, B., and Signer, B. Mudra: a unified multimodal

interaction framework. Proceedings of the 13th international

conference on multimodal interfaces, ACM (2011), 97–104.

60. Isard, M. and Blake, A. Contour tracking by stochastic propagation

of conditional density. Computer Vision-ECCV’96, (1996), 343–356.

61. Jacob, R.J.K., Deligiannidis, L., and Morrison, S. A software model

and specification language for non-WIMP user interfaces. ACM

Trans. Comput.-Hum. Interact. 6, 1 (1999), 1–46.

62. Jacob, R.J.K. Eye Movement-Based Human-Computer Interaction

Techniques: Toward Non-Command Interfaces. IN ADVANCES IN

BIBLIOGRAPHY 202

HUMAN-COMPUTER INTERACTION, Ablex Publishing Co

(1993), 151–190.

63. Johnson, P., Wilson, S., Markopoulos, P., and Pycock, J. ADEPT:

Advanced design environment for prototyping with task models.

Proceedings of the INTERACT’93 and CHI'93 conference on Human

factors in computing systems, (1993), 56.

64. Jota, R., Nacenta, M.A., Jorge, J.A., Carpendale, S., and Greenberg,

S. A comparison of ray pointing techniques for very large displays.

Proceedings of Graphics Interface 2010, Canadian Information

Processing Society (2010), 269–276.

65. Juul, J. A Casual Revolution: Reinventing Video Games and Their

Players. The MIT Press, 2009.

66. Kammer, D., Wojdziak, J., Keck, M., Groh, R., and Taranko, S.

Towards a formalization of multi-touch gestures. ACM International

Conference on Interactive Tabletops and Surfaces, ACM (2010), 49–

58.

67. Kang, J., Seo, D., and Jung, D. A Study on the control Method of 3-

Dimensional Space Application using KINECT System.

International Journal of Computer Science and Network Security 11,

9 (2011), 55–59.

68. Kasday, L.R. Touch position sensitive surface. U.S. Patent, (1984).

69. Kass, M., Witkin, A., and Terzopoulos, D. Snakes: Active contour

models. International journal of computer vision 1, 4 (1988), 321–

331.

70. Kerber, F., Lessel, P., Daiber, F., and Krüger, A. Shift ‘n’ touch:

combining Wii Balance Board and Cubtile. Proceedings of the 7th

Nordic Conference on Human-Computer Interaction: Making Sense

Through Design, ACM (2012), 789–790.

71. Khandkar, S.H. and Maurer, F. A domain specific language to define

gestures for multi-touch applications. Proceedings of the 10th

Workshop on Domain-Specific Modeling, ACM (2010), 2:1–2:6.

BIBLIOGRAPHY

203

72. Kin, K., Hartmann, B., DeRose, T., and Agrawala, M. Proton:

multitouch gestures as regular expressions. Proceedings of the 2012

ACM annual conference on Human Factors in Computing Systems

(CHI 2012), ACM Press (2012), 2885–2894.

73. Kin, K., Hartmann, B., DeRose, T., and Agrawala, M. Proton++ :

A Customizable Declarative Multitouch Framework. Proceedings of

the 25th annual ACM symposium on User interface software and

technology (UIST 2012), ACM Press (2012), 477–486.

74. Kistler, F., Sollfrank, D., Bee, N., and André, E. Full Body Gestures

Enhancing a Game Book for Interactive Story Telling. In M. Si, D.

Thue, E. André, J. Lester, J. Tanenbaum and V. Zammitto, eds.,

Interactive Storytelling. Springer Berlin / Heidelberg, 2011, 207–218.

75. Klan, D., Hose, K., Karnstedt, M., and Sattler, K.-U. Power-aware

data analysis in sensor networks. Data Engineering (ICDE), 2010

IEEE 26th International Conference on, (2010), 1125–1128.

76. Kortum, P. HCI Beyond the GUI: Design for Haptic, Speech,

Olfactory, and Other Nontraditional Interfaces (Interactive

Technologies). Morgan Kaufmann Publishers Inc. San Francisco,

CA, USA, 2008.

77. De la Barré, R., Chojecki, P., Leiner, U., Mühlbach, L., and

Ruschin, D. Touchless interaction-novel chances and challenges. In

Human-Computer Interaction. Novel Interaction Methods and

Techniques. Springer, 2009, 161–169.

78. lacolina, S.A., Soro, A., and Scateni, R. Natural exploration of 3D

models. Proceedings of the 9th ACM SIGCHI Italian Chapter

International Conference on Computer-Human Interaction: Facing

Complexity, ACM (2011), 118–121.

79. Lai, K., Konrad, J., and Ishwar, P. A gesture-driven computer

interface using Kinect. Image Analysis and Interpretation (SSIAI),

2012 IEEE Southwest Symposium on, (2012), 185–188.

BIBLIOGRAPHY 204

80. Leap Motion Inc. Leap Motion. Available online:

https://www.leapmotion.com/. (Accessed: 02-Jun-2013).

81. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., and

López-Jaquero, V. Usixml: A language supporting multi-path

development of user interfaces. Engineering Human Computer

Interaction and Interactive Systems, (2005), 200–220.

82. Lyons, K., Brashear, H., Westeyn, T., Kim, J.S., and Starner, T.

GART: the gesture and activity recognition toolkit. In Human-

Computer Interaction. HCI Intelligent Multimodal Interaction

Environments. Springer, 2007, 718–727.

83. Lyons, M.J., Budynek, J., and Akamatsu, S. Automatic classification

of single facial images. Pattern Analysis and Machine Intelligence,

IEEE Transactions on 21, 12 (2002), 1357–1362.

84. Maskell, S. and Gordon, N. A tutorial on particle filters for on-line

nonlinear/non-Gaussian Bayesian tracking. IEE Seminar Digests,

(2001).

85. Microsoft, M. Partial Class Definitions (C# Programming Guide).

Available online: http://msdn.microsoft.com/en-

us/library/wa80x488(v=VS.80).aspx. (Accessed: 27-Apr-2013).

86. Microsoft. PixelSense. Available online:

http://www.microsoft.com/en-us/pixelsense/default.aspx. (Accessed:

27-May-2013).

87. Microsoft. Kinect for Windows. Available online:

http://www.microsoft.com/en-us/kinectforwindows/. (Accessed: 28-

Mar-2013).

88. Microsoft. Delegate. Available online:

http://msdn.microsoft.com/en-us/library/900fyy8e(v=vs.71).aspx.

(Accessed: 29-Mar-2013).

89. Microsoft. XAML Overview. Available online:

http://msdn.microsoft.com/en-us/library/ms752059.aspx. (Accessed:

02-Apr-2013).

BIBLIOGRAPHY

205

90. Microsoft. Kinect Studio. Available online:

http://msdn.microsoft.com/en-us/library/hh855389.aspx. (Accessed:

11-Jul-2013).

91. Microsoft. Understanding Sampling Data Values in Profiling Tools.

Available online: http://msdn.microsoft.com/it-

it/library/ms242753.aspx. (Accessed: 11-Jul-2013).

92. Microsoft. Understanding Instrumentation Data Values in Profiling

Tools. Available online: http://msdn.microsoft.com/it-

it/library/ms182369.aspx. (Accessed: 11-Jul-2013).

93. Microsoft. Understanding Memory Allocation and Object Lifetime

Data Values in Profiling Tools. Available online:

http://msdn.microsoft.com/library/dd264966.aspx.

94. Microsoft. Visual Studio 2012. Available online:

http://msdn.microsoft.com/it-it/vstudio/bb984878.aspx. (Accessed:

11-Jul-2013).

95. Mitra, S. and Acharya, T. Gesture recognition: A survey. IEEE

Transactions on Systems, Man and Cybernetics - PART C 37, 3

(2007), 311–324.

96. Mori, G., Paterno, F., and Santoro, C. Design and development of

multidevice user interfaces through multiple logical descriptions.

Software Engineering, IEEE Transactions on 30, 8 (2004), 507–520.

97. Myers, B., Hudson, S.E., and Pausch, R. Past, present, and future of

user interface software tools. ACM Trans. Comput.-Hum. Interact.

7, 1 (2000), 3–28.

98. Myers, B.A. A new model for handling input. ACM Trans. Inf. Syst.

8, 3 (1990), 289–320.

99. Navarre, D., Palanque, P., Ladry, J.-F., and Barboni, E. ICOs: A

model-based user interface description technique dedicated to

interactive systems addressing usability, reliability and scalability.

ACM Trans. Comput.-Hum. Interact. 16, 4 (2009), 18:1–18:56.

BIBLIOGRAPHY 206

100. Nielsen, J. Heuristic evaluation. Usability inspection methods 17,

(1994), 25–62.

101. Nikolaidis, A. and Pitas, I. Facial feature extraction and pose

determination. Pattern Recognition 33, 11 (2000), 1783–1791.

102. Nintendo. Nintendo Wii. Available online:

http://www.nintendo.com/wii. (Accessed: 27-May-2013).

103. Olsen Jr., D.R. and Dempsey, E.P. SYNGRAPH: A graphical user

interface generator. SIGGRAPH Comput. Graph. 17, 3 (1983), 43–

50.

104. Olsen Jr., D.R. MIKE: the menu interaction kontrol environment.

ACM Trans. Graph. 5, 4 (1986), 318–344.

105. Olsen Jr., D.R. Evaluating User Interface Systems Research.

Proceedings of the 20th Annual ACM Symposium on User Interface

Software and Technology, ACM (2007), 251–258.

106. OSGi Alliance. OSGi Service Platform Release 4. Available online:

http://www.osgi.org/Main/HomePage. (Accessed: 02-Jun-2013).

107. Palanque, P.A., Bastide, R., and Sengès, V. Validating interactive

system design through the verification of formal task and system

models. Proceedings of the IFIP TC2/WG2.7 Working Conference

on Engineering for Human-Computer Interaction, Chapman &

Hall, Ltd. (1996), 189–212.

108. Panger, G. Kinect in the kitchen: testing depth camera interactions

in practical home environments. Proceedings of the 2012 ACM

annual conference extended abstracts on Human Factors in

Computing Systems Extended Abstracts, ACM (2012), 1985–1990.

109. Paternò, F., Santoro, C., Spano, L.D., and Ragget, D. (eds). MBUI-

Task Models. Available online: http://www.w3.org/TR/2012/WD-

task-models-20120802/. (Accessed: 27-May-2013).

BIBLIOGRAPHY

207

110. Paterno, F., Santoro, C., and Spano, L.D. The role of HCI models in

service front-end development. Behaviour & Information Technology

31, 3 (2012), 231–244.

111. Paternò, F., Santoro, C., and Spano, L.D. MARIA: A universal,

declarative, multiple abstraction-level language for service-oriented

applications in ubiquitous environments. ACM Transaction on

Computer Human Interaction 16, 4 (2009), 19:1–19:30.

112. Paternò, F., Santoro, C., and Spano, L.D. Exploiting web service

annotations in model-based user interface development. Proceedings

of the 2nd ACM SIGCHI symposium on Engineering interactive

computing systems, (2010), 219–224.

113. Paternò, F., Santoro, C., and Spano, L.D. Engineering the authoring

of usable service front ends. J. Syst. Softw. 84, 10 (2011), 1806–1822.

114. Paternò, F. Model-based design and evaluation of interactive

applications. Springer Verlag, 2000.

115. PrimeSense. NITE Middleware. Available online:

http://www.primesense.com/solutions/nite-middleware/. (Accessed:

04-Feb-2013).

116. Puerta, A. and Eisenstein, J. XIML: A universal language for user

interfaces. White paper, (2001).

117. Rich, C. Building task-based user interfaces with ANSI/CEA-2018.

Computer 42, 8 (2009), 20–27.

118. Sangsuriyachot, N., Mi, H., and Sugimoto, M. Novel interaction

techniques by combining hand and foot gestures on tabletop

environments. Proceedings of the ACM International Conference on

Interactive Tabletops and Surfaces, ACM (2011), 268–269.

119. Scholliers, C., Hoste, L., Signer, B., and De Meuter, W. Midas: a

declarative multi-touch interaction framework. Proceedings of the

fifth international conference on Tangible, embedded, and embodied

interaction, ACM (2011), 49–56.

BIBLIOGRAPHY 208

120. Schwarz, J., Hudson, S., Mankoff, J., and Wilson, A.D. A framework

for robust and flexible handling of inputs with uncertainty.

Proceedings of the 23nd annual ACM symposium on User interface

software and technology, ACM (2010), 47–56.

121. Serna, A., Calvary, G., and Scapin, D.L. How assessing plasticity

design choices can improve UI quality: a case study. Proceedings of

the 2nd ACM SIGCHI symposium on Engineering interactive

computing systems, ACM (2010), 29–34.

122. Shotton, J., Fitzgibbon, A., Cook, M., et al. Real-time human pose

recognition in parts from single depth images. IEEE, 2011.

123. Sony. PlayStation Move. Available online:

http://iplaystation.com/psmove/. (Accessed: 27-May-2013).

124. Spano, L.D., Cisternino, A., Fabio, P., and Fenu, G. A Declarative

and Compositional Framework for Multiplatform Gesture Definition.

EICS 2013, 5th Simposium on Engineering Interactive Computing

Systems, ACM Press (2013).

125. Spano, L.D., Cisternino, A., and Paternò, F. A Compositional Model

for Gesture Definition. Proceedings of the 4th International

Conference in Human-Centered Software Engineering (HCSE 2012),

LNCS, Springer (2012), 34–52.

126. Spano, L.D. A model-based approach for gesture interfaces.

Proceedings of the 3rd ACM SIGCHI symposium on Engineering

interactive computing systems, ACM (2011), 327–330.

127. Spano, L.D. Developing Touchless Interfaces with GestIT. In F.

Paternò, B. de Ruyter, P. Markopoulos, C. Santoro, E. van Loenen

and K. Luyten, eds., Ambient Intelligence. Springer Berlin /

Heidelberg, 2012, 433–438.

128. Suma, E.A., Lange, B., Rizzo, A.S., Krum, D.M., and Bolas, M.

FAAST: The Flexible Action and Articulated Skeleton Toolkit.

Virtual Reality Conference (VR), 2011 IEEE, (2011), 247–248.

BIBLIOGRAPHY

209

129. Szekely, P., Luo, P., and Neches, R. Beyond interface builders:

model-based interface tools. Proceedings of the INTERACT ’93 and

CHI '93 conference on Human factors in computing systems, ACM

(1993), 383–390.

130. Tan, C.S.S., Schöning, J., Barnes, J.S., Luyten, K., and Coninx, K.

Bro-cam: Improving game experience with empathic feedback using

posture tracking. In Persuasive Technology. Springer, 2013, 222–233.

131. Tan, C.S.S., Schöning, J., Luyten, K., and Coninx, K. Informing

intelligent user interfaces by inferring affective states from body

postures in ubiquitous computing environments. Proceedings of the

2013 international conference on Intelligent user interfaces, ACM

(2013), 235–246.

132. Turk, M. and Pentland, A. Eigenfaces for recognition. Journal of

cognitive neuroscience 3, 1 (1991), 71–86.

133. UsiXML Consortium. UsiXML ITEA 2 project. Available online:

http://www.usixml.eu/about-the-project. (Accessed: 02-Jun-2013).

134. Van Der Veer, G.C., Lenting, B.F., and Bergevoet, B.A.J. GTA:

Groupware task analysis--Modeling complexity. Acta Psychologica

91, 3 (1996), 297–322.

135. Vultur, O.M., Pentiuc, S.G., and Ciupu, A. Navigation system in a

virtual environment by gestures. Communications (COMM), 2012

9th International Conference on, (2012), 111–114.

136. W3C. XSL Transformations (XSLT) Version 2.0. Available online:

http://www.w3.org/TR/xslt20/. (Accessed: 26-Apr-2013).

137. Wagner, K. Xbox One: Everything You Need to Know About.

Available online: http://gizmodo.com/the-new-xbox-everything-you-

need-to-know-about-microso-509033619. (Accessed: 02-Jun-2013).

138. Webb, J. and Ashley, J. Beginning Kinect Programming with the

Microsoft Kinect SDK. Apress, 2012.

BIBLIOGRAPHY 210

139. Wiecha, C., Bennett, W., Boies, S., Gould, J., and Greene, S. ITS: a

tool for rapidly developing interactive applications. ACM Trans. Inf.

Syst. 8, 3 (1990), 204–236.

140. Wobbrock, J., Morris, M., and Wilson, A. User-defined gestures for

surface computing. … on Human factors in computing …, (2009),

1083.

141. Wolfgang, P. Design patterns for object-oriented software

development. Reading, Mass.: Addison-Wesley, 1994.

142. Wroblewski, L. Touch Gesture Reference Guide. .

143. Yamato, J., Ohya, J., and Ishii, K. Recognizing human action in

time-sequential images using hidden Markov model. Computer

Vision and Pattern Recognition, 1992. Proceedings CVPR 92., 1992

IEEE Computer Society Conference on, (2002), 379–385.

144. Yang, M.H. and Ahuja, N. Recognizing hand gesture using motion

trajectories. cvpr, (1999), 1466.

145. Young, W., Ferguson, S., Brault, S., and Craig, C. Assessing and

training standing balance in older adults: A novel approach using

the ‘Nintendo Wii’ Balance Board. Gait & Posture 33, 2 (2011),

303–305.

146. Zanden, B. Vander and Myers, B.A. Automatic, look-and-feel

independent dialog creation for graphical user interfaces.

Proceedings of the SIGCHI conference on Human factors in

computing systems: Empowering people, ACM (1990), 27–34.

147. Zhu, Y., Dariush, B., and Fujimura, K. Controlled human pose

estimation from depth image streams. Computer Vision and Pattern

Recognition Workshops, 2008. CVPRW’08. IEEE Computer Society

Conference on, (2008), 1–8.

148. Zimmerman, T.G., Lanier, J., Blanchard, C., Bryson, S., and

Harvill, Y. A hand gesture interface device. SIGCHI Bull. 17, SI

(1986), 189–192.

BIBLIOGRAPHY

211

	Chapter 1 Introduction
	1.1 Context and motivations
	1.2 Objectives of the thesis
	1.3 Requirements summary
	1.4 Overview of the results
	1.5 Thesis organization
	1.6 Peer-reviewed publications

	Chapter 2 Background and Related Work
	2.1 Enabling recognition technologies
	2.1.1 Multitouch
	2.1.2 Remote-based gesture recognition
	2.1.3 Image-based gesture recognition
	2.1.4 Floor devices

	2.2 Input modelling with formal approaches
	2.3 Declarative approaches for gesture definition
	2.3.1 Multitouch
	2.3.1.1 Proton++
	2.3.1.2 Selection ambiguity

	2.3.2 Full-body

	2.4 Model-based approaches for User Interfaces
	2.4.1 Historical Background
	2.4.2 The CAMELEON reference framework
	2.4.3 ConcurTaskTrees

	2.5 Non-Autonomous Petri Nets

	Chapter 3 Gesture Meta-Model Definition
	3.1 Meta-Model Definition
	3.1.1 Basic Building Blocks: Ground Terms
	3.1.2 Composition Operators
	3.1.2.1 Iterative Operator
	3.1.2.2 Sequence Operator
	3.1.2.3 Parallel Operator
	3.1.2.4 Choice Operator
	3.1.2.5 Disabling Operator
	3.1.2.6 Order Independence
	3.1.2.7 Short-hands

	3.1.3 Handling recognition errors

	3.2 Modelling multitouch gestures
	3.3 Modelling full-body gestures
	3.4 Comparison with Proton++
	3.4.1 Proton++ literals
	3.4.2 Proton++ operators

	Chapter 4 Gesture Models
	4.1 Common multitouch gestures models
	4.1.1 Tap
	4.1.2 Double Tap
	4.1.3 Pan
	4.1.4 Slide
	4.1.5 Pinch
	4.1.6 Rotate

	4.2 Common full-body gesture models
	4.2.1 Pointing
	4.2.2 Grab
	4.2.3 Push
	4.2.4 Push back
	4.2.5 Lateral push
	4.2.6 Kick
	4.2.7 Wave
	4.2.8 Swipe
	4.2.9 Walk
	4.2.10 Turn
	4.2.11 Converge or Diverge Hands
	4.2.12 Steering wheel
	4.2.13 Roll
	4.2.14 Universal Pause

	Chapter 5 Library Support
	5.1 Library Architecture
	5.1.1 Library core
	5.1.2 Multitouch package
	5.1.3 Full-body package

	5.2 Creating a multitouch application
	5.3 Creating a full-body gesture application
	5.4 Sample applications
	5.4.1 Pilot study: Simple canvas
	5.4.2 Photo viewer
	5.4.3 3D viewer
	5.4.4 Touchless recipe browser

	Chapter 6 A Gestural Concrete User Interface in MARIA
	6.1 MARIA
	6.1.1 Abstract User Interface
	6.1.2 Concrete User Interface

	6.2 Gestural Concrete User Interface
	6.2.1 Modelling device data
	6.2.2 Gestures definition
	6.2.3 Gesture effects
	6.2.4 Interactors

	6.3 Model to code transformation
	6.4 Sample application

	Chapter 7 Discussion
	7.1 Granularity problem
	7.2 Spaghetti code problem
	7.3 Selection Ambiguity Problem
	7.4 Cross-platform gesture modelling

	Chapter 8 Evaluation
	8.1 Requirements review
	8.1.1 Temporal evolution
	8.1.2 Granularity
	8.1.3 Separation of concerns
	8.1.4 Multiple recognition devices
	8.1.5 Parallel interaction
	8.1.6 Equivalent descriptions
	8.1.7 Selection ambiguity

	8.2 Five themes in evaluating tools
	8.2.1 Parts of the user interface that are addressed
	8.2.2 Threshold and ceiling
	8.2.3 Path of Least Resistance
	8.2.4 Predictability
	8.2.5 Moving Targets

	8.3 Cognitive Dimensions Framework
	8.3.1 Abstraction gradient
	8.3.2 Closeness of mapping
	8.3.3 Consistency
	8.3.4 Diffuseness
	8.3.5 Error proneness
	8.3.6 Hard mental operations
	8.3.7 Hidden dependencies
	8.3.8 Premature commitment
	8.3.9 Progressive evaluation
	8.3.10 Role expressiveness
	8.3.11 Secondary notation
	8.3.12 Viscosity
	8.3.13 Visibility

	8.4 Performance analysis
	8.4.1 CPU (sampling)
	8.4.2 CPU (instrumentation)
	8.4.3 Memory

	8.5 Summary

	Chapter 9 Conclusion
	9.1 Future work

