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Dio di regalarci come Paradiso.” 

Fabrizio De André 

 

“And the only way to do great work is to love what you do. If you haven't 

found it yet, keep looking. Don't settle. As with all matters of the heart, 

you'll know when you find it. And, like any great relationship, it just gets 

better and better as the years roll on. So keep looking until you find it. Don't 

settle.” 

Steve Jobs 

 

“A common mistake that people make when trying to design something 

completely foolproof is to underestimate the ingenuity of complete fools.” 

Douglas Adams 

 

“Est mezus ainu biu qui non doctore mortu”. 

Sardinian proverb 

 

“Do. Or do not. There is no try” 

Master Yoda 

  

 





 

Abstract 

The description of a gesture requires temporal analysis of values generated 

by input sensors, and it does not fit well the observer pattern traditionally 

used by frameworks to handle the user’s input. The current solution is to 

embed particular gesture-based interactions into frameworks by notifying 

when a gesture is detected completely. This approach suffers from a lack of 

flexibility, unless the programmer performs explicit temporal analysis of raw 

sensors data. 

This thesis proposes a compositional, declarative meta-model for gestures 

definition based on Petri Nets. Basic traits are used as building blocks for 

defining gestures; each one notifies the change of a feature value. A complex 

gesture is defined by the composition of other sub-gestures using a set of 

operators. The user interface behaviour can be associated to the recognition 

of the whole gesture or to any other sub-component, addressing the problem 

of granularity for the notification of events.  

The meta-model can be instantiated for different gesture recognition 

supports and its definition has been validated through a proof of concept 

library. Sample applications have been developed for supporting multi-touch 

gestures in iOS and full body gestures with Microsoft Kinect. 

In addition to the solution for the event granularity problem, this thesis 

discusses how to separate the definition of the gesture from the user interface 

behaviour using the proposed compositional approach.  

The gesture description meta-model has been integrated into MARIA, a 

model-based user interface description language, extending it with the 

description of full-body gesture interfaces. 
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Chapter 1  

Introduction 

1.1 Context and motivations 

In recent years, a wide variety of new input devices has changed the way 

we interact with computers. Nintendo Wii in 2006 has broken the point and 

click paradigm with the Wiimote controller, based on gestures in a 3D space; 

iPhone has shown better usability by means of multi-touch in 2007, while 

Microsoft introducing Kinect in 2010 has expressed a way of interaction 

without wearing sensors of any kind. All these new devices exploit gestures 

performed in different ways, such as moving a remote, touching a screen, or 

through whole-body movements.  

The introduction of such novel interaction techniques in the mass market 

has not yet affected the current user interface programming frameworks: the 

underlying model is still bound to the observer pattern [141] where events 

occur atomically in time and they are notified through messages or callbacks. 

The support for gestures has been mostly forced in the same paradigm by 

hiding the gesture recognition logic under the hood, which usually means 

providing high-level events when the gesture is completed, and leaving the 

possibility to provide intermediate feedback to the handling of low-level 

events, which are not correlated with the high-level ones.  

Indeed, it is difficult to create gestural interfaces following the observer 

pattern for two main reasons. The first one is that the temporal extension 

of a gesture is significant with respect to the time scale of a system, since a 

gesture may require seconds to complete. The observer pattern is 

particularly effective when applied to events that can be considered atomic 

from the system’s and the user’s point of view: a button click takes such a 

small amount of time that both the user and the application can ignore what 

happens during the click. Gestures break this assumption, since they have a 



CHAPTER 1 INTRODUCTION 20 

longer duration in time. In addition, the application usually has to provide 

feedback during the gesture execution, in order guide the users. Therefore, 

a single event does not fit a gesture in general.  

In addition, the observer pattern has been successfully adopted in the 

development of user interfaces (UIs), since it is particularly effective in 

describing actions that do not have temporal relationships between them. 

For instance, the handlers that deal with the pointer interaction work 

independently from the timing sequence of e.g. the keyboard events.  

Such property, which is a strength for classic WIMP (Window, Icon, 

Menu, Pointing device) UIs, is the second problem in modelling gestural 

interaction with the observer pattern. Indeed, in order to recognize a 

gesture, a developer has to define the temporal relationships among different 

low-level device event, through code that tracks the order of the received 

events. For instance, in order to recognize a pinch gesture, the developer 

has to ensure that at least two fingers are currently touching the screen 

before reacting to touch move events. The code that establish whether the 

event sequence is correct or not is mixed with the definition of the user 

interface behaviour, increasing the code complexity and limiting its reuse. 

Another aspect that is difficult to model with the observer pattern in UI 

development is related to the animations. A simple approach may rely on a 

timer tick notification. Each time the tick handler is triggered, the code 

changes some visualization attributes and repaints the view. However, when 

we want to compose more than one animation, such approach is difficult to 

maintain since the actions that deal with the different animations are mixed. 

The point is that it is easier to describe an animation as a continuous rather 

than a discrete process. Most modern UI toolkits describe the animations 

providing an initial state, a final state and an interpolation algorithm 

between the two states. Given the duration, the UI toolkit can define a set 

of discrete steps that changes the UI state from the initial to the final one. 

An effective approach for modelling gestures solves the dual problem: for 

each single discrete step (the low-level device events) in a given set (how 

the user performs the gesture), it should be able to provide information on 

the distance between the initial state (the start of a gesture) and the final 

state (the end of a gesture), continuously.  

This means that gesture description should have different level of 

granularity: it should be possible to consider it as a whole, reacting to its 

complete execution, but it should be also possible to associate feedback and 
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UI behaviour to gesture sub-parts, in order to support users during the 

execution of a complex gesture. 

1.2 Objectives of the thesis 

The objective of this thesis is the definition of a gesture meta-model that 

can be effectively used for creating descriptions at the desired level of 

granularity. 

The meta-model should be abstract enough to describe gestures recognized 

by different devices (e.g. touch screens, remotes, Microsoft Kinect etc.). We 

follow a compositional approach: the definition of a complex gesture is 

created through the composition of smaller sub-gestures, connected through 

a set of operators. Such approach allows to declarative define a gesture and 

to reuse its definition in more than one application, independently from a 

given UI control. In this way, it is possible for instance to separate the pinch 

gesture from the image viewer that exploits it for e.g. enlarging a photo. 

In addition, the developer should be able to attach the behaviour 

definition to the different parts of a gesture, either if its recognition 

completes successfully or in case of partial recognition.  

Once such meta-model has been defined, it should be instantiated for at 

least to two different gesture recognition techniques, in order to validate it 

with different sources of input. 

Finally, we want to demonstrate its effectiveness through a set of 

applications that define gestural interaction through the modelling elements. 

We consider out of scope for this thesis an evaluation of the overall 

usability of the applications created with the proposed approach. The effort 

required for investigating the correlation between modelling and usability 

forced us to focus on the meta-model definition and validation, but we plan 

to consider this aspect in further research. 

1.3 Requirements summary 

In this section, we summarize the requirements we identified as success 

criteria for the definition of our gesture description meta-model. The 

motivation for such requirements is discussed in Chapter 2. 

R1. Temporal evolution. The meta-model must describe the 

gesture temporal evolution. The developers should be able to define 

the behaviour of the user interface according to this temporal 
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evolution, without the need of tracking explicitly the different 

stages of the gesture performance outside the model definition. 

R2. Granularity. Provided that a gesture may take seconds to 

complete, it must be possible for developers to define user interface 

reactions to partially completed gestures, not only to their 

complete recognition. 

R3. Separation of concerns. The definition of gestures and the user 

interface behaviour must be separated, in order to allow the reuse 

of the same gesture model in different applications. 

R4. Multiple recognition devices. The meta-model must support 

different recognition devices, abstracting from a particular 

recognition technology. 

R5. Parallel interaction. The meta-model must handle the 

recognition of different gestures at the same time, in order to allow 

parallel interactions with the same application. 

R6. Equivalent descriptions. The same gesture can be performed in 

different ways (e.g. a pinch may be performed either with one hand 

or with two hands). The meta-model must support the definition 

of equivalent gestures. 

During the development of the proposed modelling approach, we identified 

another requirement that does not apply to the gestural interaction 

modelling in general, but only to compositional approaches: 

R7. Selection ambiguity. The recognition support must provide 

means for identifying or managing the selection between two 

different gestures that shares the same initial sequence. 

1.4 Overview of the results 

This thesis describes the following research results: 

 The definition of GestIT (Gesture In Time), an abstract gesture 

description meta-model, based on the composition of a ground 

terms (which represent atomic gestures) through a set of 

composition operators. The semantics of the meta-model elements 

have been defined through Non-Autonomous Petri Nets [36]. 

 The instantiation of the abstract gesture description meta-model 

for describing two different recognition supports: multitouch and 

full-body. 



1.4 OVERVIEW OF THE RESULTS 

 

23 

 The implementation of a proof-of-concept library that allows 

creating user interfaces exploiting the gesture models. The library 

can be exploited for creating multitouch and full-body gesture 

applications. 

 The implementation of a set of sample applications that 

demonstrate the effectiveness of the meta-model.  

 The integration of the gesture modelling technique into MARIA 

[111], a state of the art User Interface Description Language 

1.5 Thesis organization 

The thesis is organised as follows: 

 Chapter 1 introduces the context and the motivation of the thesis. 

 Chapter 2 discusses the related work and different devices and 

solutions for gesture recognition. 

 Chapter 3 introduces the abstract gesture meta-model, and its 

instantiation for multitouch and full body gestures 

 Chapter 4 defines a set of gestures for multitouch and full-body 

interaction using the proposed modelling approach. 

 Chapter 5 discusses a proof-of-concept library that supports the 

meta-model, together with a set of sample applications. 

 Chapter 6 extends the MARIA [111] User Interface Description 

Language with gestural interaction. 

 Chapter 7 discusses how the proposed modelling approach 

addresses three different problems in modelling gestural 

interaction: the support for different granularity levels, the 

separation between the gesture recognition code and the definition 

of the UI behaviour, the ambiguities in the definition of different 

gestures that have a common prefix. 

 Chapter 8 reports an evaluation of the proposed meta-model, 

according to the success parameters established for the thesis. We 

report also an inspection of the notation according to two different 

frameworks: Myers et al. [97] and the cognitive dimensions [51]. 

Finally we report on a preliminary analysis of the GestIT library 

performance. 

 Chapter 9 summarizes the results and describe possible directions 

for further research. 
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Chapter 2  

Background and Related Work 

This chapter provides an overview on the research topics that have inspired 

or that are advanced in this thesis. The discussion starts with a quick 

overview of the different devices that can be used for creating gestural 

interfaces. After that, we provide a background on previous work on formal 

techniques for modelling the user input. Then, we focus more on other 

declarative approaches for modelling gestural interaction, briefly comparing 

them with the one proposed in this dissertation. Next, we provide 

background information on model-based approaches for user interfaces. 

Finally, we introduce the Non-Autonomous Petri Nets, since we exploit 

them for formally defining our gesture meta-meta model. 

2.1 Enabling recognition technologies  

This section discusses the main advances and innovations that introduced 

gestural interaction to the mass-market. Some of them are due to 

commercial innovation in existing platforms, such as mobile devices or game 

consoles. Others have a long history, and eventually the technology 

evolution (e.g. the increase of computing capabilities of mobile phones) 

created the possibility to make them available to a wider set of users. 

First, we have to define the meaning of the word “gesture”. Gestures 

consist of movements of hands, face or other parts of the body that are used 

for communication between people, replacing or enhancing speech. Gestural 

interfaces emulate such kind of communication, recognizing a set of gestures 

and exploiting them as input for computers [76].  

Many tracking and sensing technologies have been employed in order to 

recognize gestures through about thirty years of research. For instance, in 

1986 Zimmerman et al. [148] already created gloves equipped with sensors 
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and force feedback for measuring finger bending and recognizing hand 

motions.  

With respect to the recognition techniques, in [95] it is possible to find a 

survey on the different approaches for gesture recognition. In particular, we 

can list the following techniques that have been employed for arm and hand 

gestures: Hidden Markov Models [132,143], Particle Filtering and 

Condensation [60,84], Finite State Machines [17] and Neural Networks [144]. 

Other computer-vision techniques that have been applied for recognizing 

facial motions are important also for full-body gestures, such as Hidden 

Markov Models, Principal Component Analysis [132], Contour Models [69] 

Feature Extraction[101], Gabor Filtering [83]. 

The quest for a technique that is able to combine the recognition of 

natural movements with a high level of precision is the “Holy Grail” for the 

gestural interaction [40] and it is both one of the most investigated aspects 

and one of the most challenging and open research question. However, the 

techniques that enable the recognition of the gestures either on the hardware 

or on the software side are not in the scope of this thesis. We aim to define 

an effective model for defining the gesture structure according to the 

different features that are provided by the recognition platform. 

2.1.1 Multitouch 

Multitouch UIs recognize the position of different touches on the same screen 

simultaneously. Even if such kind of interaction has become popular after 

the iPhone launch in 2007 [4], it is possible to find in literature systems that 

used such screen interaction technique already in 1984 [68]. A survey on the 

history of touch-based systems can be found in [25]. 

The technology support has been refined through the years the technique 

was applied mainly for large and collaborative projective walls as, for 

instance, in the Diamond Touch system [37]. It allowed multiple-user and 

touches recognition using an array of antennas embedded in a table top, 

used as a projector screen. 

The application of the Frustrated Total Internal Reflection [54] 

introduced an innovative and low-cost implementation for a multi touch 

surface. 

However, the industrial success of multitouch arrived with its application 

on mobile devices: Apple introduced in 2007 the iPhone, which combined 

this interaction technique with the idea of having a phone without hard keys 
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(already experimented with Simon by IBM & Bell South). This led to the 

possibility of having a larger screen and an enhanced interaction vocabulary 

with respect to its competitors. 

In the same year, Microsoft introduced Surface (today renamed Pixel 

Sense [86]) an integrated hardware and software table-top system that 

enable multitouch and multi-user interaction on the same application. The 

system allows also to place and move physical objects on the table-top, for 

enhancing the interaction with tangible tags. 

Besides the research on new technologies for enhancing the multitouch 

support, different work focused on the definition of a set of gestures that 

can be commonly accepted by users for executing different actions (e.g. 

undo-redo, object selection etc.). For instance, in [140] the authors 

conducted a user study on user-defined gestures, with the aim of finding a 

consensus on the interactive meaning of gestures.  

Nowadays multitouch interaction is mature in its application. All major 

mobile device vendors created multitouch enabled smartphones, and all 

major desktop operating systems support multitouch interaction.  

2.1.2 Remote-based gesture recognition 

The release of the Nintendo Wii in 2006 [102] leveraged the gesture-based 

interaction from the research scope to the entire entertainment market. This 

game console introduced an innovative controller called Wii Remote (or 

Wiimote in short), which is equipped with a tree axis linear accelerometer 

for sensing controller accelerations, an infrared camera for exploiting the 

remote as a pointing device, and a set of buttons 

The IR camera senses the light coming from ten emitters, positioned into 

the Sensor Bar, another device placed near the screen. The controller has a 

shape that makes it suitable to be used with one hand, similar to a normal 

TV remote controller. It has no wires and it communicates with the console 

through a Bluetooth connection.  

Such hardware configuration broke the static game-pad interaction, where 

the player has to stay motionless and control the actions pressing buttons. 

The user started to control avatars moving the remote, performing 

movements immediately replicated by her virtual counterpart. For instance, 

in a golf game, the player mimes the club control with the remote, and the 

power of the stroke can be associated to the movement speed, rather than 

to a bar displayed on a GUI.  
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Such kind of natural interaction opened the video game market (at least 

for Nintendo) to “casual gamers”, people who do not have a deep knowledge 

of video games and do not play videogames very often [65]. 

The Sony PlayStation 3 adopted a similar controller in 2010 [123]. The 

hardware configuration of this controller includes a three-axis accelerometer 

and a three-axis gyroscope, which enables sensing the also the angular speed 

of the movement. Differently from its Nintendo counterpart, the remote is 

equipped with a spherical RGB light emitter. The orb changes its colour in 

order to be recognizable for a camera in the surrounding environment, 

enabling a precise 3D position tracking. 

A similar operation principle is shared by the Gyration “in air” mouse [52], 

a wireless device designed for the manipulation of 3D environments, 

exploited in [38] for creating a virtual orchestra game. 

Such kind of remote controllers are not able to track the movements of 

the whole body if compared to e.g. Microsoft Kinect. However, they provide 

haptic feedback to the user, which is particularly useful when there is the 

need to manipulate virtual objects, offering a graspable counterpart in the 

physical world. For instance, it is simpler for the user to understand the 

aforementioned golf club metaphor if she has a physical object that represent 

the club itself, rather than performing an in-air gesture pretending to have 

something in her hands.  

In addition, it is possible for the interface designer to exploit the physical 

buttons in order to mitigate the well-known Midas Touch problem [62], 

starting the gesture recognition only when the user presses a button, 

otherwise avoiding the movement tracking.  

2.1.3 Image-based gesture recognition 

Another option that is widely adopted in both research and industry 

solutions for gesture recognition is based on image analysis coming from 

RGB, infrared and depth cameras, which can be also exploited in 

combination. 

One of the first examples for this kind of approach is CamSpace [29], a 

software tool that exploits webcams for turning any object into a game 

controller. Such generic approach comes at the price of losing possible haptic 

feedback coming from the system: the tracked object cannot be used to send 

output to the user. 
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A similar approach that lead a great change in the way people interact 

with games has been produced with the launch of Microsoft Kinect [87], 

released in 2010. The first version of the device was designed as a game 

controller for the XBox 360 console. The device is composed by a bar placed 

on top of a motorized pivot, which has to be placed horizontally below or 

above the screen. It is equipped with an RGB camera, a depth sensor and 

an array of microphones.  

A newer version with a similar configuration, improved in its hardware 

components, was created in 2011 together with the launch of the official 

Microsoft SDK for Kinect applications. It supported the gesture tracking at 

a nearer distance with respect to the previous version, which makes the 

sensor suitable for the usage in desktop settings.  

The hardware configuration enables the tracking of the whole body and 

the recognition of facial expressions. The microphones allow the speech 

recognition.  

The Kinect was the Microsoft’s answer to Nintendo Wii, and with this 

new type of devices all game consoles in the marked were equipped with 

gesture recognition devices.  

An improved version of this successful device (the Kinect 2) is expected 

at the end of 2013 [137]. At the time of writing, only a set of specifications 

and a presentation video are available, but it should include an improved 

version of the hardware and a more powerful SDK. The new available 

features are a smoother joint tracking, the recognition of the hand state 

(open or closed), and the measurement of biometrical indices such as the 

heart rate or the muscle tension. 

Another promising device that exploits such kind of approach is the Leap 

Motion sensor [80], which is a small bar to be placed under the screen of a 

desktop computer or a laptop. It is able to track the position of the fingers 

(or even sticks or pencils) with a precision of up to 0.01 mm. Such precision 

enables the creation of touchless interfaces with a robust 3D hand tracking.  

Two infrared cameras and three infrared emitters compose the device, 

which tracks the hand position into a hemispherical surface of about one 

meter. It is currently available for only for developers from October 2012, 

and it has been delivered to consumers on September 2013. 

The image processing approach has a higher flexibility on the supported 

gesture types, since it is able to track the whole body or both hands. 

However, such configuration limits to the visual and audio channels the 
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possibility to provide output to the user, which is a clear disadvantage with 

respect to the haptic feedback that can be supported by a remote controller. 

2.1.4 Floor devices 

Considering again the entertainment field, it is possible to find another 

device type that was largely exploited for enhancing the playing experience: 

the so-called dance pads. Introduced by Konami with the game Dance Dance 

Revolution, they essentially are a huge directional pad with big arrow-

shaped buttons that can be pressed with feet. This configuration allows the 

player to move following the music and the button sequence displayed on 

screen.  

Even if such configuration is not able to track the body movements, the 

button sequence to be pressed with the feet forced user to dance. 

A different kind of floor device is the Wii balance board, which is a 

rectangular feet panel that is equipped with two pressure sensors. It is 

mainly used in snowboard emulation games and in aerobic and yoga 

activities. 

It is possible to find different work in literature that exploit such device 

for the interaction: a virtual reality controller [53], in combination with hand 

gestures for table tops [118] or 3D touch devices [70]. In addition, there are 

many example in literatures that use such devices for medical purposes (e.g. 

[49] and [145]). 

In [9] the authors proposed Multitoe, an high-resolution frustrated total 

internal reflection floor, which is able to detect the shape and the shape of 

the users’ footprints. Based on such shape and on the estimation of the 

pressure on the floor (using the brightness of the different footprint parts), 

it is possible to reconstruct postures and to interact with different widgets 

(keyboard, buttons, menu etc.). 

An extension of this approach based on sensing the floor pressure is 

provided by GravitySpace [23], which exploits a high-resolution pressure 

sensitive floor for tracking the position of both furniture an multiple users 

in the room. The system is able to reconstruct the movements of each object 

and person on the surface analyzing the changes on the pressure image, and 

to provide a real-time 3D reconstruction of the room scene on the floor 

through a mirror metaphor.  
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2.2 Input modelling with formal 
approaches 

In this thesis, we exploit a formal notation for defining a gesture meta-

model. The idea of describing different types of input through a formal 

notation has been widely investigated in literature, using different 

formalisms. Such kind of research is recurrent when new type of input of 

devices are available to the mass market. 

The first category considers Finite State Machines (FSM), which have 

been exploited not only for gestural interaction, but also for modelling input 

coming from standard input devices such as mouse and keyboard. For 

instance, Myers [98] defined a set of reusable interactors that encapsulate 

the interactive behaviour, hiding the details of the underlining window-

manager events. The control part of such interactors, which managed the 

input coming from the different devices, was modelled with FSMs. 

In the same years, Henry et al. [56] used FSMs for solving the problem of 

modelling non atomic actions on the UI, such as the drag and drop 

technique. Indeed, such kind of interaction is particularly tedious for 

developers, since they need to track the event sequence in order to 

implement describe the temporal relationship of the user’s actions, which is 

close to the definition of a gesture.  

The same problem has been addressed also in [120], where FSMs are 

exploited together with a set of intermediate layers between the input and 

the application. They separate the UI object picking and the sequence 

recognition from the definition of the UI behaviour. In this way, the authors 

were able to increase the reuse of tracking code, isolating it in a component 

library. 

The FSMs approach for modelling the UI dialogues has been also 

integrated into widely adopted window toolkits, such as Java Swing, by 

Appert et al. [3]. In this work, the authors integrate FSMs inside the 

definition of the UI classes, in order to define in a single place the interaction 

code. Different FSMs can work together at the same time, in order to avoid 

the state explosion problem. One of the motivating examples was again the 

drag and drop interaction technique.  

Jacob et al. [61] applied FSM to non-WIMP user interfaces: they 

separated two aspects of such kind of interfaces. The first one is the response 

to continuous input, which is managed by data-flow oriented variables. The 

second aspect is the connection among these continuous variables that can 
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change according to different discrete events. The different set of 

connections that are active among the continuous variables is described 

through FSMs.  

Increasing the number of modelled dialogues, the number of states in the 

FSM definition explodes, and it may be difficult for designers to manage 

them. In order to mitigate such problems, in [14] rich interactions are 

defined using a hierarchical variant of FSMs, which includes sub-machines 

that are composed together for defining the UI behaviour.  

Besides FSMs, context-free grammars or the equivalent push-down 

automata have been exploited for modelling the user input. We can 

remember here the work in [103], where the authors described a user 

interface generator that defined the accepted input through context-free 

grammars. The same formalism was the core of a formal UI specification 

defined in [15]. The authors exploited it not only for experimenting with 

different designs for the same UI, but also for proving the UI conformance 

to a set of guidelines.  

The combination of different interaction modalities needed a formalism 

that was able to integrate different concurrent information sources. In [2], 

Accot et al. used Petri Nets for modelling low-level graphical interaction 

events. In addition, they showed how it was possible to create multimodal 

models starting from single-modalities, and composing them into one Petri 

Net. They exemplified the composition technique defining a bimanual 

interaction model for a direct-manipulation interface. A similar approach 

for modelling bimanual interaction has been proposed in the same years in 

[57]. 

More recently, Bo et al. [16] proposed an extension of Petri Nets that 

integrate the unification of typed feature structures [31]. Petri Nets provide 

a seamlessly definition of concurrent user’s input, while typed feature 

structures support the specification of partial meaning and the integration 

different modalities, together with the specification of the constrains on such 

unification. 

In this dissertation, we exploit a particular type of Petri Net, called Non-

Autonomous [36], in order to provide the semantics of the temporal 

operators for our compositional model. Our approach is able to support and 

integrate different modalities, since we provide an extensible definition for 

the ground terms involved in the temporal expressions.  
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2.3 Declarative approaches for gesture 
definition 

In this section, we review different approaches in literature that model 

gestures following a declarative and/or compositional approach. We 

differentiate between the work that addresses multitouch and the work that 

addresses full-body gestural interaction.  

Through the analysis of the different work, we identified a set of problems 

that are addressed by the different notations, in order to define a set of 

requirements for our gesture meta-model. The following is the list of the 

requirements identified: 

R1. Temporal evolution. The meta-model must describe the 

gesture temporal evolution. The developers should be able to define 

the behaviour of the user interface according to this temporal 

evolution, without the need of tracking explicitly the different 

stages of the gesture performance outside the model definition. 

In the different work we analysed, such requirement was supported 

by a formal description of the gesture, through different notations: 

grammars [66], Petri Nets [7] or regular expressions [72,73].  

R2. Granularity. Provided that a gesture may take seconds to 

complete, it must be possible for developers to define user interface 

reactions to partially completed gestures, not only to their 

complete recognition. 

The granularity requirement was supported in the different work 

that proposed a compositional approach for defining gestures, 

where it was possible to combine different definitions for obtaining 

a new one. For instance, this was possible with grammars [66], rule-

based [50,59,119] and regular expressions [72,73]. 

R3. Separation of concerns. The definition of gestures and the user 

interface behaviour must be separated, in order to allow the reuse 

of the same gesture model in different applications. 

Independently from the different modelling approach and from the 

supported interaction device, the notations that raised custom 

events for notifying the gesture recognition supported such 

requirement [7,39,58,66,71,72,73,82]. This requirement it is not 

supported by most rule-based approaches, which usually define the 

behaviour in the rule body [50,59,119]. 
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R4. Multiple recognition devices. The meta-model must support 

different recognition devices, abstracting from a particular 

recognition technology. 

Such requirement is usually supported creating an abstraction layer 

between the recognition support and the actual device used for 

tracking the different features [7,39,58,59,82]. 

R5. Parallel interaction. The meta-model must handle the 

recognition of different gestures at the same time, in order to allow 

parallel interactions with the same application. 

There are two main techniques for supporting the parallel 

interaction. The first one is allowing the simultaneous recognition 

of a set of gesture description, which are provided as a list. Such 

gestures are always matched against the updates coming from the 

recognition device. Such approach is common to the rule-based 

notations [59,71,119] or in custom events engines [7,115] . Another 

approach is to provide a composition operator that allow the 

developer to specify such parallel recognition as a temporal 

relationship among different gestures, which may be not available 

from the beginning [66]. 

R6. Equivalent descriptions. The same gesture can be performed in 

different ways (e.g. a pinch may be performed either with one hand 

or with two hands). The meta-model must support the definition 

of equivalent gestures. 

Most of the work we analysed support this feature, providing a 

composition operator for specifying the different alternatives.  

2.3.1 Multitouch 

In this section, we discuss different work in literature that provided different 

notations for modelling multitouch gestures. We compare the different 

approaches against the set of elicited requirements. 

At the end of this section, we summarize the support provided by all the 

approaches in Table 2.1. 

 

Kammer et al. [66] introduced GeForMT, a formalization of multitouch 

gestures that aimed to fill the gap between the high level complex-gestures 

(such as pinch to zoom) and the low level touch events provided by different 
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toolkits. The description language, defined through an Extended Backus-

Naur form grammar, is based on five different elements:  

 the pose function describes the shape of the tracked touch;  

 the atomic gestures describe the basic movements of the different 

touches (move, point, hold, line, circle and semicircle) 

 the composition operators define composite gestures through a 

parallel or a sequential temporal relationship;  

 the focus specifies the currently manipulated application object or 

objects;  

 the area constraints defines the relative movements among the 

different touches (e.g. two touches that cross their positions). 

The grammar productions of these five elements represent interactive 

gestures. With respect to the approach described in this dissertation, 

GeForMT is limited in scope, since it can be applied only to multitouch 

gestures. The composition operators do not provide a way for defining the 

equivalence of two different gesture definitions (e.g. through a choice 

operator). 

 

In [50], Gorg et al. modelled multitouch gesture recognition through a 

labelled deductive system [44]. In order to define the interaction, the 

designer has to specify a set of rules that is able to recognize the expected 

sequence of touch-related events. Two different types of rules are exploited 

in this approach: the first is an inclusion rule, where the designer defines 

the expected sequence of events; the second is the exclusion rule, which 

specifies explicitly which sequences break the recognition.  

Through the rule system, the designer has a fine-grained control on the 

recognition process, in particular when two gestures share the same common 

prefix, since it is possible to define priorities. However, exclusion rules make 

it difficult to compose gestures designed for different applications, since the 

developer has to find out if they inhibit the recognition of the composed 

gesture. In addition, the temporal evolution of the gesture is not stated 

explicitly, but it should be reconstructed from the rule set. 

Regarding the separation of concerns, the rule body defines the reaction 

to the triggered events. This approach mixes the logic for the gesture 

recognition with the behaviour of the UI.  

 

Scholliers et al. [119] defined Midas, an architecture for recognizing 

gestures according to a set of rules, which are matched against a set of input 
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facts using a logical rule inference engine. The rules are able to recognize 

multitouch gestures, taking into account different features such as the touch 

positions and speed, and the touch state (appear, move and disappear). Each 

rule has a prerequisite part, which defines the input fact pattern to be 

recognized, and an action part that specifies the UI behaviour.  

The rules have different priorities in order to control the effects of the 

overlapping ones. The composition is possible through a set of temporal 

operators, which are able to compare the distance in time between two input 

facts. In this way, it is possible to define complex gestures asserting that the 

different components occurred with the specified temporal relationship.  

With a rule-based approach, the designer has to figure out the temporal 

relationship between gestures reading and understating the rules. The 

approach proposed in this thesis describes this aspect more explicitly. 

Similarly to [50], the definition of the UI behaviour is contained into the 

same rules that matches a gesture. 

 

In a follow-up work, Hoste et al. [59] extended the Midas approach for 

describing multimodal interfaces. Mudra (which is the extension name) is 

able to unify the input stream coming from different devices, which exploits 

even different modalities. It provides the designer with a way to define both 

the low-level handling events, and the high-level rules that combine them 

into a unique software architecture. The rule language has been extended 

for supporting facts coming from e.g. voice and hand movements, but its 

structure still mix the gesture recognition and the behaviour definition. Even 

if we do not explore deeply the multimodality aspect in this thesis, we 

demonstrate with the application in section 5.4.4 that is possible to combine 

the gestural and the vocal modality in GestIT.  

 

Khandkar et al. [71] proposed GDL (Gesture Description Language), 

which separated the gesture recognition code from the definition of the UI 

behaviour. The description language focus on multitouch gestures, and it is 

defined through three components: the gesture name, the code for the 

gesture validation and a return type, which represents the data notified with 

a callback to the application logic, containing all the relevant information 

(e.g. the entire sequence of touch positions, the number of touches etc.).  

The approach is compositional, since it is possible in the validation part 

to reuse different gesture recognizers. However, since each recognizer 

represents simply a boolean function, it not possible to define all the 



2.3.1 MULTITOUCH 

 

37 

temporal sequences that we can define with GestIT, but it is possible to 

provide different equivalent version of the same gesture. In addition, once 

the composed gesture is defined, it is not possible to register a handler to 

its sub-parts, since the only event that is notified is the completion of the 

entire gesture. 

 

GISpL [39] proposes a JSON-based syntax for describing gestural 

interfaces and it supports different interaction modalities such as 

multitouch, digital pens, regular mouse (or mice), tangible tokens and mid-

air gestures. The syntax defines how to monitor a set of features observed 

in the input stream, such as e.g. the count of different objects in a region, 

the matching accuracy between a predefined path and the one travelled by 

a given input object etc. Each feature can be related to single or multiple 

sources.  

When one among the different gestures is recognized, the target 

application receives a notification in the form of a specific event. It is 

possible that more than one gesture is detected at the same time. The 

approach enables the reuse of the gesture definition in different applications, 

and the separation between the gesture recognition and the application 

behaviour aspects. However, the language does not provide compositional 

operators. Therefore, there is no way to create complex gestures describing 

the temporal relationships among simpler ones.  

 

The maturity of the multitouch support on different devices makes this 

interaction suitable to be adopted in safety-critical settings. However, in 

such environments it is necessary to prove a set of properties of the UI, such 

as invariants or constraints on the behaviour. In [7], Arnaud et al. provide 

a formalization for multitouch gestures, which can be exploited in order to 

prove a set of UI characteristics for employing them in a plane cockpit. The 

proposed architecture is based on the Interactive Cooperative Objects [99], 

a formalism that exploits an object-oriented description of the structural 

and static aspects of the UI, while it exploits Petri Nets for describing the 

dynamic behaviour. The instantiation of such kind of objects for multitouch 

interaction defines a set of layers that are similar to the ones proposed in 

this thesis for supporting generic gestures: the first level creates and 

abstraction of the low-level device events (called low-level transducer). Such 

events are passed to the second layer, between the device and the 
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application, which contains a set of gesture recognizers that raise high-level 

events according to the successful completion of a gesture (e.g. pinch or tap).  

Finally, the application reacts to such high-level events. In the work by 

Accot et al., Petri Nets are used to define directly the behaviour of an 

interaction object that recognizes a gesture, therefore the expressive power 

of the modelling language can be considered the same, since it is possible to 

directly “reuse” the Petri Net definition of the composition operators we 

propose in this thesis.  

However, the approach is affected by the granularity problem: the high-

level events are raised only when a gesture completes successfully, without 

any intermediate notification. In addition, all the interaction objects that 

represent the different gesture receive the low level events in parallel, and 

this limits the possible temporal relationships that can be defined among 

the different gestures. 

 

In Table 2.1, we summarize the comparison of all the approaches discussed 

in this section against the set of requirements we identified. None of them 

satisfied the full set of requirements. 

 Temporal 

evolution 

Granularity Separation 

of concerns 

Multiple 

recognition 

devices 

Parallel 

interaction 

Equivalent 

description 

Kammer 

et al. [66] 
      

Gorg  

et al.[50] 
      

Scholliers 

et al. [119] 
      

Hoste  

et al. [59] 
      

Khandkar 

et al. [71] 
      

Echtler  

et al. [39] 
      

Arnaud  

et al. [7] 
      

Kin et al. 

[72,73] 
      

Table 2.1: Comparison of different multitouch gestures definition approaches 
in literature 
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2.3.1.1 Proton++ 

In this section, we analyse the gesture description that, to the best of our 

knowledge, is the closest one to the approach described in this dissertation.  

Proton++ [72,73] is a multitouch framework allowing developers to 

declaratively describe custom gestures, separating the temporal sequencing 

of the events from the code related to the behaviour of the UI.  

Multitouch gestures are defined as regular expressions, where literals are 

identified by a triple composed of: 

1. The event type (e.g. touch down, move and up) 

2. The touch identifier (e.g. 1 for the first finger, 2 for the second 

etc.) 

3. The object hit by the touch (e.g. the background, a particular 

shape etc.).  

It is possible to define a custom gesture exploiting the regular expression 

operators (concatenation, alternation, Kleene’s star).  

Figure 2.1 shows an example of gesture definition using Proton++. The 

gesture is a simple two-hand scale (pinch) gesture. The different colours in 

the lower part of the figure correspond to the different gesture parts in the 

expression.  

The entire expression is built composing touch events represented in the 

𝐸𝑇
𝑂 form, where 𝐸 is an event (𝐷 for touch down, 𝑀 for touch move and 𝑈 

for touch up), 𝑂 is a touchable object (in our example 𝑠 is the star, while 𝑎 

can be any object) and 𝑇 is the touch identifier (simply an integer). It is 

possible to create the gesture definition composing such literals through the 

usual regular expression operators.  

 
Figure 2.1 An example of gesture definition with Proton++ 

The red part in Figure 2.1 describes starting part of the gesture, where 

the user touches the screen with two fingers. After that, she can converge 

or diverge the hands with an iterative movement of both fingers (the green 
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part in Figure 2.1). The gesture ends when both fingers are lift from the 

screen (the blue part in Figure 2.1). 

The underlining framework is able to identify conflicts between different 

composed gestures and to return their common longer prefix in order to let 

the developers remove the ambiguous expression or assign different 

probability scores to the two gestures.  

The runtime support receives the raw input from the device, transforms 

it into a touch event stream that is matched against the defined regular 

expressions.  

When one or more gestures are recognized, the support invokes the 

callbacks associated to the related expressions, selecting those with higher 

confidence scores (assigned by the developer in case of conflict between the 

expression definitions at design time). 

An improved version of the framework (presented in [73]) included also 

the possibility for the developer to calculate a set of attributes that may be 

associated to an expression literal. For instance, it is possible to associate 

the current trajectory to a touch move event, and let the framework raise 

the associated events (read recognize the literal) only if its movement 

direction is the one that the designer specified (e.g. north, north-west, south 

etc.). 

Other examples of such attributes are the touch shape, the finger 

orientation etc. In Proton++ it is possible to define the custom gestures 

through a graphical notation (called tablature), which has been 

demonstrated to be more understandable for the developers if compared 

with normal code. 

Since this language shares different features with GestIT, such as the 

separation between the gesture description and effects, and the possibility 

to create gesture descriptions composing ground terms trough a well-defined 

set of operators, we compare its expressiveness against our approach in 

section 3.4.  

2.3.1.2 Selection ambiguity 

The framework described in [120] does not take into account gesture 

modelling, but it focused on the input uncertainty problem. The same 

problem affects in particular the compositional approaches when two 

different gestures, which have a common starting prefix, are connected 

through a choice operator (it is possible to execute either one or the other). 

Starting from the fat finger problem in multitouch interfaces [42], the 



2.3.2 FULL-BODY 

 

41 

authors propose to assign a probabilistic score to the input meaning (read 

the selected object). For each possible interpretation of the input, the 

different interactors send a notification of the events to an intermediate 

layer between the interface view and the behaviour, called mediator. Such 

component is in charge of handling the uncertainty according to different 

policies. Once the mediator is able to pick one among the different actions, 

it performs the selection and only one among the possible interpretation is 

sent to the regular interface behaviour definition.  

In this dissertation, we propose a different solution for this problem in 

section 7.3, which exploits the possibility to split a gesture into different 

sub-parts. Such solution is able to seamlessly provide a support not only for 

the developer that needs a way to manage the uncertainty, but also for 

providing guidance to the users during the gesture performance, which has 

been demonstrated effective for learning the interaction vocabulary [10]. 

Therefore, we add to our set of requirements the following: 

R7. Selection ambiguity. The recognition support must provide 

means for identifying or managing the selection between two 

different gestures that shares the same initial sequence. 

2.3.2 Full-body 

The compositional and declarative modelling techniques have been 

scarcely applied to full-body gestures in literature. The state of the art 

abstraction for creating gestural interfaces with depth cameras is based on 

tracking the sequence of skeleton frames [115,138]: the sensor driver, 

according to images captured by the cameras, updates the number of 

skeletons and the position of their joints, using inverse kinematic techniques 

[122,147].  

The documentation for such programming toolkits presents such 

abstraction as the usual instantiation of the observer-pattern: the developer 

has to register to an event (the skeleton position change) and then the 

application has to react to such change. Therefore, since there is nothing 

new for the window managers, it is possible to build an intermediate layer 

between the device drivers and the application logic in order to uniform the 

new interaction devices to the existing input techniques, allowing the 

developers to map them to mouse or keyboard events [128]. This has the 

obvious advantage of reusing existing applications with different interaction 

devices with little effort.  
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However, gestural interaction is intrinsically continuous, and the event-

handlers for the skeleton position change are filled by code that tries to filter 

the notifications that do not correspond to the expected temporal sequence, 

as we better detail in Chapter 7.  

The research community and the device vendors have obviously identified 

such problem and different solutions.  

The first one is offering an extension point for the device driver SDK, 

where it is possible to concentrate some recognition code that defines a new 

custom gesture. When such gesture is recognized completely, the library 

raises a custom event and the developer can attach different handlers in 

different points of the application code. Such solution does not allow 

developers to provide intermediate feedback during the gesture performance, 

since the complex gesture cannot be decomposed in smaller parts, violating 

our granularity requirement. 

Such approach is adopted in NITE [115] but, given the amount of time 

needed by the user for completing a gesture, is not sufficient for providing 

an adequate support to developers. It is possible to provide a simple 

explanation for this point simply considering the sample code that NITE 

provides to developers for demonstrating such SDK feature. The sample 

application recognizes a circular hand motion and changes the background 

colour of the screen when the user completes the movement. Even in this 

simple case, the application has to provide an intermediate feedback during 

the gesture execution, otherwise the user is not able to understand if it is 

tracking her movements correctly. Therefore, the sample provides such 

feedback showing a circle and a line that represents its radius on the 

application UI. When the user moves her hand, the radius rotates around 

the centre of the circle. If the user does not perform the gesture correctly, 

the radius returns in the initial position.  

The sample code shows, even in this simple case, that the single-event 

approach is not suitable for gestures: the screen-background change is 

attached to the custom event, raised at the end of the gesture. However, in 

order to provide the intermediate feedback, the sample code tracks the hand 

position again, since it is not possible to access the inner components of the 

custom gesture. However, such solution allows the recognition of different 

gestures at the same time and, raising the same event for different gestures, 

it is possible also to define the equivalence between two gestures.  

A more effective solution is presented in [58], where the authors provide 

a declarative syntax for defining complex gestures. The different gesture 
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recognition devices are exposed as a data stream, which is analysed by the 

AnduIN [75] processing engine. The custom events are defined with an SQL-

like syntax that create triggers for the sequences that are compliant to a 

specific selection rule. Even if the declarative syntax enhances the reuse and 

the possibility to inspect the gesture definition, the notification of the 

gesture recognition is still based on a single event. Therefore, in order to 

provide intermediate feedback, the developer is in charge to define a set of 

recognizers for the gesture sub-parts and to coordinate them in the 

recognition handlers.  

Such rule-based approach guarantees the parallel recognition of different 

gestures and also the possibility to define equivalent gestures. In addition, 

the data stream abstraction allows to support different recognition devices. 

 

Another approach that tries to lower the complexity for gesture definitions 

consists in providing an abstraction layer, which hides the complexity of the 

underlying machine-learning algorithms that perform the recognition. An 

example of this approach is GART [82], where the developer can provide a 

set of training examples for different sensors in order to define the gesture 

vocabulary.  

The main difference with the approach proposed in this thesis is that 

classifiers are bound to raise the events only when the whole gesture is 

recognized. Therefore, such approach is good for gestures that have a limited 

duration in time. In addition, such approach does not support neither the 

definition of gesture composition nor the temporal sequencing.  

Such approaches usually allow the recognition of only one gesture at time. 

However, it is possible to map multiple gestures on the same event, 

providing the mechanism for expressing the equivalence of gestures. In 

addition, a classifier can be trained with features coming from different 

devices. 

 

Table 2.2 summarizes the comparison of the different modelling 

approaches against our requirement set. As it is possible to see, the 

approaches for full-body gestures provide a narrower support for the 

required features if compared with multitouch work. 
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 Temporal 

evolution 

Granularity Separation 

of concerns 

Multiple 

recognition 

devices 

Parallel 

interaction 

Equivalent 

description 

NITE 

[115] 
      

Hirte  

et al. [58] 
      

Lyons  

et al. [82] 
      

Table 2.2 Comparison of different full-body gestures definition approaches in 
literature 

Besides the obvious exploitation of gesture recognition for games or 

different gestural applications (we show different examples in literature 

while discussing common control gestures in section 4.1), it is worth pointing 

out here that such devices have a wider impact on HCI with respect to other 

input techniques. Indeed, as discussed for instance in [130], it is possible to 

exploit such hardware to differentiate the user’s feedback according to their 

personality (introvert or extrovert), inferring it through a user’s posture 

analysis. The authors proved that such empathetic feedback enhanced the 

experience in video games.  

The same configuration can be also exploited in ubiquitous settings. In 

[131], Tan et al. provided an off-the-shelf solution for tracking the user’s 

affective state, that can be employed by intelligent user interfaces for 

modifying the feedback and/or the content according to her current feelings. 

The gesture description discussed in this thesis may be employed in such 

configuration for instrumenting the posture recognition with a human-

understandable notation.  

2.4 Model-based approaches for User 
Interfaces 

Model-Based User Interface design is sub-area of the Human-Computer 

Interaction research field that aims to lower the complexity for the design 

of an interactive system. This objective is achieved creating a set of 

abstractions for the design and the development of a User Interface.  

The proposed approach for modelling gestures has been integrated into 

MARIA [111], a state of the user interface modelling language that belongs 

to this research field.  
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2.4.1 Historical Background 

During the last two decades, the research in this field has tried to deal 

with the evolution of the technological settings and the consequent changes 

and challenges in the development and design of UIs. 

In [111], three generations of approaches are identified. The first 

generation focused on Graphical User Interfaces (GUIs). 

In this category, MIKE [104] attempted to leverage the UI development 

to non-programmers, introducing a command syntax for defining the 

interface functionalities. After the command list was created, the tool 

generated the UI, and it was possible to edit the result adding descriptive 

information. 

Jade [146] is a tool that automatically created input dialogs out of a layout 

independent content description, created by programmers. Combining this 

specification with a layout database created by artists, the tool was able to 

generate the graphical dialogs. 

In the same category, we can remember ITS [139], which defined a four 

layered architecture for defining interactive systems. The different layers are 

the application back-end functionalities (action layer), the content without 

style information (dialog layer), the layout rules for choosing the appropriate 

interaction technique (style rule layer) and the dynamic changes in the 

interface (style program layer). 

Humanoid [129] created an abstract description that allowed the 

declarative specification of both presentation and behaviour. 

Finally, UIDE [41] is a development environment able to exploit models 

in order to generate automatically the implementation of the UI and also to 

derive data schemas for databases and help for the application usage. 

The second generation defined the shift of focus from the graphical 

modality to the interaction semantics, using task models in order to describe 

the actions that users have to perform in order to achieve a specified goal. 

This trend was driven by the psychological theory on how people perform 

tasks. Indeed, in [30] the execution was explained in terms of GOMS, which 

stands for Goals, Operators, Methods and Selection rules. Goals refers to 

the intended user's targets, the Operators are actions performed in order to 

achieve a given goal, the Methods are sequences of operators and sub-goals 

that allow accomplishing a goal, while the Selection rules drive the execution 

of a certain method when more than one option is available. 

In [63] Johnson et al. described ADEPT, an environment for prototyping 

user interfaces. The tool supported the creation of a model of the tasks that 
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the user and the system have to perform jointly, together with a UI 

prototype editor that take as input the task model. The designer can refine 

the user interface model in order to create the application prototype. 

Van der Veer et al. [134] created a conceptual framework for the design 

of an interactive system, which envisioned a three staged modelling 

methodology. At the first step, the designer creates a first task model (Task 

Model 1) from the domain knowledge and the work practice. This model has 

to be refined with the specification of task decomposition procedures, task 

allocations to people and technology, communication structures and 

management procedures (Task Model 2). After that, the designer should 

create a User's Virtual Machine (UVM) that represents the knowledge of 

the system that is relevant from the user perspective, without hardware or 

implementation details. This abstraction has to be iteratively validated 

through a prototyping phase, in order to obtain a UVM specification suitable 

for creating the system. 

Another example can be found in [114], which describes the 

ConcurTaskTrees notation. It allows the designer to specify the task with a 

graphical tree-shaped notation, decomposing high-level tasks (abstract) 

down to atomic actions that can be performed by the user, the system or by 

an interaction between them. 

The various tasks are connected through operators in order to specify their 

temporal relationship. It is also possible to specify which kind of objects are 

manipulated while performing actions. 

Since the temporal operator of this task modelling language provided the 

inspiration for the ones we exploit in our compositional approach for the 

definition of a complex gesture, we describe it in detail in a dedicated section 

(2.4.3). 

As explained in [97], although such approaches for the development of 

interactive systems were promising, they did not found a wide acceptance 

(aside for task modelling), because they were generally affected by the 

unpredictability of the final result due to a set of generation heuristics. In 

addition, the standardization of the vocabulary of GUI toolkits lowered the 

importance of having specific models. However, a new generation of model-

based approaches is now pushed by the increasing availability of a large 

number of different devices, each one with specific characteristics and 

features, which creates the need for device-independent user interface 

specifications [97]. In this thesis, we try to provide a unified approach for 

the different devices that enable the recognition of a gesture.  
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The third generation of model-based approaches is currently trying to take 

into account such issues, providing models and languages able to support 

multi-device development, and the desired level of control to designers. The 

effort is generally on the definition of User Interface Description Languages 

(UIDL) to describe such models. The best-known projects in this field are 

XIML[116], UIML [1,55], UsiXML[81], Teresa XML [96], MARIA [111] 

(which we extend in this dissertation in Chapter 6) CAP3 [11] and, to some 

extent, XForms [20]. 

XIML [116] is the acronym of eXtensible Interface Markup Language, 

which is an extensible language based on XML developed by RedWhale 

Software. The language aims to create a framework for supporting the entire 

UI engineering process (design, operation, evaluation). The XIML 

vocabulary contains a collection of interface elements categorized into an 

extensible number of components, which should be in a relatively small 

number. Such components are:  

 user tasks, which represent definition of activities with a 

hierarchical decomposition 

 domain objects, which represent a collection of data objects and 

classes 

 user types, which represent a hierarchical categorization of the 

various user profiles 

 presentation elements, which represent the hierarchy of abstract 

interaction elements (such as windows, buttons, sliders etc.) 

 dialog elements, which are actions that are available to the users 

of an interface (e.g. clicks, gestures, voice responses etc.).  

These components are linked using relations, which are definitions or 

statements for the runtime operations on the UI. The language itself does 

not specify the relation semantics, but the specification is left to each single 

application. The interface elements have a set of attributes, which 

characterize better their role. 

The User Interface Markup Language [1,55] (UIML) is a XML-based 

language that addresses the multi-device problem, with the definition of UI 

elements that are independent from the target device, delegating the 

mapping between elements and their rendering to style-sheets. The runtime 

behaviour of the elements is described through events, which can be either 

local (that affect only the interface elements) or global (that affect also the 

application back-end). In a UIML document, the UI is described through 

the following sections: the structure (a list of abstract part of the UI), the 
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style (a list of properties for rendering UI parts for a given device), the 

content (text, images and data contained into the UI), the behaviour (a set 

of rules that define how the UI reacts to actions), the logic (the application 

programming logic for connecting the UI with its back-end), the 

presentation (a mapping list between the UIML vocabulary and the target 

implementation language constructs). 

The USer Interface eXtensible Markup Language [81] (UsiXML) is a 

XML-compliant language that employs different models for describing 

various UI aspects in different context of use. The set includes the following 

specifications: tasks (through an extension of the CTT [114] language), 

abstract UI (a description of the UI elements independent from any 

particular device or modality), a set of concrete UIs (a description of the UI 

elements that is modality dependent, e.g. graphical, vocal, 3D etc.), domain 

model (description of the classes of objects manipulated by the UI), a set of 

mappings (declaration of inter-model relationship between elements 

semantically related), a model of the context of use (properties regarding 

the current end user, platform and surrounding environment), and a set of 

transformations (a set of graph rewriting rules depending on attribute 

conditions). 

UsiXML has been exploited in different applications, and is maintained 

with a dedicated project [133]. Among the different tools that support the 

different models, we can remember here UsiComp [46] an environment that 

support both the design and the generation of applications based on OSGi 

[106] services. The environment can be extended for exploiting other meta-

models that describe different aspects of the application. Such extensions 

enter in the final application generation through a set of custom 

transformations (model-to-model or model-to-code). 

In [96] is described TERESA, an XML language with the associated tool 

that is able to support the definition of UIs with different levels of 

abstraction (see section 2.2.2). 

At the abstract level, the elements can be of three types: interactors 

(single interaction objects), composition operators (that groups together 

interactors logically connected) and presentations (a set of interactors and 

composition operators presented to the user at the same time). The 

interactors belong to different classes according to their interaction 

semantics (e.g. edit, control, selection, only-output etc.). Each target 

platform (graphical desktop, mobile, vocal, multimodal etc.) refines this 
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abstract representation introducing modality dependent implementations of 

the interactor classes. 

XForms [20] is an attempt to create a new generation of web forms that 

can be integrated into different markup languages, exploiting the model-

view-controller pattern. The relevant point for this discussion is that, being 

tailored for being embedded into other XML markups, the view layer cannot 

rely on a specific interaction modality, e.g. the forms can be embedded either 

into HTML or Voice XML. Therefore, the input items should focus more on 

the interaction semantics rather than the appearance as currently happens 

in HTML. Examples of the interaction objects included in XForms are the 

following: select (choice of one or more items from a list), trigger (that 

activates a defined process), output (display-only form data), secret (entry 

of sensitive information etc.). The XForms vocabulary represents an 

attempt for a device-independent specification of UI controls. 

CAP3 [11] is a user interface modelling language, designed to be integrated 

in a user-centered design process. The language contains both structural and 

behavioural specifications, combining such aspects into a model that can be 

exploited by different stockholders while discussing the design of interactive 

applications. In order to express the relationships with other models of the 

same applications, it contains explicit references to external models 

representing different aspects of the system, such as the domain, user and 

context models.  

Nowadays, there are different initiatives that aim to create international 

standards for adopting the model-based approach into industrial settings. 

The ANSI/CEA-2018 is a standard for the specification of task models [117], 

published in November 2007, together with an XML interchange syntax. 

The task definition is provided through a hierarchical structure, the sub-

tasks are by default executed sequentially, but it is also possible to define 

partial orderings. Tasks are also optionally associated to input/output 

parameters and pre/post execution conditions. 

The World Wide Web Consortium has a working group for providing a 

standardization of the different languages related to the Model Based User 

Interface approach. The Model Based User Interface Working Group 

(MBUI-WG) aims to provide a standard definition for task models and the 

abstract user interface level that, according to the CAMELEON [27] 

reference framework, provides a description of the UI that is independent 

from the current device and interaction modality.  
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As a second step, the group aims to provide different specifications of UI 

languages that describe the interface for a given set of homogenous devices 

(the concrete level) and a way for representing context-dependent 

adaptation rules. 

The working group produced a public working draft for the task model 

specification in August 2012 [109]. 

2.4.2 The CAMELEON reference framework 

In this section, we introduce the CAMELEON [26,27] reference framework, 

that provided the theoretical background for different model-based 

languages for user interfaces (MBUI), and in particular for the definition of 

MARIA [111], which we discuss more in detail in Chapter 6, since in this 

dissertation we define an extension for supporting gestural interaction, 

which can be therefore inserted into the broader scope of MBUI approaches. 

The CAMELEON Reference Framework offers a unified representation of 

the models, methods and processes for creating multi-target user interfaces. 

The UI context of use is defined along three dimensions: the users that 

are intended to use or effectively use the system, the platform that is the 

hardware and software configuration of the interactive system, and the 

environment that specifies the physical conditions where the interaction 

occurs. A multi-target UI is able to support different contexts of use. The 

reaction to a context change in a multi-target UI is called adaptation. If the 

adaptation is performed preserving usability, the UI is plastic. Preserving 

UI plasticity for cross-platform design and for context-aware applications is 

currently one of the main challenges in this research field. Indeed in [121], 

the authors demonstrated through a case study that the overall UI quality 

(in terms of ergonomic criteria) increases when the UI plasticity is preserved. 

This happens since plasticity has an impact on a set of usability criteria that 

influence positively different usability aspects.  

Given the increasing number of devices that people uses in their everyday 

life, the engineering techniques able to preserve plasticity from the early 

phase of the applications development have an impact on different fields of 

Computer Science [28], and their number will increase in the future. Besides 

HCI, fields such as Software Engineering (e.g. aspect-oriented programming, 

model-driven-engineering) and Artificial Intelligence can provide effective 

solutions for this problem. 
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With respect to the application modelling, the CAMELEON framework 

distinguishes three kinds of models. The ontological models are defined as 

the meta-models, independent from any interactive system, which are able 

to describe the concepts and their relationship involved in multi-targeting. 

The archetypal models are instantiations of the ontological models and 

represent an interactive system that deals with a given domain. The 

observed models are executable models that support the adaptation process 

at run-time.  

The ontological models can be of three different types: 

1. Domain Models, which support the description of a domain-related 

concepts and tasks. 

2. Context Models, which support the description of the context (user, 

platform and environment). 

3. Adaptation Models, which support the description of the reactions 

in case of context change and the commutation process. 

After the identification or the specification of the needed meta-models 

(e.g. UML class diagram for describing the domain-concepts, CTT for 

describing the tasks etc.), it is possible to define various configurations that 

describe a specific interactive system using the different meta-model 

constructs. This instantiation of the ontological model produces different 

archetypal models, which represent the application for classes of potential 

devices (e.g. the archetypal model for a multi-touch mobile device applies 

for the iPhone, Samsung Galaxy S4 etc.). The observed models are exploited 

at runtime in order to perform both the UI execution and the context 

switches. 

The design-time phase creates a set of executable UIs, each one targeted 

to a particular archetypal model configuration, called initial model. The 

process envisions the creation of a set of different transient models, produced 

using different operators. At the end of the process, we have the final 

context-sensitive interactive system. 

The framework specifies four different transient models, with a decreasing 

level of abstraction: 

 Concepts and Tasks model: description of the concepts and the 

tasks that is produced by the designer for a particular context of 

use. 

 Abstract User Interface (AUI): user interface description that is 

independent with respect to the device and the interaction 

modality. 
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 Concrete User Interface (CUI): user interface description that is 

abstract with respect to the technology used for the 

implementation. 

 Final User Interface (FUI): the final implementation of the user 

interface, expressed in source code. 

The operators transform a model into another one. Such transformation 

can be implemented in different ways: with a completely automatic process, 

without any automatic support (completely defined by a designer), or with 

a semi-automatic solution. The latter process envisions the automatic 

creation of a target model draft, with an intervention of a designer, which 

modifies it in order to achieve the desired result. On one hand, a full 

automation leads to a very quick development process. However, this 

produces only standard solutions that are not tailored for the specific 

application, otherwise the designer should specify a huge number of details 

that invalidates the model convenience. On the other hand, a completely 

manual solution has a high development cost that would make the multi-

targeting expensive. It is a general opinion that a good balance between the 

automation and human intervention is the best solution for this problem. 

Operators can be classified according to the abstraction level of the models 

involved in the transformation process: 

 An operator performs a vertical transformation if the source and 

the target models are at different levels of abstraction. The top-

down approach (from a higher level to a lower one) is called 

reification, while a reverse engineering step is called abstraction. 

 An operator performs a horizontal transformation if the source and 

the target models are at the same abstraction level. If it involves 

two different targets, it is called translation.  

In the run-time phase, the designed UIs and the runtime infrastructure 

cooperate in order to support the adaptation. The process consists of three 

steps that include the recognition of the situation, the computation of a 

reaction and the execution of the reaction. 

The recognition of the situation needs the ability to sense the context of 

use (or at least the part that are interesting for triggering a change), to 

detect context changes (comparing the sensed attributes with the previous 

values) and to identify context changes (classifying the change into the 

modelled categories).  
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2.4.3 ConcurTaskTrees 

We dedicate this section to the description the ConcurTaskTrees [114], a 

task modelling language that provides a set of temporal operators, which 

inspired the ones we defined for composing gestures. In addition, it provides 

the task-level language that is exploited by MARIA [111], the UIDL we 

extend in this thesis. 

The ConcurTaskTrees model hierarchically different task: at the top level 

there is an abstract task that represents the whole application, which is 

decomposed into a set of subtasks until the desired level of detail is reached, 

building a tree. Four types of tasks exist: user (that involve only the human 

user), system (that involve only the system), interaction (that involve both 

the system and the user), and abstract (used for grouping together task of 

different type at the intermediate levels).  

At each level of the tree, it is possible to connect two tasks using the 

following temporal operators, reported here in order of priority: 

 Choice. It is possible to choose one of the connected task. Once one 

task is selected, it is the only one that can be performed, while the 

other is disabled.  

 Concurrency. The connected tasks can be performed concurrently, 

without any specific constraint. 

 Order Independence. The connected tasks can be performed in any 

order. However, once one of them is selected, it has to be completed 

before executing the others.  

 Synchronization. The connected tasks can be performed 

concurrently, but they have to synchronize in order to exchange 

information. 

 Disabling. The first task is deactivated when the second is 

performed. 

 Suspend-Resume. The second task interrupts the first one. When 

it is finished, the first can be reactivated from the state it was 

before the interruption. 

 Sequential Enabling. The first task enables the second when it is 

finished. 

 Sequential Enabling with information passing. The first task 

enables the second when it is finished, passing some information. 

The modelling language defines also two operators that are applied to a 

single task. The optional operator indicates that the execution of a task is 
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optional. The iteration operator re-enables the beginning actions of a task 

when it is completed. 

2.5 Non-Autonomous Petri Nets 

Before introducing the meta-model, we briefly summarize the formal 

notation we exploit for defining the semantics of the gesture meta-model 

entities. As we discuss in detail in Chapter 3, we used Non-Autonomous 

Petri Nets since they allow us to define easily a parallel interaction. In 

addition, they offer a straightforward way for modelling the reaction to 

events that are external with respect to the application logic, such as the 

data coming from gesture tracking devices. 

A Petri Net is a bipartite graph consisting of two types of nodes: 

transitions (represented as black rectangles) and places (represented as 

circles), which are connected by directed arcs. A place contains a positive 

number of tokens and the state of the net is represented by the distribution 

of the tokens among the places.  

 
Figure 2.2 An example of Petri Net 
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The Figure 2.2 shows a Petri Net example, which contains six places, 

represented by the set 𝑃 = {𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6}, and five transitions, 

represented by the set 𝑇 = {𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5}. The arcs are represented by 

the following set of pairs: 𝐴 = {(𝑃1, 𝑇1 ), (𝑇1, 𝑃2 ), (𝑇1, 𝑃3 ), (𝑃2, 𝑇2 ), (𝑃3, 𝑇3 ), 

 (𝑇2, 𝑃4 ), (𝑇3, 𝑃5 ), (𝑃4, 𝑇4 ), (𝑃5, 𝑇4), (𝑇4, 𝑃6 ), (𝑇5, 𝑃1 ) }. 

When all the places that are connected to a given transition contain at 

least one token, the transition fires, withdrawing a token from all the 

incoming places and adding one token to all the out-coming ones.  

Figure 2.3 shows different sample conditions for firing the same transition. 

In the example (a), each one of the incoming places (P1 and P2) contains 

exactly one token, while no one of the outcoming places (P3, P4 and P5) 

contains any token (upper part). In this situation, the transition T1 fires and 

each one of the outcoming places receives a token (lower part).  

In the example (b), the initial situation is different: before firing the 

transition, the outocoming place P3 already contains a token. Therefore, 

after the transition firing, P3 contains two tokens.  

In the example (c), the incoming place P1 contains two tokens, while P2 

contains only one token. When the transition fires, only one token is 

removed from each one of the incoming places, therefore after the transition 

P1 contains one token.  

In the example (d), it is not possible to fire the transition since there must 

be at least one token in each one of the incoming places, while in this case 

P1 is empty. 

 
Figure 2.3 Transition firing in Petri Nets from [36], p. 3. 



CHAPTER 2 BACKGROUND AND RELATED WORK 56 

In Non-Autonomous Petri-Nets, the transition firing is controlled not only 

by the presence or absence of the token in the incoming places, but also by 

an external event. The transition fires if there is at least one token in all the 

incoming places when the external event occurs. External in this case means 

that the Net is able to react to changes that are not directly connected with 

its internal state.  

For instance, we can consider the Petri Net in Figure 2.4, which models a 

semaphore. It contains one place for each one of its states, namely green, 

yellow or red traffic light (respectively the G, Y and R places). One of the 

three lights is on if the correspondent place contains the only token in the 

Petri Net. If we consider the previously discussed basic version of Petri Nets, 

the different transition would continue to fire indefinitely changing the light 

colour as soon as the token enters into the one of the three places. Instead, 

we would like to model the fact that the semaphore waits for a predefined 

amount of time before changing the light colour.  

In Non-Autonomous Petri Nets it is possible to model such situation 

specifying that a transition fires when there is at least one token in all the 

incoming places and the predefined amount of time has passed. Obviously, 

the time is an external entity for the Petri Net, which has no control on it. 

The Petri Net receives a notification when one of the specified external 

events occur. In our example T1 fires after 65s after the token arrives in G, 

T2 fires 5s after the token arrives in Y and T3 fires 65s after the token arrives 

in R. 

 
Figure 2.4 Non-Autonomous Petri Net for a traffic light, from [36] p.4 
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In our case, we use the internal state of the Net for modelling the gesture 

recognition phases, which are driven by the data received by the gesture 

recognition device. 

An extensive description of Petri Nets and their properties can be found 

in [36].  

 

 



 

Chapter 3  

Gesture Meta-Model Definition 

This chapter provides the formal definition of the meta-model we use for 

defining gestures. It can be applied to different recognition platforms and 

for different types of gestures.  

We start from the specification of the ground-term semantics. After that, 

we define a set of composition operators that allow defining complex gestures 

in a declarative and compositional way.  

Next, we apply the meta-model to different recognition platforms: namely 

multitouch and full-body. For each one of them, we provide the specification 

of a set of commonly used gestures.  

This chapter is an extended version of the work discussed in [125]. 

3.1 Meta-Model Definition 

In this section, we theoretically define our gesture description meta-model. 

Such meta-model is abstract with respect to a specific gesture recognition 

support, which means that it is possible to instantiate it for different devices 

(e.g. multitouch screens, body tracking devices, remotes etc.). 

We start from the definition of the basic building blocks (ground terms), 

which represent the set of basic features observable through a specific device. 

Composed terms represent complex gestures (that can be further 

decomposed) and they are obtained connecting ground or composed terms 

through a well-defined set of composition operators.  

The definition of the UI behaviour can be associated to the recognition of 

basic or composed gesture definition. Once the Petri Nets for a basic building 

block and for all the composition operators have been defined, the designer 

can create complex gestures through expressions of basic building blocks 

and/or complex gestures composed through the set of operators. The actual 

Petri Net for the complex gesture is derived visiting bottom-up the complex 
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gesture expression definition and can be executed by a run-time library that 

we introduce in section 5.2. 

3.1.1 Basic Building Blocks: Ground Terms 

Ground terms of our language are the basic building blocks of our gesture 

description model, since they cannot be further decomposed. They are 

defined by the events that developers currently track in order to recognize 

gestures. Ground terms do not have a temporal extension, though their 

values may be obtained by computing a function of the raw sensor data (the 

current gesture support). For instance, if we are describing a gesture for a 

multitouch application, the ground terms are represented by the low-level 

events that are available for tracking the finger positions, which are usually 

called touch start, touch move and touch end.  

Besides, for creating full body gestures, the current recognition devices 

and libraries offer means for tracking specific skeleton points, such as hands, 

head, shoulders, elbows etc.  

As happens for multitouch gestures, also full body ones are recognized 

tracking the skeleton points positions over time. Here, we define an abstract 

building block that can be instantiated for different gesture recognition 

supports. In order to do this, we have to consider that a gesture support 

provides the possibility to track a set of features that change through the 

time. As said before, the meaning of each feature (and the associated low-

level event) depends on the concrete gesture recognition support. A feature 

is a n-dimensional vector (e.g., the position of a finger is a vector with two 

components, the position of a skeleton joint has three components, etc.).  

A set of features can be also represented with a vector that contains a 

number of components equals to the sum of the dimensions of its elements. 

A set of features is the abstract representation of a gesture recognition 

support at a given time, since it describes the data provided by a given 

hardware and software configuration.  

We will provide examples for the definition of a gesture recognition 

support in the following sections. The state of a gesture support at a given 

time is represented by the current value of each feature. The state of a 

gesture recognition support over time can be represented by a sequence of 

such states, considering a discrete time sampling.  
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Equation 3.1 defines a feature 𝑓, a gesture recognition support 𝐺𝑆, a 

gesture recognition support state 𝐺𝑆𝑖
 and a gesture recognition support state 

sequence 𝑆. 

 

𝑓 ∈ ℝ𝑛 

𝐺𝑆 = [𝑓1, 𝑓2, … , 𝑓𝑚]            𝐺𝑆 ∈ ℝ𝑘    𝑓𝑖 ∈  ℝ𝑛𝑖    ∑ 𝑛𝑖 = 𝑘

𝑚

𝑖=1

 

𝐺𝑆𝑖
= [𝑓1(𝑡𝑖), 𝑓2(𝑡𝑖), … , 𝑓𝑚(𝑡𝑖)]                           𝑡𝑖 ∈ ℝ 

𝑆 = 𝐺𝑆1
, 𝐺𝑆, … , 𝐺𝑆𝑛

                                             𝑛 ∈ ℕ 

(3.1) 

A gesture building block notifies a change of a feature value 

between 𝑡𝑖 and 𝑡𝑖+1. Such notification can be optionally associated to a 

condition, which can be exploited for checking properties of the gesture state 

sequence such as trajectories for hand movements.  

For instance, it is possible to check whether the path of a tracked point 

is linear or not, avoiding the notification of different movements. 

The gesture support is responsible for the notification of the feature 

change, which is external with respect to the current state of the gesture 

recognition.  

This aspect is modelled by the Non-Autonomous Petri-Nets, since the 

firing of a transition is enabled not only by the presence of the tokens, but 

also by the occurrence of an event that does not depend on the considered 

Net. Therefore, in Non-Autonomous Petri Net, the transition fires only if 

the incoming places contain a token and if an event of a given type occurs. 

We need such kind events in order to model the notification of a feature 

change by the considered gesture support.  

We define an event type for each observed feature. In addition, we define 

a boolean predicate for each gesture state sequence constraint. As we already 

specified previously, such predicates are optionally associated to a feature 

change and constraints its recognition.  

In our Petri Net it is possible to model the external notification with the 

definition of a function 𝑟𝑎𝑖𝑠𝑒, which establishes if the external event is raised 

at a time 𝑡, as defined in equation 3.2. 

 

𝑟𝑎𝑖𝑠𝑒(𝐸𝑓𝑖,𝑃(𝑆),𝑡) ⇔ (𝑓𝑖(𝑡) ≠ 𝑓𝑖(𝑡 − 1)) ∧ 𝑝(𝑆)    

     𝑝: 𝑆 ⟶ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} 

(3.2) 
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In order to model the current progress in the gesture recognition, we use 

a control state token (𝐶𝑠) on the Petri Net. The recognition of a basic block 

is enabled by the presence of such token, and it is be inhibited by its absence. 

As we explain better in the following sections, the parallel recognition of 

different gestures in a composed Net is possible managing multiple instances 

of such control state token. The Petri Net in Figure 3.1 defines a basic 

building block for gesture recognition. 

The two dotted arrows connect the ground term net to transitions that 

are “externals” with respect to the building block, namely the previous and 

the following parts of the gesture Net.  

The place 𝑆𝑡𝑎𝑟𝑡 𝐹1 receives the control state token from its incoming 

transition. If we are considering the first place in the recognition net, it 

contains the token associated with the entire recognition process. The 

transition after this place fires only when the event 𝑓1, 𝑝(𝑆) occurs.  

Finally, the control state token reaches the place 𝐸𝑛𝑑 𝐹1, concluding the 

basic gesture recognition. The actions that react to the basic gesture 

recognition are associated to the latter place. The out-coming arrow that 

starts from the 𝐸𝑛𝑑 𝐹1 place connects the considered block with the next 

part of the gesture net.  

In order to represent a basic building block we use the notation 𝐹𝑖[𝑝]: we 

assign a name to the considered feature (𝐹𝑖 in this case) and to the boolean 

function (𝑝), which is omitted if it is true for every gesture support state. 

 

Figure 3.1 Gesture recognition building block 

3.1.2 Composition Operators 

A gesture description model is based on the composition of the 

aforementioned ground terms. The connection is performed through a set of 

operators, which express different temporal relationships among them. Such 

set has as starting point those defined in CTT [114], which has been proved 
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effective in defining the temporal relationship for task modelling, and that 

are defined also in process algebras (e.g. [18]). 

Some of them (sequence and choice) have been already defined through 

Petri Nets in [107]. We provide here a complete definition of all operators. 

 

Operator Notation Arity 

Iterative 𝐺∗ 1 

Sequence 𝐺1 ≫ 𝐺2 2 (n) 

Parallel 𝐺1 || 𝐺2 2 (n) 

Choice 𝐺1 [ ] 𝐺2 2 (n) 

Disabling 𝐺1 [> 𝐺2 2 (n) 

Order Independence 𝐺1 |=| 𝐺2 |=| … |=| 𝐺𝑛 n 
Table 3.1 Composition Operators 

Table 3.1 lists the composition operators that we describe in the next 

sections. All binary operators are associative, therefore the n-ary version of 

a binary operator (e.g. choice) is defined applying such property.  

During the discussion in the following sections, we need also the definition 

of three different sets of ground terms, given a complex gesture definition.  

The first one is the set containing all its ground terms. We refer such set 

as 𝐺𝑆 (Ground terms Set).  

Equation 3.3 defines how to construct the 𝐺𝑆 for a gesture 𝐺, which 

consists of a recursive set union on the sub-blocks connected through the 

composition operators. 

 

𝐺 = 𝐹𝑖[𝑝] ⇒ 𝐺𝑆𝐺 = {𝐹𝑖[𝑝]} 
𝐺 = 𝐺1∗ ⇒ 𝐺𝑆𝐺 = 𝐺𝑆𝐺1 
𝐺 = 𝐺1 𝑜𝑝 𝐺2 ⇒ 𝐺𝑆𝐺 = 𝐺𝑆𝐺1 ∪ 𝐺𝑆𝐺2                 
               𝑜𝑝 ∈ { ≫, ||, [], [>} 

𝐺 = 𝐺1 | = | 𝐺2| = | … | = | 𝐺𝑛 ⇒ 𝐺𝑆𝐺 = ⋃ 𝐺𝑆𝐺𝑖

𝑛

𝑖=0

 

(3.3) 

The second set we need to define contains only the ground terms not 

appearing as the right operand in a sequencing temporal relation, so they 

are immediately recognizable when the gesture execution starts. The 

operators that express such relation are sequence and disabling.  

We call such set Starting Ground terms Set, or 𝑆𝐺𝑆 and it is defined in 

equation 3.4. Obviously 𝑆𝐺𝑆 ⊆ 𝐺𝑆.  
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𝐺 = 𝐹𝑖[𝑝] ⇒ 𝑆𝐺𝑆𝐺 = {𝐹𝑖[𝑝]} 
𝐺 = 𝐺1∗ ⇒ 𝑆𝐺𝑆𝐺 = 𝑆𝐺𝑆𝐺1 
𝐺 = 𝐺1 𝑜𝑝 𝐺2 ⇒ 𝑆𝐺𝑆𝐺 = 𝑆𝐺𝑆𝐺1                   𝑜𝑝 ∈ { ≫, [>} 

𝐺 = 𝐺1 𝑜𝑝 𝐺2 ⇒ 𝑆𝐺𝑆𝐺 = 𝑆𝐺𝑆𝐺1 ∪ 𝑆𝐺𝑆𝐺2    𝑜𝑝 ∈ {||, []} 

𝐺 = 𝐺1 |=| 𝐺2|=| … |=| 𝐺𝑛 ⇒ 𝑆𝐺𝑆𝐺 = ⋃ 𝑆𝐺𝑆𝐺𝑖

𝑛

𝑖=0

 

 

(3.4) 

The last set we define contains the complementary features with respect 

to a given one in a gesture expression, and we call it 𝐶𝐺𝑆𝐺(𝐹𝑖), where 𝐺 is a 

gesture and 𝐹𝑖 is a ground term.  

In other words, this set contains all the features used in the gesture 

expression that are different from the one specified. This set can be obtained 

simply subtracting the specified feature from the 𝐺𝑆 set for the considered 

expression. If the feature has an associated predicate, we have to add the 

specified feature with the logical negation of the predicate to the 𝐶𝐺𝑆(𝐹𝑖). 

set. The complete definition can be found in equation 3.5. 

𝐶𝐺𝑆𝐺(𝐹𝑖) = 𝐺𝑆𝐺   ∖ 𝐹𝑖 
𝐶𝐺𝑆𝐺(𝐹𝑖[𝑝]) = 𝐺𝑆𝐺   ∖ 𝐹𝑖[𝑝]⋃𝐹𝑖[�̅�]  

(3.5) 

 

3.1.2.1 Iterative Operator 

The iterative operator repeats the recognition of gesture subnet for an 

indefinite number of times. In order to avoid an infinite gesture definition, 

each iterative basic block should also be coupled with a disabling operation. 

As already specified in Table 3.1, we use the ∗ symbol in order to represent 

the iterative operator (e.g. 𝐹∗ recognizes an infinite number of value changes 

for the feature one). 

It is possible to define this operator simply creating a cycle from the 

ending transition of a gesture subnet to its starting place. In this way, the 

recognition subnet is fed again with the control state token, immediately 

after the gesture has been recognized. 

Figure 3.2 shows the Petri Net definition of the iterative operator. The 

thicker arrow represents the operator definition. 
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Figure 3.2 The Iterative operator 

3.1.2.2 Sequence Operator 

This operator simply defines that two gesture subnets should be performed 

in sequence. We use the ≫ symbol in order to represent this operator. It is 

possible to define such operator connecting the last transition of the first 

gesture with the starting place of the second one.  

Figure 3.3 shows a gesture consisting of the sequential composition of two 

basic feature recognizers. The thicker arrow represents the sequence 

operator. 

 

 
Figure 3.3 The Sequence operator 

3.1.2.3 Parallel Operator 

The parallel operator defines the recognition of two or more different 

gestures at the same time. We use the || symbol in order to represent the 

parallel operator.  

From the Petri Net definition point of view, the blocks representing the 

parallel gestures should be simply put in different recognition lines. In order 

to do this, we assign a different control state token to each line. This can be 

obtained, as shown in Figure 3.4, inserting a transition that “clones” the 

control state token and dispatching a copy to the starting place of each 

different recognition lines.  
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Figure 3.4 The Parallel operator 

We add a place at the end of each recognition line that forwards the 

“cloned” control state token to the last transition that, once all gestures 

terminated, restores only one token in the net. 

3.1.2.4 Choice Operator 

The choice operator defines a gesture that is recognized if exactly one 

between its first and its second component is detected (either one or the 

other). We use the symbol [] for representing it.  

The net can be defined as it is shown in Figure 3.5, and its construction 

is similar to the parallel operator. The transition after the 𝐶ℎ𝑜𝑖𝑐𝑒 𝑆𝑡𝑎𝑟𝑡 place 

splits the control state token between two subnets, each one representing a 

component involved in the choice. The two lines cannot evolve 

independently as happens for the parallel operator. Therefore, when one 

subnet starts its recognition, the other one should be interrupted. In order 

to do this, it is sufficient to connect the first place of the first gesture subnet 

with the first transition of the second one and vice versa. In this way, once 

one of the two feature events is raised, the control state token from the other 

gesture subnet is deleted. 

More precisely the steps to be followed for constructing a Petri Net for 

𝐺1[ ]𝐺2 in the general case are the following: 

1. Calculate 𝑆𝐺𝑆𝐺1and 𝑆𝐺𝑆𝐺2 

2. Connect the first place of each element of 𝑆𝐺𝑆𝐺1 with the first 

transition of each element in 𝑆𝐺𝑆𝐺2 

3. Connect the first place of each element of 𝑆𝐺𝑆𝐺2 with the first 

transition of each element in 𝑆𝐺𝑆𝐺1 
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The last transition of each gesture subnet is connected to the 𝐶ℎ𝑜𝑖𝑐𝑒 𝐸𝑛𝑑 

place, which forwards the control state token to the following part of the 

recognition net. 

This definition of the choice operator envisions an immediate selection 

between the two sub-gestures involved in the choice. Immediate selection 

means that the choice is performed taking into account elements from the 

𝑆𝐺𝑆, thus it considers only the Ground Terms which can be recognized at 

the beginning of the choice.  

Such approach has the advantage that is sufficient to recognize only a 

ground term in order to perform the choice. The main problem is that most 

of the times the sub-gestures that are connected with the choice have a 

common prefix, which is a set of ground terms at the beginning of the 

expression. For instance, it is possible to take into account one finger and 

two fingers multitouch gestures. The definition for both categories start 

always with the detection of one finger on the screen. If we consider the 

previous definition of the choice operator, the selection is ambiguous. 

 As we discuss more in detail in Chapter 7, having a shared prefix between 

the choice operands is really common. Therefore, in order to ease the 

definition of gestures in choice, we defined a variant that applies a best 

effort approach for performing such selection. The basic idea is to delay the 

selection until only one of the two operands can continue in the recognition 

process. This means that the two gestures are recognized in parallel until 

one of them is blocked and the choice is performed.  

 

 
Figure 3.5 The Choice operator (immediate variant) 
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The structure of the Petri Net for the best effort variant of the choice 

operator is shown in Figure 3.6. 

As in the previous variant, we put the two operands on two parallel 

recognition lines, duplicating the token. The difference is the way we use for 

disabling one of the two lines. For each one of the depicted operands, the 

normal recognition flow for the gesture is disabled if it is no more possible 

to continue the recognition. In the Petri Net, such concept is modelled 

adding, for each ground term contained into the two operands, a transition 

that fires if one of the elements of the 𝐶𝐺𝑆 set is recognized. We recall that 

such set contains all the features of the considered gestures which are 

different from the one considered (see section 3.1.2). In Figure 3.6, such 

transitions are labelled 𝐶𝑜𝑚𝑝 𝐹1 and 𝐶𝑜𝑚𝑝 𝐹2 respectively for the first and 

the second operand in the choice. 

 

 
Figure 3.6 Choice operator (best effort variant) 

If one of the two lines cannot recognize the gesture, its token goes to the 

𝑂𝑝 𝐹𝑎𝑖𝑙 place. Here we have two possibilities: the first one is that the other 

line successfully completes the recognition. In this case, since the place is 

connected with the last transition of both the operands, the token is 

consumed and the recognition proceeds as usual. The second possibility is 

that both tokens arrive at the 𝑂𝑝 𝐹𝑎𝑖𝑙 place. This means that both 
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recognition lines failed the recognition, and so the choice. In such situation, 

the Net cannot proceed and it is in an error state (described in section 3.1.3). 

In the general case, it is possible to construct the Net as follows: 

1. Connect the place 𝑂𝑝 𝐹𝑎𝑖𝑙 to the ending transition of all choice 

operands (𝐺1 and 𝐺2) 

2. For each ground term 𝐹𝑖 in 𝐺𝑆𝐺1 and 𝐺𝑆𝐺2 calculate the sets 
𝐶𝐺𝑆(𝐹𝑖) 

3. For each ground term 𝐹𝑖 in 𝐺𝑆𝐺1 and 𝐺𝑆𝐺2, add a transition 

between 𝐹𝑖 and 𝑂𝑝 𝐹𝑎𝑖𝑙 which fires if one of the features in 𝐶𝐺𝑆(𝐹𝑖) 

is recognized.  

From now on, we consider the choice operator the best effort variant.  

3.1.2.5 Disabling Operator 

The disabling operator defines a gesture that stops the recognition of 

another one, thus “disabling” it. The operator symbol is [>. It is typically 

needed when a gesture is iterative, in order to define the condition that stops 

the loop. Figure 3.7 shows the definition of the disabling operator using 

Petri Nets for 𝐺1[> 𝐺2.  

 
Figure 3.7 The Disabling operator 
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The basic idea is to connect the first place of each basic component 

belonging to 𝐺1 to a “copy” of the first transition of the starting blocks of 

the second one. In Figure 3.7 we can see an example of this kind of net, 

where the first gesture is composed by only one building block.  

This gesture can be disabled by the second one, which starts with an event 

related either to the feature 𝑓2 or 𝑓3. In order to obtain the desired effect, 

we connect the 𝑆𝑡𝑎𝑟𝑡 𝐹1 place with a copy of both the transitions after the 

𝑆𝑡𝑎𝑟𝑡 𝐹2 and 𝑆𝑡𝑎𝑟𝑡 𝐹3. In order to construct the net for 𝐺1[> 𝐺2 in the 

general case, we need to perform the following steps: 

1. Calculate the sets 𝐺𝑆𝐺1and 𝑆𝐺𝑆𝐺2 

2. Connect the starting place of each element of 𝐺𝑆𝐺1 with a copy of 

the first transition of each element in 𝑆𝐺𝑆𝐺2 , possible duplicates 

(transitions that have the same incoming places and the same 

external event) are merged. In case of order independence operator, 

a transition duplicate is added also to each 𝑂𝐼 𝐹𝑙𝑎𝑔 and 𝑂𝐼 𝐸𝑛𝑑 

(see section 3.1.2.6) 

3. Connect the second place of each element in 𝑆𝐵𝑆𝐺2 with the 

transitions generated at step 2. Such connection has to preserve 

the single control state token property for each sub-gesture, so we 

need to collapse recursively the recognition lines with net in the 

case 𝐺1 sub-components contain the parallel or the order 

independence operator. The technique is the same shown if Figure 

3.4 for the parallel operator. 

3.1.2.6 Order Independence 

The order independence operator is used when two or more gestures can be 

performed in any order. The composed gesture is recognized when all of its 

subcomponents have been recognized. We use the symbol |=| for this 

operator.  

It is worth pointing out that such operator is not strictly needed, because 

it is possible to derive it according to the property in equation 3.6. 

𝐺1 |=| 𝐺2 = (𝐺1 ≫ 𝐺2)[ ](𝐺2 ≫ 𝐺1) (3.6) 

In general, we can define an order independence composition of a set of n 

gestures as a choice between all the permutations of its elements. Inside each 

permutation the gesture set elements are connected through the sequence 

operator.  
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Obviously, such kind of definition creates n! options for the choice that 

makes it too expensive both from the space and time point of view. It is 

possible to provide a more compact net for defining this operator, which is 

shown in Figure 3.8. The idea is to create a Petri Net that repeats 𝑛 times 

the choice between the composed subnets, removing one option at each 

iteration. 

The place OI Start receives the control state token and creates two copies 

of it for each gesture connected by the operator, in the same way we do for 

the parallel operator. 

For each gesture component, we create a place called OI Flag, which 

receives one of the two control state token copies. Such token is used in 

order to remember whether the corresponding gesture subnet has been 

recognized in a previous iteration or not.  

We guarantee two construction properties for this place. The first one is 

that each OI Flag loses its token only when the corresponding gesture sub-

net ends its execution. This is enforced by an out coming connection between 

OI Flag and the last transition of the gesture sub-component net. The 

second property is that the OI Flag maintains its control state token until 

the gesture sub-component has been recognized. This is obtained with an 

incoming and out-coming connection of the OI Flag place with each event 

transition of the gesture sub-component net. This property guarantees that, 

when the sub-gesture has been already recognized, it is not possible to 

restart it until a new token arrives from the OI Start place. The presence of 

a token in an OI Flag place indicates that the corresponding sub-gesture has 

not been recognized yet, while its absence indicates that the recognition has 

already happened. 

The second copy is received by the first place of the gesture component 

sub-net. With this construction we guarantee that a gesture sub-net will be 

chosen only once for each iteration. Now we need to add something in order 

to avoid that two or more gesture sub-nets can start their recognition in 

parallel. We already discussed a technique that guarantees this for the choice 

operator. We reapply the same technique here, connecting the starting 

transition of each order independence component to all the starting 

transition of all the other components. In Figure 3.8 such connections are 

the following: 

• The one that connects the Start F1 place and the f2 q(S) transition 

• The one that connects the Start F2 place and the  f1 p(S) transition. 
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In order to guarantee that the choice is performed more than once, we 

connect the last transition of each order independence component with its 

starting place, in the same way we explained for the iterative operator. In 

addition, we create also an OI End place for each component, which receives 

a copy of the control state token when the corresponding gesture sub-net 

ends its recognition. All the OI End places are connected to the last 

transition of the order independence subnet. When they all contain a control 

state token, all sub-gestures have been recognized, and the entire gesture is 

completed. 

The starting places of the different components are connected with the 

last transition, in order to consume the control state tokens that returned 

back after the n-th iteration. 

 
Figure 3.8 Order independence operator Petri Net 

The steps to construct this net for 𝐺1|=|𝐺2|=|. . .|=|𝐺𝑛 are the following: 

1. Calculate 𝑆𝐺𝑆𝐺𝑖∀𝑖 ∈ [1, 𝑛] 

2. Create an 𝑂𝐼 𝐹𝑙𝑎𝑔 place for each 𝐺𝑖 and connect it with its last 

transition. 

3. Create an 𝑂𝐼 𝐸𝑛𝑑 place for each 𝐺𝑖 and connect it with the same 

transition at the end of the net.  

4. Connect the transition after the 𝑂𝐼 𝑆𝑡𝑎𝑟𝑡 place with each starting 

place of all elements in 𝑆𝐺𝑆𝐺𝑖 and with all the 𝑂𝐼 𝐹𝑙𝑎𝑔 places. 
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5. For each 𝑖 ∈ [1, 𝑛] , connect the starting places of each element of 

𝑆𝐺𝑆𝐺𝑖 with all the starting places of each element in ⋃ 𝑆𝐵𝐺𝐺𝑗  𝑗 , 

with j ∈ [1, i − 1] ∪ [i + 1, n]  

6. For each ∈ [1, 𝑛] , connect the event-driven transitions of each 

element of 𝐺𝑆𝐺𝑖 with 𝑂𝐼 𝐹𝑙𝑎𝑔𝑖and vice versa. 

7. For each 𝑖 ∈ [1, 𝑛] connect the ending transition of the net 

associated to 𝐺𝑖 with all the elements in 𝑆𝐺𝑆𝐺𝑖 

8. For each 𝑖 ∈ [1, 𝑛], connect the starting places of each element of 

𝑆𝐵𝑆𝐺𝑖 with the last transition of the order independence net. 

3.1.2.7  Short-hands 

Even if they are not strictly required for the definition of the meta-model, 

we consider a set of short-hands that are useful for the definition of the 

temporal relationships among gestures.  

The first one is useful when the designer wants to recognize a gesture a 

gesture a given number of times (e.g. five). We specify the number of times 

as a superscript for the gesture, in brackets. Such kind of iteration can be 

obtained obviously through a chain of sequence operators, as shown in 

equation 3.7. 

𝐹{𝑛} =
𝑛
≫

𝑖 = 1
𝐹                𝑛 ∈ ℕ  

(3.7) 

The second short-hand we use is related to the definition of iterations that 

should be recognized at least a given number of times. The shorthand is 

again a superscript for the gesture symbol and contains the minimum 

number followed by a comma and the Kleene star, inside brackets.  

The semantics of the shorthand can be defined again with a chain of 

sequence operators, followed by the gesture with the iterative operator, as 

shown in equation 3.8 

𝐹{𝑛,∗} =
𝑛
≫

𝑖 = 1
𝐹 ≫  𝐹∗             𝑛 ∈ ℕ  

(3.8) 

3.1.3 Handling recognition errors 

Besides the recognition of a gesture, it is important also to define how to 

react if the sequence of events received does not match the gesture definition.  
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This case can be detected when the notification of an external event 

related to some observed property does not fire any transition. In such case, 

the gesture recognition should be interrupted, and the developer should have 

the possibility to define the interface reaction to such interruption. 

This can be supported associating a handler not only for the successful 

recognition of a gesture (either basic or composed), but also for the 

recognition failure. Obviously, the recognition failure is propagated from 

through the composition tree, from the component to its parent. 

From the Petri Net point of view, such handling can be modeled adding 

a transition for each ground term to a place that represents the recognition 

error. Such transition fires if one of the elements in 𝐶𝐺𝑆(𝐹𝑖), being 𝐹𝑖 the 

feature associated to the ground term (see section 3.1.2). 

3.2 Modelling multitouch gestures 

A multitouch screen can detect multiple simultaneous touches. For each 

touch, the device can detect its screen position (usually expressed in pixel). 

In addition, it is possible to detect the current time.  

According to our abstract meta-model, we have 𝑛 features related to the 

touch positions (one for each detectable touch) and a feature related to the 

current time. If a touch is not currently detected on screen, we say that its 

current position is the point (⊥, ⊥). 

We identify the feature related to the 𝑖-th touch with 𝑝𝑖, while we use the 

𝑡𝑖𝑚𝑒 symbol for the time. In order to have a uniform terminology with the 

current multi-touch toolkits, we define the simplest set of multitouch 

gestures in equation 3.9. From these building blocks it is possible to define 

complex gestures using the composition operators, which are described in 

the following subsections. 

𝑆𝑡𝑎𝑟𝑡𝑖 =  𝑝𝑖 [𝑝𝑖(𝑡 − 1) = (⊥, ⊥) ∧  𝑝𝑖 (𝑡) ≠ (⊥, ⊥)] 
𝑀𝑜𝑣𝑒𝑖 = 𝑝𝑖 [ 𝑝𝑖(𝑡 − 1) ≠ (⊥, ⊥) ∧ 𝑝𝑖(𝑡) ≠ (⊥, ⊥)] 
𝐸𝑛𝑑𝑖 = 𝑝𝑖[ 𝑝𝑖 (𝑡 − 1) ≠ (⊥ , ⊥) ∧ 𝑝𝑖 (𝑡) = (⊥ , ⊥)] 

(3.9) 

3.3 Modelling full-body gestures 

The devices that enable the recognition of full-body gestures (e.g. Microsoft 

Kinect [87], Asus Xtion PRO [8] etc.), are able to sense the 3D position of 

the complete skeleton joints for up to two users, while they can sense the 
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body centre position of up to four more users, in meters. The SDKs provide 

facilities for projecting the position on the image space of the RGB camera 

or depth sensor, obtaining the corresponding coordinates in pixels 

(obviously, without considering the depth axis). In addition, they are also 

able to track the joint orientations, providing a 3D vector.  

Moreover, it is possible to have more information using Computer Vision 

techniques. For instance, it is possible to detect fingertips if the user is really 

close to the sensor, or to detect if a hand is open or not at intermediate 

distances (e.g. calculating the convex hull and convexity defects [21]).  

It is clear that for this kind of devices the available toolkits share most of 

the features, but we have still a set of differences which is larger if compared 

with multitouch SDKs. 

 

Figure 3.9 Skeleton joints 

From the point of view of our abstract meta-model, it is possible to include 

all the features provided by all the frameworks. However, in order to be able 

to provide a proof-of-concept implementation, we had to fix a set of features 

we deal with.  

Therefore, from now on we limit the scope of the full body gesture features 

to the following list, unless otherwise specified:  

 The time 
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 3D position and orientation of the skeleton joints, depicted in 

Figure 3.9 

o Head 

o Shoulder center 

o Shoulder left 

o Shoulder right 

o Elbow left 

o Elbow right 

o Wrist left 

o Wrist right 

o Hand left 

o Hand right 

o Spine 

o Hip center 

o Hip left 

o Hip right 

o Knee left 

o Knee right 

o Ankle left 

o Ankle right 

o Foot left  

o Foot right 

 Left hand open (true if open, false otherwise) 

 Right hand open (true if open, false otherwise) 

 
Figure 3.10 Full-body gesture coordinate system 
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Each feature is available for each user tracked by the device. We indicate 

the user id in the gesture expression only if it involves more than one user.  

The coordinate space representation used by our meta-model is shown in 

Figure 3.10. It considers a right-handed coordinate system that has its origin 

in the position of the tracking device. For other tracking systems that are 

not based on depth sensors, it is possible to consider the screen as the origin 

of the axes. 

3.4 Comparison with Proton++ 

In this section we demonstrate that possible gestures modelled using 

Proton++ [72][73] are a subset of those that may be defined with GestIT. 

Proton++ is the declarative approach closest to GestIT in literature, as 

described in section 2.3.1.1. 

We prove it showing a general way for mapping the regular expressions 

used in Proton++ towards the GestIT notation. In addition, we show that 

it exists a class of GestIT models, which is not possible to define using 

Proton++.  

Obviously, since Proton++ describes only multitouch gestures, we define 

the correspondence between the regular expression literals and the ground 

terms only for the multitouch platform.  

However, it is worth pointing out that the higher expressiveness of the 

modelling approach is not related to the gesture recognition support, but it 

is related to a less expressive set of operators provided by Proton++. Indeed, 

it would be is possible to model full-body gestures using the Proton++ 

approach providing a set of literals related to a full-body tracking device, 

but even in this case there is a set of gestures that can be expressed with 

GestIT but not with Proton++. 

3.4.1 Proton++ literals 

A Proton++ literal is identified by: 

1. An event type (touch down, touch move, touch up) 

2. A touch identifier 

3. An object hit by the touch 

4. A set of custom attributes values (one or more), such as e.g. the touch 

trajectory, shape etc. 
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In GestIT for multitouch, a ground term is identified by an event type 

(touch start, touch move or end) and by a touch identifier. Therefore, the 

correspondence between the first two elements of the Proton++ literal and 

the GestIT ground term is straightforward. The third and fourth component 

of a Proton++ literal can be all modelled constructing a correspondent 

predicate associated to a GestIT ground term.  

We recall that a predicate associated to a ground term in GestIT is a 

boolean condition checks whether the gesture performance conforms to a set 

of gesture-specific constraints or not. According to this definition, the third 

component can be modelled with a predicate that checks if the current touch 

position is contained into an object with a given id or belonging to a 

particular class. 

The forth component can be modelled considering, for each Proton++ 

custom attribute value, the function that computes its value. Such 

computation may depend on the current or previous touch positions, or it 

may depend also on other gesture features. In brief, such function depends 

on what we call the gesture support state sequence. 

The function that calculates the attribute value has been defined in 

Proton++ for associating it to a literal. Therefore it is also possible to 

provide a predicate that compares the current attribute value with the 

specified in the regular expression, in order to be translated in a boolean 

form that can be exploited in GestIT. If more than one value is acceptable, 

the predicate can be defined simply through a boolean OR of the comparison 

for the different values. Obviously, if the touched object and a set of custom 

attributes for the literal need to be modelled, it is sufficient to define a single 

predicate that is composed by the boolean AND of the corresponding 

predicates. 
Proton++ GestIT 

𝑬𝑻𝒊𝒅

𝑶|𝑽𝟏… 𝑽𝒏 𝐸𝑇𝑖𝑑
[𝑝]  

where: 
𝒐 = 𝒕𝒓𝒖𝒆 

 
⇔  𝑶𝒕𝒚𝒑𝒆 = 𝑶 

𝒂𝒊 = 𝒕𝒓𝒖𝒆 
 

⇔  𝑨𝒊 = 𝑽𝒊        𝒊 = 𝟏 … 𝒏 

 𝒑 = 𝒐 ∧ (𝒂𝟏 ∨ … ∨ 𝒂𝒏)      𝒊 = 𝟏 … 𝒏  

 
Table 3.2 Mapping a Proton++ literal to a GestIT ground term 

Table 3.2 summarizes how to transform a Proton++ literal into a GestIT 

ground term. E represents an event type 𝑇𝑖𝑑 a touch identifier, 𝑂𝑡𝑦𝑝𝑒 is a 
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property that maintains the current object type, 𝑂 is a concrete value for 

the object type (e.g. start, rectangle etc.), 𝐴𝑖 is a property that maintains 

the value of an attribute, while 𝑉𝑖 is the actual attribute value, while 𝑝 is a 

boolean predicate associated to the ground term in GestIT. 

3.4.2 Proton++ operators 

The correspondence between the Proton++ and the GestIT ones is 

straightforward, since all the operators defined by the former have an 

equivalent in the latter. Table 3.3 summarizes how to transform the 

operators from Proton++ to GestIT.  
Proton++ GestIT 

Concatenation: 𝑨𝑷𝑩𝑷 Sequence: 𝑨𝑮 ≫ 𝑩𝑮 

Alternation: 𝑨𝑷|𝑩𝑷 Choice: 𝑨𝑮[ ] 𝑩𝑮 

Kleene star: 𝑨𝑷
∗ Iterative: 𝑨𝑷

∗ 

Table 3.3 Mapping Proton++ operators to GestIT 

Appling recursively the transformations defined in Table 3.3 and Table 

3.2, it is possible to build a GestIT gesture definition corresponding to a 

Proton++ one.  

The vice-versa is not possible in general, since there is no way to transform 

the Disabling and the Parallel operators from GestIT to Proton++.  

The Disabling operator is important in order to stop the recognition of 

iterative gestures, in particular the composed ones. 

Most of the times, it models how to interrupt the iterative recognition of 

a gesture. For instance in a grab gesture, the iterative recognition of hand 

movements is interrupted by opening the hand. In addition, it may be used 

also for modelling situations where the user performs an action that 

interrupts the interaction with the application. For instance, all the Kinect 

games have a “pause” gesture that disables the interaction. In some 

applications we describe in this thesis, the disable operator is used for 

modelling the fact that the application tracks the user only if she is in front 

of the screen. Therefore, the gesture “shoulders not parallel to the screen 

plane” disables the interaction.  
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This is particularly relevant while interacting with devices that track the 

user continuously (e.g. Microsoft Kinect), since it is important to provide 

the user with a way to disable the interaction at any time. 

The Parallel operator has a clear impact when modelling parallel input 

for e.g. multi-user applications. For instance, the parallel operator can be 

useful in a scenario where a user zooms a photo on a multitouch table while 

another user drags another picture, simply composing two existing gestures. 

In addition, it is also possible that parallel interaction occurs with a single 

user. A user may drag an object through a single-hand grab gesture and 

point with the other hand for selecting where to drop it.  

 





 

Chapter 4  

Gesture Models 

In this chapter, we provide the definition of different gesture models for both 

multitouch and full-body interation.  

4.1 Common multitouch gestures models 

In this section, we provide a definition for the most common multitouch 

gestures, using the GestIT notation, showing some modelling examples. It 

is worth pointing out that all the following gestures can be in turn composed 

in order to obtain more complex interactions.  

In order to graphically show the gesture performance, we exploit the 

representation in [142]. 

4.1.1 Tap 

The tap gesture is simply a touch immediately released from the screen, and 

it is shown in Figure 4.1. It can be simply described with equation 4.1: the 

gesture starts with the touch of the first finger, which is immediately 

released from the screen.  

𝑆𝑡𝑎𝑟𝑡1 ≫  𝐸𝑛𝑑1 (4.1) 

 
Figure 4.1 The touch gesture 
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4.1.2 Double Tap 

A double tap is a tap followed by another tap in the same position, with a 

maximum distance in time. The gesture is shown in Figure 4.2. 

 
Figure 4.2 Double tap gesture 

 We specify two constraints: the first checks that the two touch start points 

are (almost) in the same position (modelled with the predicate 𝑝𝑜𝑠), while 

the second one that their difference in time is not above a given threshold 

(modelled with the predicate 𝑡𝑖𝑚𝑒𝐷𝑖𝑓𝑓). The description is simply a 

sequence of taps, with the constraints to be checked on the second touch 

start, shown in equation 4.2. 

𝑆𝑡𝑎𝑟𝑡1 ≫  𝐸𝑛𝑑1 ≫ 𝑆𝑡𝑎𝑟𝑡1 [ 𝑝𝑜𝑠 ∧ 𝑡𝑖𝑚𝑒𝐷𝑖𝑓𝑓 ] ≫  𝐸𝑛𝑑1 (4.2) 

4.1.3 Pan 

The pan gesture consists on a single finger that touches the screen, changes 

its position a certain number of times, and then it is released from the screen, 

as shown in Figure 4.3. 

 
Figure 4.3 Pan gesture 
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The definition of the gesture using the GestIT notation is shown in 

equation 4.3. After the touch is detected on the screen, we have an iterative 

movement of the touch position. The loop is ended when the user releases 

the touch from the screen. It is possible to add constraints to the finger 

trajectory simply specifying an additional property for the 𝑀𝑜𝑣𝑒 feature.  

𝑆𝑡𝑎𝑟𝑡1 ≫  𝑀𝑜𝑣𝑒1
∗ [>  𝐸𝑛𝑑1 (4.3) 

4.1.4 Slide 

The slide gesture is simply a linear pan with a moving speed higher than a 

certain threshold.  

The modelling of the temporal relationships between the touch features is 

exactly the same of the pan gesture. The difference is a specific constraint 

for the path. We define such constraints through two predicates, one that 

checks whether the trajectory is linear (linear) and another one that 

compares the current speed with the specified threshold (speed). Thus, the 

slide gesture can be defined with the expression in equation 4.4. 

𝑆𝑡𝑎𝑟𝑡1 ≫  𝑀𝑜𝑣𝑒1
∗[𝑙𝑖𝑛𝑒𝑎𝑟 ⋀ 𝑠𝑝𝑒𝑒𝑑] [>  𝐸𝑛𝑑1 (4.4) 

4.1.5 Pinch 

The pinch gesture is usually exploited in multi touch devices for zooming in 

or out a view. It consists of the contemporary touch of two fingers on the 

screen, followed by an increase or decrease of the distance between them, 

due to a parallel movement of the two fingers. Lifting the two fingers from 

the screen ends the gesture. The pinch gesture is depicted in Figure 4.4. 

In order to model the gesture with the GestIT notation, we split the 

execution in three different phases. 

In the first one, the user touches the screen with two fingers. Obviously, 

the touch order is not important, therefore we can use an order independence 

relationship for the touch start features. After that (sequence) the user can 

move both fingers on the screen independently an indefinite number of 

times. In this case, we can use a parallel operator for connecting the two 

𝑀𝑜𝑣𝑒 ground terms. Finally, such iterative movements are disabled by the 

lift of one of the two fingers (the 𝐸𝑛𝑑 features), again without any constrains 

in the lifting order. 

The complete expression is shown in equation 4.5. 
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Figure 4.4 Pinch gesture 

( 𝑆𝑡𝑎𝑟𝑡1 |=|𝑆𝑡𝑎𝑟𝑡2) ≫ ((𝑀𝑜𝑣𝑒1
∗|| 𝑀𝑜𝑣𝑒2

∗) [> (𝐸𝑛𝑑1 |=| 𝐸𝑛𝑑2)) (4.5) 

4.1.6 Rotate 

The rotate gesture is similar to the pinch, but instead of increasing or 

decreasing the finger distance, the user moves the two fingers in a circular 

path, as shown in Figure 4.5. 

 
Figure 4.5 Rotate gesture 

The gesture description is the same as the pinch from the temporal point 

of view, but we should check the circular trajectory, represented by the 

𝑐𝑖𝑟𝑐𝑙𝑒 property. 

( 𝑆𝑡𝑎𝑟𝑡1 |=|𝑆𝑡𝑎𝑟𝑡2) ≫ (𝑀𝑜𝑣𝑒1
∗[𝑐𝑖𝑟𝑐𝑙𝑒] || 𝑀𝑜𝑣𝑒2

∗[𝑐𝑖𝑟𝑐𝑙𝑒]) (4.6) 
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  [> (𝐸𝑛𝑑1 |=| 𝐸𝑛𝑑2) 

4.2 Common full-body gesture models 

Considering the full-body gestures, it is more difficult to find a well-

established vocabulary with respect to the multitouch interaction, which can 

be used as a benchmark for the proposed meta-model. 

Therefore, we tried to create a list of common gestures through a literature 

review, trying to identify the common ones and to provide a unified naming 

convention for those that are exploited in different work, but called in 

different ways by different authors.  

We do not consider applications that exploit the full-body tracking device 

in order to mimic the user’s movement through an avatar, as happens to 

the wide majority of the Kinect enabled games for Xbox 360, since the effects 

of the body movements are mapped one-to-one with the user’s virtual 

counterpart. 

The following is the list of papers we considered for identifying the 

common gestures:  

 In [45], the authors propose the integration of full-body gesture 

interaction into a medical image viewer.  

 In [79], the authors selected a set of gestures for developing a 

machine-learning recognizer based on a restricted set of features.  

 In [12], the authors propose a gestural interface for the remote 

control of a robot 

 In [67], the authors propose a set of gestures for controlling a 

Google Maps through gestures 

 In [74], the authors enhanced a book story telling application, 

providing the possibility to select different paths on the plot 

through a set of gestures. A user study demonstrated that the users 

prefer such selection mechanism if compared with pressing buttons. 

 In [33], the authors describe another gestural controller remote 

control interface for robots  

 In [35], the authors propose a gestural interface for controlling 

Power Point presentations. 

 In [135], the authors defined a set of gestures for navigating in a 

virtual 3D environment. 

 In [24], the authors provided an interface for controlling the 

movements of a robot. 
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 In [78], the authors created a 3D model visualizer, which can be 

controlled by gestures. 

 In [43], the authors describe a flexible way for adding gestural 

interaction to applications that do not support it. They propose a 

set of gestures that can be employed in different settings 

 In [22], the authors present Code Space, a system for enabling 

collaboration among developers exploiting touch and on-air 

gestures. 

 The book in [138] describes the basics of the development of Kinect 

enabled applications exploiting the Microsoft Kinect SDK. The 

Chapter 6 is dedicated to gestures, and the authors describe a set 

of typical gestures and how they can be recognized.  

 The middleware described in [115] provide a set of reusable 

graphical controls for creating gestural interfaces  

 The work in [125] and [127] is reported in section 5.4, since it 

discuss the application developed exploiting the proof-of-concept 

library for our gesture modelling approach. The applications are 

respectively a 3D model visualizer and a touchless recipe browser.  

In the following sections, we discuss the performance of each identified 

gesture and we provide the correspondent model. In addition, we explain 

how it has been exploited in the different work selected in literature. A 

summary of the different identified gestures together with their exploitation 

in the different selected papers is provided in Table 4.1 
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4.2.1 Pointing 

The pointing gesture consists of the usage of the dominant hand (or 

optionally the non-dominant hand), for selecting an object on the screen. 

Figure 4.6 graphically shows the gesture performance.  

The relationship between the hand position on the real world and the 

corresponding position on the screen can be defined in different ways. For 

instance, it is possible to exploit the image-plane approach described in [64], 

where the on-screen position is obtained tracing a ray from the user’s eye 

location, passing from the finger tip and intersecting it with the screen plane. 

In [45], the authors approximate this approach replacing the eye position 

with the head point of the skeleton and the fingertip with the position of 

the dominant hand.  

 

Figure 4.6 The pointing gesture 

A different approach is a direct mapping between the screen and the real 

world, defining a scale matrix between the two spaces. This is the a typical 

approach since it is adopted by the Kinect SDK, and it is possible to find it 

in literature for instance in [138].  

Another source of variation for the pointing gesture is related to the space 

where the hand movements are tracked. It is possible to define a depth 

barrier where the hand position is tracked only if its Z coordinate is lower 

than a certain threshold. Another possibility is to define a 2D plane in front 

of the user. 

In order to model this gesture with our declarative approach, it is 

sufficient to iteratively track the position of the dominant hand (e.g. the 

right one). It is possible to optionally associate a predicate to the recognition 

of the hand feature in order to limit the tracking space. Equation 4.7 shows 
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the definition of the pointing gesture for the right hand (represented by the 

𝑚𝐻𝑟 feature). A symmetric definition is possible for the left hand. The 

predicate 𝑡𝑠 can be instantiated in different ways in order to limit the 

tracking space.  

From the interaction semantics point of view, this gesture has the obvious 

effect of selecting an area on the screen, or provides a direction for 

controlling a robot 

𝑚𝐻𝑟
∗[𝑡𝑠] (4.7) 

4.2.2 Grab 

In its simplest form, the grab gesture consists of simply closing one hand. 

In this form it has been exploited for instance in [45] and in [127].  

A different definition of the same gesture can be found in [78], [22], [125] 

and [127], where the hand closure is followed by a change of the closed hand 

position until the hand is reopened.  

This variant is exploited for providing a manipulation metaphor for 

rotating [78] or moving [125] a 3D model, changing the position of video 

timeline [127] or for implementing an on-air drag and drop [22].  

The grab gesture performance is shown in Figure 4.7: the bigger black 

dots represent a closed hand, while the white dots represent an open hand. 

The first phase is the same for all the gesture variants: the user closes the 

hand. The phase number 2 and number 3 belong to the second variant of 

the gesture: the user can move the closed hand in different directions 

(represented with the arrows in the second part of Figure 4.7). Finally, the 

user opens the hand (the third part of Figure 4.7).  

The gesture modelling for the two variants is shown in Equation 4.8, 

considering the right hand (the left one is symmetric). The feature 𝑜𝐻𝑟 

represents a change on the open/closed state of the hand, while the predicate 

𝑐 ensures that the hand is closed.  

The second version of the gesture offers the possibility to drag the grabbed 

object with the closed hand and then release it. This is modelled using a 

sequence operator after the hand closure, which allows the closed hand to 

be moved iteratively (represented by the 𝑚𝐻𝑟 feature). The loop is disabled 

by a change in the hand closure state that changes from closed to opened. 

The expression models such change exploiting the feature 𝑜𝐻𝑟, which is 

associated to the 𝑐̅ predicate, which is the logical negation of 𝑐. 
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𝐺𝑟𝑎𝑏𝑣1 =  𝑜𝐻𝑟
∗[𝑐] 

𝐺𝑟𝑎𝑏𝑣2 =  𝑜𝐻𝑟
∗[𝑐] ≫ (𝑚𝐻𝑟

∗[> 𝑜𝐻𝑟
∗[𝑐̅]) 

               = 𝐺𝑟𝑎𝑏𝑣1 ≫ (𝑚𝐻𝑟
∗[> 𝑜𝐻𝑟

∗[𝑐̅]) 

(4.8) 

 

 
Figure 4.7 The grab gesture 

4.2.3 Push 

The push gesture mimics the action for pressing a virtual on-air button, 

stretching out one hand towards the screen. The approach for recognizing 

this gesture is based simply on a depth barrier definition between the user’s 

position and the screen. If one of the hands crosses the barrier, the push is 

detected.  

Figure 4.8 graphically shows how the gesture can be performed. The depth 

barrier is depicted using a dotted line in the side view.  

From the modelling point of view, the push gesture is a simple change in 

the position of the hand feature, which has to cross the depth barrier. This 

can be simply defined by a sequence of two hands movements: the former 

has a depth value greater than the depth barrier (see Figure 3.10), while the 

latter has a depth value lower than the depth barrier.  
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Figure 4.8 The push gesture 

We formalize the definition through the equation 4.9, where the 𝑚𝐻𝑟 

feature tracks the changes in the position of the right hand (for the left one 

the definition is symmetrical). The depth-barrier test is performed by the 𝑑 

predicate: it is true if the Z coordinate for the hand position was lower than 

the considered barrier value and false otherwise. The predicate �̅� is the 

logical negation of 𝑑. 

𝑚𝐻𝑟[�̅�] ≫ 𝑚𝐻𝑟[𝑑] (4.9) 

4.2.4 Push back 

The push-back gesture mimics the action for releasing a virtual on-air 

button. The gesture performance is symmetric to the one described in the 

previous section: this time the user pulls-back the hand from the depth 

barrier.  

 
Figure 4.9 The push-back gesture 
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Figure 4.9 graphically shows how the push back gesture is performed, with 

the depth barrier represented by a dotted line in the side view.  

The gesture modelling with our meta-model notation is symmetric with 

the one discussed in the previous section, and it is shown in equation 4.10. 

This time, the first ground term accepts values that are lower than the depth 

barrier value (modelled with the 𝑑 predicate), while the second one accepts 

values that are greater than the depth value (the �̅� predicate).  

It is worth pointing out that the value of the depth barrier needs to be 

updated according to the user’s position. For instance, it is possible to 

consider a relative displacement calculated on the position of Z coordinate 

of the hip center joint. 

𝑚𝐻𝑟[𝑑] ≫ 𝑚𝐻𝑟[�̅�] (4.10) 

4.2.5 Lateral push 

The lateral push gesture is equivalent to the push gesture, the only difference 

is the change of the axis for defining the barrier, which relays no more on 

the depth axis but on a value defined on the X axis.  

 
Figure 4.10 Lateral push gesture 
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Figure 4.10 shows the performance of the lateral-push gesture. From the 

modelling point of view, it is possible to reuse the definition in the equation 

4.9, changing the definition of the 𝑑 predicate. 

4.2.6 Kick 

The kick gesture, as the name already explains, consists in recognizing when 

the user mimics a kick for interacting with the application. As it depicted 

clearly by Figure 4.11, the recognition of this gesture can be defined through 

the same patterns we use for recognizing the push gesture (front or lateral): 

we again set a depth barrier and the gesture is completed when it is crossed 

by the considered foot.  

 
Figure 4.11 The kick gesture 

Equation 4.11 shows the definition of a GestIT expression for the kick 

gesture. The 𝑚𝐹𝑟 is the feature for the right foot (symmetrically it is possible 

to define the same gesture for the left one), which has to be detected first 

outside the depth barrier (represented by the 𝑑 predicate) and then inside 

it (the �̅� predicate). 

𝑚𝐹𝑟[𝑑] ≫ 𝑚𝐹𝑟[�̅�] (4.11) 

4.2.7 Wave 

The wave gesture is commonly used by people to say hello and goodbye 

from a distance, simply moving one hand. Different applications exploit this 
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gesture for communicating the intention of the user to interact whit them, 

using a “greet the screen” metaphor, especially in games for Xbox.  

In order to define an expression for recognizing it, we consider the 

algorithm described in [138]. 

The gesture recognition phases are depicted in Figure 4.12. We describe the 

recognition of the wave gesture for the right hand, but it can be defined 

symmetrically also for the left hand. For convenience, in this paragraph we 

exploit a different coordinate system for the hand point: we set its origin on 

the elbow of the considered hand, preserving the orientation for the axes in 

Figure 3.10. Such coordinate system can be obtained at each frame simply 

defining a translation of the original coordinate system, using as vector the 

one defined by the currently tracked elbow position.  

 
Figure 4.12 The wave gesture 

The gesture starts when the hand point reaches the second quarter in our 

coordinate system, with a positive Y and a negative X value. The situation 

is depicted in Figure 3.10, part 1. Then, the user has to move the hand in 
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the first quarter of the coordinate system, with both values of X and Y 

positive, as shown in Figure 3.10, part 2. After that, the hand has to return 

in the second quarter (Figure 3.10, part 3). At this point, there are two 

alternatives: either the user repeats the wave, returning to the situation in 

Figure 3.10 part 2 and then back to hand position in Figure 3.10 part 3, or 

she can conclude the gesture moving the hand in the third quarter, as 

depicted in Figure 3.10, part 4.  

In order to model this gesture with the GestIT notation, we define four 

different predicates, to be applied to the feature that describes the position 

of the right hand (𝑚𝐻𝑟): 

1. 𝑥 is true if the hand point has a positive value for the X coordinate 

2. �̅� is true if the hand point has a negative value for the X coordinate 

3. 𝑦 is true if the hand point has a positive value for the Y coordinate 

4. �̅� is true if the hand point has a negative value for the Y coordinate 

With such predicates, we can model the recognition of the hand position 

as follows: 

 𝑚𝐻𝑟[�̅�  ⋀ 𝑦] recognizes the hand in the second quarter 

 𝑚𝐻𝑟[𝑥 ⋀ 𝑦] recognizes the hand in the third quarter 

 𝑚𝐻𝑟[�̅�  ⋀ �̅�] recognizes the hand in the fourth quarter 

Having defined the different parts of the gesture, we can compose them 

using the temporal operators in order to obtain the wave. For defining such 

temporal relationships, we have to consider that, during the gesture 

performance, the hand position inside the different quarters changes an 

indefinite number of times. Therefore, the recognition of each gesture 

subpart is iterative, it has to be executed at least once, and it is stopped by 

the recognition of one of the other components.  

The equation 4.12 shows the definition of the wave gesture with the 

GestIT notation, and it clearly shows the four phases of the gesture. The 

first ground term corresponds to the first gesture phase. The iterative hand 

movement inside the second quarter of our coordinate system is disabled by 

the expression for the phases 2 and 3, contained in round brackets, which 

correspond respectively to the 𝑚𝐻𝑟[𝑥 ⋀ 𝑦] and the 𝑚𝐻𝑟[�̅�  ⋀ 𝑦] ground 

terms.  

These phases can be repeated an indefinite number of times (the user can 

wave more than once), but they have to be completed at least once.  

Finally, the user put down the hand, positioning the hand point inside 

the third quarter, modelled by the 𝑚𝐻𝑟[�̅�  ⋀ �̅�] ground term.  
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𝑚𝐻𝑟
{1,∗}[�̅� ∧ 𝑦 ] [>   

(𝑚𝐻𝑟
{1,∗}[𝑥 ∧ 𝑦 ][> 𝑚𝐻𝑟

{1,∗}[�̅� ∧ 𝑦 ])
{1,∗}

[> 

𝑚𝐻𝑟[�̅� ∧ �̅�]  

(4.12) 

4.2.8 Swipe 

The swipe gesture is a rapid movement of one hand, in a direction roughly 

parallel to the X or Y axis. In this paragraph, we consider a swipe on the X 

axis with the right hand, but it is easy to modify the definition to obtain 

any combination of hand and axis for recognizing all the variants for this 

gesture.  

The gesture performance is depicted in Figure 4.13: the user moves her 

hand rapidly maintaining it in the area between the two dotted lines. 

Obviously, it is possible to define different tolerance thresholds for both the 

height of the area and the movement speed, in order to fine-tune the 

recognition. 

 

 
Figure 4.13 The swipe gesture 

It is possible to model the gesture using the expression in equation 4.13. 

The swipe gesture is simply an iterated hand movement, which is 

constrained to be in an area with a specific height (modelled by the 𝑙𝑖𝑛𝑒𝑎𝑟 

predicate) and with a speed higher than a specific threshold (modelled by 

the 𝑠𝑝𝑒𝑒𝑑 predicate).  
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It is possible to specify that the recognition of such hand movement has 

to be repeated at least a given number of times, changing the iterative 

operator with the second one of the short-hands we defined in section 3.1.2.7. 

Finally, the first hand movement that do not satisfy the constraints 

disables the iteration, concluding the gesture.  

𝑚𝐻𝑟
∗[𝑙𝑖𝑛𝑒𝑎𝑟 ∧ 𝑠𝑝𝑒𝑒𝑑] [> 𝑚𝐻𝑟 (4.13) 

4.2.9 Walk 

The walk gesture is an in-place imitation of the movements we perform 

while walking. In literature, we can find two different types of such 

imitation.  

In the first type, the user mimics the walking movement raising 

alternatively the left and the right foot. Such kind of definition is exploited 

for instance in [74] and [33].  

 

 
Figure 4.14 Walk gesture 

The second one is more recognition-oriented and tries to mimic the 

walking movements with less physical effort for the users. Indeed, it consists 

of simply putting one of the feet forward with respect to the other one. This 

definition is exploited for instance in [67] and [24]. 
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We define a GestIT expression for both variants here. The first one is 

depicted in Figure 4.14.  

The gesture performance can be decomposed in four phases, each one 

depicted by a number in Figure 4.14.  

In the first phase, the user raises the first foot (we consider the right one 

here, but the order is not fixed) until it reaches the height of the knee. After 

that, the same foot has to return to the rest position. The other two phases 

are symmetric: the user raises the second foot (the left one in our example) 

to the knees height and then she returns to the rest position.  

We can model each one of the different phases with a GestIT expression, 

considering an iterative movement of the foot point (right for the first two, 

left for the other ones) that is disabled by reaching the position that 

concludes the considered phase. Therefore, we can define the follow four 

expressions: 

1. 𝑚𝐹𝑟
∗[> 𝑚𝐹𝑟[𝑟𝑖𝑔ℎ𝑡𝑈𝑝] , where 𝑟𝑖𝑔ℎ𝑡𝑈𝑝 is a predicate that tests if 

the right foot is in the position depicted in Figure 4.14, part 1. 

2. 𝑚𝐹𝑟
∗[> 𝑚𝐹𝑟[𝑟𝑒𝑠𝑡] , where 𝑟𝑒𝑠𝑡 is a predicate that tests if the right 

foot is in the position rest position depicted in Figure 4.14, part 2 

and 4. 

3. 𝑚𝐹𝑙
∗[> 𝑚𝐹𝑙[𝑙𝑒𝑓𝑡𝑈𝑝] , where 𝑙𝑒𝑓𝑡𝑈𝑝 is a predicate that tests if the 

left foot is in the position depicted in Figure 4.14, part 3. 

4. 𝑚𝐹𝑙
∗[> 𝑚𝐹𝑙[𝑟𝑒𝑠𝑡] , where 𝑟𝑒𝑠𝑡 is a predicate that tests if the right 

foot is in the position rest position depicted in Figure 4.14, part 2 

and 4 

We can compose the four phases using the GestIT temporal operators in 

order to define the complete gesture. The phases 1 and 2, and symmetrically 

the phases 3 and 4, have to be executed in sequence: when the user starts 

raising one of the feet, she must raise it at the knee height and put it back 

in the rest position before starting the same movement with the other foot.  

Obviously, there is no need to force the user to start with the left or the 

right foot, but we must ensure that the execution of the in-place steps is 

alternated between the right and the left foot. For this purpose, GestIT 

provides the order independence operator that, as defined in section 3.1.2.6, 

does not impose any order on the two operands but forces both of them to 

be completed in order to successfully recognize the entire expression.  

The resulting GestIT expression for the first variant of the walk gesture 

is shown in equation 4.14. 



CHAPTER 4 GESTURE MODELS 100 

((𝑚𝐹𝑟
∗[> 𝑚𝐹𝑟[𝑟𝑖𝑔ℎ𝑡𝑈𝑝] ≫ 𝑚𝐹𝑟

∗[> 𝑚𝐹𝑟[𝑟𝑒𝑠𝑡])  |=| 
(𝑚𝐹𝑙

∗[> 𝑚𝐹𝑙[𝑙𝑒𝑓𝑡𝑈𝑝] ≫ 𝑚𝐹𝑙
∗[> 𝑚𝐹𝑙[𝑟𝑒𝑠𝑡]))∗      

(4.14) 

In the second variant of the walk gesture, the user put forward one of the 

feet with respect to the rest position. The recognition of this variant is quite 

similar to the one described for the kick gesture, the only difference is that 

the foot is not raised from the ground. Therefore, from the modelling point 

of view, the difference between the second type of the walk gesture and the 

kick gesture is simply the definition of the 𝑑 predicate in the expression 

4.11. 

4.2.10  Turn 

The turn gesture is a change in the user’s position that, from being in front 

of the screen, turns the entire body either left or right. This gesture has 

been exploited in [67] for turning the field of view in a 3D-space control 

application. The same gesture has been exploited in [127] in order to 

distinguish when the is willing to interact with the application (and then 

she stays in front of the screen) from the situation where she was focused 

on cooking and her movements should not be tracked: if the turn gesture 

was recognized, the interaction tracking was disabled.  

The recognition of this gesture is quite simple, and it is based on a 

comparison of the position of the two shoulders points. If they are both on 

a plane that is roughly parallel to X axis, we can consider that the user is 

in front of the screen (or, more precisely, in front of the sensor).  

Starting from this consideration, it is simple to define how to recognize 

the gesture: we need simply to track the movements of the two shoulders 

and as long as they are no more on the aforementioned parallel plane, the 

gesture is recognized. Figure 4.15 depicts the performance of the turn 

gesture.  

In order to model this gesture using the GestIT notation, it is sufficient 

to track the shoulder movements in parallel, checking the position of the 

shoulders at each movement. The gesture can be modelled in two steps: in 

the first one the user’s shoulder has to be parallel to the X axis of our 

coordinate system, represented by the 𝑝 predicate. The shoulders can move 

independently (even if they actually do not move independently, but we can 

abstract from such correlation), modelled by the parallel operator. The 

movement of one shoulder (or both) that does not fulfil the predicate 

constraint ends such situation (�̅� predicate). The complete definition is 
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shown in equation 4.15, 𝑆𝑙 and 𝑆𝑟 represent respectively the feature 

associated to the left and the right shoulder points.  

(𝑆𝑙[𝑝]| | | 𝑆𝑟  [𝑝])∗[> (𝑆𝑙[�̅�]| | | 𝑆𝑟  [�̅�]) (4.15) 

 

 
Figure 4.15 The turn gesture 

4.2.11 Converge or Diverge Hands 

In different work in literature, it is possible to find the definition of a full-

body gesture for controlling the zoom level of a 2D or 3D view with an 

interaction style similar to the pinch gesture for multitouch screens. The 

touches are replaced with the position of the hands and the zoom level is 

controlled through the current distance between them: if it increases during 

the movement, the view is zoomed-in otherwise is zoomed-out. 

The main difference with the multitouch counterpart of this gesture is the 

way we establish when it starts. For multitouch screens is straightforward: 

the gesture starts when the user touches the screen. Instead, for the full-

body gesture we have two main alternatives. The first one is relaying on the 

depth barrier concept we introduced for instance for the push: the gesture 

begins when both hands cross a given depth threshold (e.g. [45] and [79]). 

The second one exploits the recognition of the hand closure, and the gesture 

starts when the user closes both hands (e.g. [78] and [43]) 

The gesture performance, based on hands closure, is shown in Figure 4.16, 

but it is obviously similar also for the depth barrier case. 
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Figure 4.16 Converge or diverge hands gesture 

The expression for modelling this gesture is quite similar to the one shown 

in equation 4.5. Indeed, the gesture is defined exploiting the same temporal 

relationships, but we substitute the multitouch feature with the full-body 

ones, according to the different variations we are considering.  

If we exploit the depth barrier, we have the GestIT definition in the upper 

part of the equation 4.16: the gesture starts when both the right and the 

left hands cross the depth barrier (modelled with the 𝑑 predicate), continues 

with an iterative movement of the hands “inside” the barrier and then 

finishes withdrawing the hands from the barrier (the logical negation of 𝑑 

holds). 

The second variant works without considering the position of the hands 

in the depth axis. The gesture starts when the user closes both hands 

(represented by the 𝑐 predicate), continues with a parallel hand movement 

and it is ended when the user reopens the hands (and the logical negation 

of 𝑐 holds). The GestIT definition for this variant is shown in equation 4.16. 

 

( 𝑚𝐻𝑟[𝑑]|=|𝑚𝐻𝑙[𝑑]) ≫ ((𝑚𝐻𝑟
∗[d]|| 𝑚𝐻𝑙

∗[𝑑]) 

                  [> (𝑚𝐻𝑟[�̅�] |=| 𝑚𝐻𝑙[�̅�])) 

 

( 𝑜𝐻𝑟[𝑐]|=|𝑜𝐻𝑙[𝑐]) ≫ ((𝑚𝐻𝑟
∗|| 𝑚𝐻𝑙

∗) 
                  [> (𝑜𝐻𝑟[𝑐̅] |=| 𝑜𝐻𝑙[𝑐̅])) 

(4.16) 
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4.2.12 Steering wheel 

Together with the definition of a pinch equivalent for the full-body gesture 

recognition support, different work defined a full-body equivalent for the 

rotation gesture for multitouch. What we call “steering wheel” is exactly 

such equivalent, which can be found in literature with the same variants 

described for the previous gesture: based on the depth barrier [45] or on 

hand closure [78][43].  

The gesture performance consists in mimicking a rotation of the hands 

along a circular path, as if the user holds a steering wheel. The gesture is 

depicted in Figure 4.17, the dotted line shows the path that constrains the 

hand movements. In practice such area cannot be defined simply as a circle, 

but it must contain an outer and an inner circle where the hands can move, 

tolerating some degree of deviation from a perfect trajectory.  

 
Figure 4.17 Steering wheel gesture 

It is possible to model such gesture in GestIT through an expression 

similar to the converge or diverge gesture. The two definitions differs only 

on the path that constrains the “steering wheel”: we add a 𝑐𝑖𝑟𝑐𝑙𝑒 predicate 

for checking such property to the iteration of the parallel movement of both 

hands.  

We keep the two different definitions also in this case: one for the depth 

barrier and one for the hand closure exploitation for starting and finishing 

the gesture. The expression is shown in equation 4.17. 
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( 𝑚𝐻𝑟[𝑑]|=|𝑚𝐻𝑙[𝑑]) ≫ 
((𝑚𝐻𝑟

∗[𝑑 ∧  𝑐𝑖𝑟𝑐𝑙𝑒]|| 𝑚𝐻𝑙
∗[𝑑 ∧  𝑐𝑖𝑟𝑐𝑙𝑒]) [> (𝑚𝐻𝑟[�̅�]|=| 𝑚𝐻𝑙[�̅�])) 

 

( 𝑜𝐻𝑟[𝑐]|=|𝑜𝐻𝑙[𝑐]) ≫ 
(𝑚𝐻𝑟

∗[𝑐𝑖𝑟𝑐𝑙𝑒]|| 𝑚𝐻𝑙
∗[𝑐𝑖𝑟𝑐𝑙𝑒])  [> (𝑜𝐻𝑟[𝑐̅]|=| 𝑜𝐻𝑙[𝑐̅]))                    

(4.17) 

4.2.13 Roll 

The roll gesture is similar to the grab one defined in section 4.2.2: The 

difference is that performs the on-air grab with two hands. The user has to 

close both hands before moving them.  

As we already explained for other gestures, when the information on the 

hand closure is not available it is possible to exploit a depth barrier 

technique for staring the recognition. 

 
Figure 4.18 Roll gesture 

In addition, the two hands cannot move independently: they should be 

maintained close to each other, as if the user holds a stick during the 

movements. This kind of gesture is exploited in [45] and [125] for rotating a 

3D models using a virtual trackball mechanism [32], and it was included by 

Franke et al. [43] in their benchmark gestures.  



4.2.14 UNIVERSAL PAUSE 

 

105 

The definition of a GestIT expression for recognizing this gesture is similar 

to the one we used for the steering wheel gesture. The main difference is the 

predicate that constraints the parallel movement of the hands: in this case 

we have to ensure that the distance between the hands remains roughly the 

same for the whole gesture performance. For this purpose, we define a 𝑑𝑖𝑠𝑡 

predicate, which performs this check. 

In addition, we define two variants for this gesture, one that exploits a 

depth barrier for recognizing when interaction start and one that exploits 

the hand closure. The resulting expressions are shown in equation 4.18. 

 

( 𝑚𝐻𝑟[𝑑]|=|𝑚𝐻𝑙[𝑑]) ≫ 
((𝑚𝐻𝑟

∗[𝑑 ∧  𝑑𝑖𝑠𝑡]|| 𝑚𝐻𝑙
∗[𝑑 ∧  𝑑𝑖𝑠𝑡]) [> (𝑚𝐻𝑟[�̅�]|=| 𝑚𝐻𝑙[�̅�])) 

 

( 𝑜𝐻𝑟[𝑐]|=|𝑜𝐻𝑙[𝑐]) ≫ 
(𝑚𝐻𝑟

∗[𝑑𝑖𝑠𝑡]|| 𝑚𝐻𝑙
∗[𝑑𝑖𝑠𝑡])  [> (𝑜𝐻𝑟[𝑐̅]|=| 𝑜𝐻𝑙[𝑐̅]))                    

(4.18) 

4.2.14 Universal Pause 

The universal pause gesture is exploited in the Xbox games in order to pause 

the interaction. The gesture has been defined with the purpose to be an 

unnatural pose for the interaction, in order to reduce the accidental 

recognition of this gesture, with a consequent undesired pause [138].  

 
Figure 4.19 The Universal Pause gesture 

The gesture performance is shown in Figure 4.19: the user has to maintain 

the position of the harm roughly at 45 degrees from the body. Obviously, it 
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is difficult that the user is able to hold the exact position, therefore the user 

will actually move the hand, but keeping it roughly in the same position. 

The other parameter to establish is how long the user has to wait before the 

recognition. It obviously depends on the designer’s choice (e.g. two seconds).  

In order to model the gesture with the GestIT notation, we have to 

consider the hand position as the tracking feature. We have also to ensure 

that the position of the hand is at roughly 45 degrees from the body, and 

for this purpose, we defined the 𝑑𝑒𝑔45 predicate. Moreover, we take into 

account the time spent by the user in this position, through the definition 

of a 𝑡𝑖𝑚𝑒 predicate that checks whether the required time has passed or not. 

The complete definition of the gesture is shown in equation 4.19: it 

iteratively recognizes the hand movement in the specified position until the 

time has passed.  

𝑚𝐻𝑟
∗[𝑑𝑒𝑔45 ∧ 𝑡𝑖𝑚𝑒̅̅ ̅̅ ̅̅ ][> 𝑚𝐻𝑟[𝑡𝑖𝑚𝑒] (4.19) 

 

 



 

Chapter 5  

Library Support 

This chapter presents the implementation of a proof of concept library for 

the development of gestural interfaces according to the meta-model 

definition described in Chapter 3. The library is open source and it is 

publicly available at http://gestit.codeplex.com/.  

In the first part, we discuss the overall library architecture, which includes 

the classes shared by the different gesture recognition platforms. After that, 

we show how the abstract classes are refined in for supporting multitouch 

and full-body gestures.  

The second part of this chapter shows how it is possible to define gestures 

through the library, discussing some code samples for iOS (multiouch) and 

for the Microsoft Kinect (full-body). 

The third part briefly discuss a set of applications developed exploiting 

the library for both the multitouch and the full-body platforms. 

The last part of the chapter introduces the possibility of a cross-platform 

reuse of the gestures definition. 

5.1 Library Architecture 

We designed and implemented a proof-of-concept library starting from the 

meta-model defined in Chapter 3. The library architecture has been designed 

in order to isolate the definition of the temporal relationships once for all 

the supported platforms. Therefore, we created an abstraction layer that is 

exploited by all recognition supports.  

In this way, it is easy to add the support for new recognition platforms, 

since there is no need to redefine how to compose expressions and the 

semantics of the temporal operators.  

http://gestit.codeplex.com/
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According to this idea, the library consists of different packages, one for 

each supported platform, which share the implementation of the temporal 

relationships between gestures.  

The library class diagram is shown in Figure 5.1. It has a core independent 

from the actual gesture recognition support, which is contained in the core 

package. Each platform is an extension of the core package and it deals with 

an actual device. The ones that are currently supported are iOS and Android 

devices (multitouch package) and Microsoft Kinect (fullBody package).  

 
Figure 5.1 GestIT class diagram 

5.1.1 Library core 

The library core contains the classes for the defining gesture expressions. 

The abstract class TmpExp represents such expressions, either ground terms 



5.1.1 LIBRARY CORE 

 

109 

or composed ones. The class contains a composition of TmpExpObservers, 

which define the protocol for receiving notifications about the recognition of 

the gesture expression. It is possible to receive two types of notifications: 

 onCompleted, which notifies the successful completion of the 

gesture expression; 

 onError, which notifies that it was not possible, given the current 

gesture state sequence, to recognize the gesture expression. 

Both events are parametric on two abstract classes, the ExpEventArgs 

and the Token. The first one is the extension point for the information about 

the current gesture recognition support state that contains, as we defined in 

section 3.1.1, the value of all the features recognizable by the considered 

device.  

The second one instead maintains the gesture recognition state sequence, 

which is the history of the previously sensed features. As we describe in 

more detail during the discussion of the platform refinements, it is not 

feasible for the concrete implementations of the Token class to maintain the 

whole history of the feature values. Therefore, the implementation provides 

the developer with mechanism to control the amount of information to 

maintain.  

The iterative operator is represented by a boolean flag on all TmpExp 

instances. 

The subclasses of TmpExp refine the gesture expression concept with 

according to different roles.  

The SimpleTmpExp class implements the Petri Net for recognizing a 

generic basic building block, and it is a subclass of TmpExp. The actual 

feature changes and the optional conditions on them (see section 3.1.1) are 

defined by a delegate object associated to the SimpleTmpExp instances, 

which are obviously device-dependent. Such delegate object must implement 

the ExpContent protocol, which is the second extension point defined for the 

core package. Such interface consists of two different methods: 

 accept, which receives the current gesture recognition support state 

(represented by the abstract class ExpEventArgs) and the Petri Net 

Token that, for convenience, contains the information on the 

previous gesture recognition support state sequence. A concrete 

implementation of the delegate returns a boolean value indicating 

whether the feature change is recognized or not, according to the 

parameter values; 
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 consume, which allows to specify the amount of gesture data to be 

maintained during the gesture recognition. As we better detail in 

section 5.2, it is not feasible to maintain the entire sequence of 

feature values because of memory space, storing into a Token only 

the subset of the gesture support state sequence that is needed. 

The possibility to combine building blocks and composed gestures is 

provided by other two TmpExp subclasses: BinaryTmpExp and 

ComplexTmpExp. 

The first one implements all Petri Nets representing binary operators, 

namely sequence, parallel, choice, disabling. Obviously, an instance of this 

class behaves differently according to the operator property and its left and 

right operands, which belong to the TmpExp class. This make it possible to 

connect both building blocks and complex gestures.  

The N-ary versions of such operators can be obtained associating the 

operands, exploiting the associative property of all the binary operators.  

The second TmpExp subclass implements the Petri Net for the order 

independence and contains a list of operands (again belonging to the 

TmpExp class).  

A gesture definition is represented by a TmpExp tree, where all leafs are 

SimpleTmpExp instances, while the other nodes belong either to the 

BinaryTmpExp or the ComplexTmpExp class. At runtime, the tree is 

managed by a device dependent implementation of the Emitter class. Its 

responsibility is to listen to device updates and to forward them to the leafs 

that currently contain a token. For each one of them, the Emitter invokes 

the accept method. If the return value is true, the Emitter calls the consume 

method. Then, the SimpleTmpExp notifies the recognition to its parent 

expression that, according to the Petri Net semantics, moves the Token, 

propagating the notification up to the tree hierarchy and proceeding with 

the gesture recognition. In section 5.2 we provide a concrete example of this 

mechanism. 

It is possible that the device raises an update that is not accepted by any 

leaf. In this case, the gesture recognition should be interrupted, and the 

developer should have the possibility to define how the interface should react 

to the interruption. The library offers the possibility to associate a handler 

not only for the successful recognition of a gesture (either basic or 

composed), but also for the recognition failure (the aforementioned onError 

event of the TmpExp class). The recognition failure is also propagated to 

the upper levels of composition tree as in the successful case. 
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5.1.2 Multitouch package 

In order to recognize multitouch gestures described through this formal 

definition with our library, we need to define the concrete implementation 

of the abstract classes discussed in section 4, represented as the multitouch 

package in Figure 5.1.  

The first one is TouchEventArgs, an ExpEventArgs subclass, which 

contains the information about a device feature update (touch identifier, 

touch point, time). The instances of this class are created by a 

TouchEmitter, an Emitter subclass, which translates the touch screen 

updates into a format manageable by the library.  

The TouchEventArgs instances are forwarded to the leafs of the TmpExp 

tree that, as already discussed in the previous section, are SimpleTmpExp 

instances. These leafs are connected with TouchExpContent instances, which 

are ExpContent refinements. The TouchExpContent class has two instance 

variables, which represent the touch identifier and the type of a basic 

building block for touch gestures (start, move and end). 

Therefore, the accept method checks the conditions defined in equation 

3.9, according to the specified type. Further conditions to be checked can 

be defined by developers sub-classing TouchExpContent and overriding the 

accept method. The TouchToken class contains the information on the 

gesture sequence, and represents the concrete implementation of a Token. 

Obviously, it is not possible to store in memory each single feature update 

especially when programming for mobile devices. Therefore, it is possible to 

specify the maximum number of updates to be buffered and, for convenience, 

if the starting point of each touch should be maintained or not. 

5.1.3 Full-body package 

The structure of the fullBody package is symmetric with respect to the 

multitouch one. The BodyContent class is the concrete implementation of 

the ExpContent for this package, and it defines all the possible ground terms 

for the full body platform through an enumeration that contains a value for 

each different joint type, joint orientation, the hands status (open or closed) 

and the time, as discussed in section 3.3.  

The constraints on the recognition of a given feature are defined by the 

accept instance method. In the particular case of the C# implementation, 

we exploited a delegate method [88], which allow the developer to customize 
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the definition of a predicate on the given feature without the need of 

subclassing BodyContent.  

The data manipulated by the expressions is contained into the concrete 

refinement of the ExpEventArgs, the BodyEventArgs. This class provides 

the information tracked by the Kinect for Windows SDK [87] to the core 

package, wrapping it in a format that can be manipulated by the library. It 

contains the current position and orientation of the skeleton joints, together 

with the information on the time feature. 

The information on the gesture recognition state sequence is maintained 

into an object of the BodyToken class, a refinement of the Token class, in 

the same way we already explained for the multitouch platform. The objects 

of this class are able to maintain a finite number of gesture recognition 

support states, which can be specified at the moment of the object 

instantiation. This is obvious, since it is not possible to maintain the whole 

history of the features changes in memory.  

The task to interface the Kinect device with the expression library is 

accomplished by the BodyEmitter class. It observers the changes of the 

device state through the API provided by the Kinect SDK [87] and, when a 

change occurs, it creates an object of the BodyEventArgs class that contains 

the same updates in a format that can be processed by the library, and 

forwards them to the expression three that represents the gesture description 

definition.  

5.2 Creating a multitouch application 

We better clarify how a developer can use the library for providing 

multitouch gesture support for a UI control with an example. We consider 

a pinch gesture (defined in equation 4.5), exploited in a multitouch 

application that we detail in section 5.4.2.  

We recall in the equation 4.1, the GestIT expression that defines the pinch 

gesture. 

( 𝑆𝑡𝑎𝑟𝑡1 |=|𝑆𝑡𝑎𝑟𝑡2) ≫ ((𝑀𝑜𝑣𝑒1
∗|| 𝑀𝑜𝑣𝑒2

∗) [> (𝐸𝑛𝑑1 |=| 𝐸𝑛𝑑2)) (4.1) 

The following are the steps that have to be followed by the UI control 

initialization code. 

1. Construct the tree of TmpExps represented by the UML object 

diagram in Figure 5.2, starting from the leafs, and then associate 
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each SimpleTmpExp to the delegate for recognizing the desired 

feature 

2. Create a TouchToken instance, specifying the number of updates 

to be buffered and whether the initial position of each touch has to 

be stored or not. 

3. Create an instance of the TouchTmpEmitter class, passing the 

token created at step 2, and the current UI control (exploited in 

order to receive the touchscreen updates from the OS). 

4. Attach the handlers to the completion and/or error event of the 

entire gesture and/or its subparts, represented by the instances of 

TmpExps created at step 1.  

This initialization code at step 1 can be created directly by the developer 

with the considered programming language (e.g. Objective C or Java). 

Otherwise, it can be created exploiting an XML-like description of the 

gesture, which eases the definition of the gesture tree. As we better detail 

in the next section it is convenient to extend the interface description 

markup (e.g. XAML [89]) if available. 

In addition, it is possible to store such initialization code in a separate 

class (e.g. PinchTmpExp) and reusing it for different UI controls. 

The flow of notifications that allows the library to manage the recognition 

and to raise the appropriate intermediate events is shown with a sequence 

diagram in Figure 5.3. In Figure 5.2 we show the how such notifications are 

propagated in the object tree, visualizing the numbers of the messages in 

Figure 5.3 inside arrows. 

The numbered arrows represent the sequence of notifications when the 

user touches the screen with the second finger, the squares represent the 

handlers attached to gesture sub-components, the solid circle represents the 

position of the token before the second touch, and the dotted circles the 

position of the token after the second touch. The lower part shows the effects 

of the attached handlers on the UI. 

We suppose that net has already recognized a touch start with id 1. 

Therefore, it is waiting for another touch start, this time with id 2. Such 

“waiting” is defined by the token position (represented as a circle-enclosed 

T on the s2 object in Figure 5.2).  

When the touch screen senses a new touch, the TouchEmitter forwards 

such notification to s2, the tree leaf that currently contains the token (arrow 

1). After that, s2 tries to recognize the touch, invoking the accept method 

of its TouchExpContent delegate, which returns true (arrow 2). Then s2 
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notifies the successfully completion to its parent, c1, which represents the 

expression ( 𝑆𝑡𝑎𝑟𝑡1 |=|𝑆𝑡𝑎𝑟𝑡2).  

All the building blocks enclosed in this expression are recognized, thus the 

order independence expression is completed. Therefore, the event handler 

attached to c1 is executed. In our example, it paints two circles on the 

currently visualized image in correspondence of the touch points (A square 

in Figure 5.2), providing intermediate feedback to the user while executing 

the gesture. 

 

 

Figure 5.2  Recognition of a pinch gesture with the GestIT library 

This is the point where our approach breaks the standard observer 

pattern: the gesture recognition is not already finished, but it is possible to 

define UI reactions to the completion of its sub-parts, without re-coding the 

entire recognition process, as happens for instance when a viewer has a built-

in pinch for zoom gesture recognition.  

After that, c1 notifies the completion to its parent, pinch (arrow 4), which 

represents an enabling expression. Having completed its left operand, pinch 

passes the token to its right operand b2 (arrow 5), which represents a 

disabling expression, and b2 passes the token to both its operands (arrow 

6), which both duplicate it (arrow 7) at next step. The left one represents a 
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parallel expression, while the right one represents an order independence 

(see section 3.2.3 and 3.2.5).  

Finally, we have four different basic gestures that can be recognized as 

next ones: touch 1 move, touch 2 move, touch 1 end or touch 2 end. The 

dotted circles in Figure 5.2 represent the new token positions. 

It is worth pointing out that the device dependent part of the recognition 

support is concentrated on delegates for the SimpleTmpExp object 

(represented at the bottom of the tree in Figure 5.2). Therefore, the 

remaining part of the support is implemented by classes that are not bound 

to a specific device (identified by the “Abstract” label in Figure 5.2) and can 

be exploited not only for multitouch, but also for full body gestures and 

other recognition supports.  

 

Figure 5.3 Recognition of a pinch gesture (sequence diagram) 

As already mentioned at the beginning of this section, the example 

discussed here is a part of an iOS proof of concept application that allows 

zooming the current view through the pinch gesture and drawing with a pan 

gesture. The application gives intermediate feedback during the pinch, 

showing two divergent arrows while zooming in and two convergent arrows 

while zooming out (respectively square B and C in Figure 5.2). The two 

gestures are composed through the parallel operator, so it is possible to draw 

and to zoom the view in at the same time (e.g. using one hand for zooming 

and one for drawing).  

From the developer point of view, the difference in handling them at the 

same time or separately is a matter of selecting the choice or the parallel 

operator for the composition. No further code is required, which is not the 

case for current multitouch frameworks. In addition, both gestures have 

been defined separately from the application (they are contained as samples 

in the iOS library implementation) and nevertheless the developer can 



CHAPTER 5 LIBRARY SUPPORT 116 

associate UI reactions at different levels of granularity (to the whole gesture, 

or part of it).  

5.3 Creating a full-body gesture 
application 

In this section, we detail how a developer can use GestIT in order to create 

a full-body gestural UI.  

We consider here a touchless recipe browser application that, as we detail 

better in section 5.4.4, is organised into three presentations: the first one 

allows the user to select the recipe type (e.g. starter, first dish, main dish 

etc.), the second one is dedicated to the selection of the recipe, while the 

last one presents the steps for cooking the selected dish with video and 

subtitles.  

In the latter presentation, it is possible to go through the steps back and 

forth or to jump randomly from one point to the other of the procedure. 

We consider here the C# version for Windows Presentation Foundation 

(WPF) of the GestIT library. An interface in WPF is described by two 

different files. The first one contains the definition of the UI appearance and 

layout specified using XAML [89], an XML-based notation that can be used 

in .NET applications for initializing objects. In this case, it initializes the 

widgets contained into the application view.  

The second file involved in the UI definition contains the behaviour, and 

it is a normal C# class file. Since the two files are part of the same view 

class definition, the latter is called the “code-behind” file. Objects defined by 

the XAML file are accessible in the code-behind file and the methods defined 

in the code behind file are accessible in the XAML definition. 

In this example, we discuss the implementation of the first presentation, 

which is shown in Figure 5.4. The view is composed of a title on the upper 

part and a fisheye panel in the centre. The bottom part is dedicated to the 

status messages: the application notifies if it is tracking the user’s 

movements or not. 
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Figure 5.4 Touchless recipe browser, dish type selection 

The gestural interaction is defined inside the associated view through a 

set of custom XAML tags, which are shown in Table 5.1. The tree structure 

of the tags is equivalent to the expression notation we used in Chapter 3.  

The high-level description of the gesture interaction is the following: if the 

user is not in front of the screen, the application does not track her 

movements. When the user is in front of the screen, she can highlight one 

of the recipe types, which can be selected by a grab gesture (closing the 

hand). The definition of such gestural interaction is highlighted with 

comments in Table 5.1. 

The interaction is a sequence of different gestures, which starts with the 

user that stands in front of the screen (a turn gesture, from line 7 to line 

11). This is modelled checking the position of the shoulder points, which 

have to be almost parallel to the sensor plane on the depth axis (see section 

4.2.10). Such constraint is modelled using a predicate associated to the left 

shoulder ground term, which is specified by the Accepts attribute containing 

a value the name of the C# method that calculates it (screenFront). The 

latter method is defined in the code-behind file associated to a XAML 

specification.  

When this gesture is completed, the user needs to be aware that the 

application is tracking her position, therefore the completion method 

associated to the gesture changes the message on the label at the bottom of 

the UI in Figure 5.4, setting its text to “Tracking User” with a green 

background.  
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 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
 

<TabItem Background="#FF92BCED" x:Name="recipeType"> 
  <Grid Background="#FF92BCED"> 
    <!-- gesture definition --> 
    <g:GestureDefinition x:Name="moveSelection" > 
       <g:Sequence Iterative="True"> 
          <!-- turn gesture (front of the screen) --> 
          <g:Change Feature="ShoulderLeft" Accepts="screenFront"> 
            <g:Change.Completed> 
              <g:Handler method="screenFront_Completed"/> 
            </g:Change.Completed> 
          </g:Change> 
          <g:Disabling> 
            <!-- grab gesture  --> 
            <g:Disabling Iterative="True"> 
              <g:Change Feature="HandRight" Iterative="True"> 
                <g:Change.Completed> 
                  <g:Handler method="moveHand_Completed" /> 
                </g:Change.Completed> 
              </g:Change> 
              <g:Change Feature="OpenRightHand" Accepts="rightHandClosed"> 
                <g:Change.Completed> 
                  <g:Handler method="rightHandClosed_Completed"/> 
                </g:Change.Completed> 
              </g:Change> 
            </g:Disabling> 
            <!-- turn gesture (not in front of the screen) --> 
            <g:Change Feature="ShoulderLeft" Accepts="notScreenFront"> 
              <g:Change.Completed> 
                <g:Handler method="notScreenFront_Completed"/> 
              </g:Change.Completed> 
            </g:Change> 
          </g:Disabling> 
       </g:Sequence> 
    </g:GestureDefinition> 
    <!-- view definition --> 
    <ui:FisheyePage x:Name="heading" Grid.ColumnSpan="2"  /> 
    <kt:KinectSensorChooserUI Grid.Column="0"  Grid.ColumnSpan="2"   
        Name="kinectSensorChooser1" VerticalAlignment="Center" Width="328"/> 
  </Grid> 
</TabItem> 

Table 5.1 XAML Gesture definition 

The definition of this behaviour is again in the code-behind file, and it is 

linked with the gesture declaration through the method attribute for the 

handler element inside the change.completed tag (line 8 and 9 in Table 5.1). 

The method name in this case is screenFront_Completed.  

Once this gesture is completed, it is possible to interact with the screen, 

and the grab gesture implements the selection of the recipe type. First, we 

listen iteratively to the change of the right hand position (the Change tag 

with Feature=“HandRight” at line 15 in Table 5.1, which implements a 

pointing gesture). Every time such ground term is completed, (read the user 

moves the hand), the moveHand_Completed method is executed. It updates 
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the currently highlighted recipe type (the one with the red border in Figure 

5.4).  

The recognition iteration may be interrupted in two cases. The first one 

is when the user closes the right hand (the Change tag with Feature= 

“OpenRightHand” at line 20 in Table 5.1) and the method 

rightHandClosed_Completed handles the completion of the grab gesture, 

changing the current presentation.  

The second case is when the user goes away and she is not in front of the 

screen anymore (the turn gesture at line 27 in Table 5.1). This situation is 

modelled symmetrically with respect to the gesture at line 7, the only 

difference is the Accepts method (notScreenFront), which is exactly the 

logical negation of ScreenFront. In both cases, the interruption is modelled 

using a disabling operator, declared respectively by the inner and the outer 

Disabling tags (respectively at line 14 and 12 in Table 5.1). 

As it should be clear from the description, in order to create a gestural 

interface with GestIT in XAML is sufficient to: 

1. Create the UI view 

2. Define the gestures associated to a view (in the same file), composing 

declaratively existing gestures or creating new ones starting from 

ground-terms.  

3. Provide the methods for calculating the predicates associated to the 

specified gestures in the code-behind file (if any) 

4. Provide the UI behaviour associated to the gesture completion 

5.4 Sample applications 

In this section, we provide the description of the different applications that 

developed as showcases for the GestIT library.  

5.4.1 Pilot study: Simple canvas 

The first example we discuss is a simple drawing application for both the 

multitouch and the full-body gesture recognition supports, which we 

exploited in order to drive the design of the gesture meta-model we defined 

in Chapter 3, with a proof-of-concept implementation. The preliminary 

results for this pilot study were discussed in [126]. 

We used two different supports and SDKs, such as the iPhone and the 

iOS SDK [5] and the Microsoft Kinect with the NITE framework [115], since 
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it was created before a stable version of the Microsoft Kinect SDK was 

released. The application is a simple canvas where the user can draw with 

her finger in the iPhone or with one hand in the Kinect version.  

Though the applications are really simple, they have two important things 

in common. The first one is the support for the temporal operator definition, 

shared by both versions, which have been initially developed in C++ and 

compiled for both platforms.  

The second one is the gesture definition: we selected for this sample 

application the Pan (see section 4.1.3) and the Pointing (see section 4.2.1) 

gestures for drawing respectively for multitouch and full-body, which can be 

considered two equivalent gestures in the two different platforms.  

For the same reason, we selected the Pinch for multitouch (see section 

4.1.5) and the Diverge or Converge Hands for the full-body (see section 

4.2.11) in order to implement the zoom feature.   

In both versions, the gestures are connected through the choice operator, 

showing already the main advantage of our modelling technique: we can 

reuse the definition of two gestures and combine them in order to obtain a 

more complex interaction.  

In addition, with the same definition it is possible to support the zooming 

feature while drawing in the multitouch version changing only the 

composition operator (Parallel), without any additional effort for the 

developer. 

The equation 4.1 shows the definition of the gestures for the simple canvas 

application: the first two expressions model the multitouch application, 

while the third one defines the full-body interaction.  

The definitions show how the Pan and the Pinch gestures may be 

connected first through the choice and then with the parallel operator. The 

choice operator connects also the Point and the Diverge or Converge Hands 

in the full-body version. 

Multitouch with choice operator 

(𝑆𝑡𝑎𝑟𝑡1 ≫  𝑀𝑜𝑣𝑒1
∗ [>  𝐸𝑛𝑑1) [ ] 

( 𝑆𝑡𝑎𝑟𝑡1 |=|𝑆𝑡𝑎𝑟𝑡2) ≫ ((𝑀𝑜𝑣𝑒1
∗|| 𝑀𝑜𝑣𝑒2

∗) [> (𝐸𝑛𝑑1 |=| 𝐸𝑛𝑑2)) 

 

Multitouch with parallel operator 
(𝑆𝑡𝑎𝑟𝑡1 ≫  𝑀𝑜𝑣𝑒1

∗ [>  𝐸𝑛𝑑1) || 
( 𝑆𝑡𝑎𝑟𝑡1 |=|𝑆𝑡𝑎𝑟𝑡2) ≫ ((𝑀𝑜𝑣𝑒1

∗|| 𝑀𝑜𝑣𝑒2
∗) [> (𝐸𝑛𝑑1 |=| 𝐸𝑛𝑑2)) 

 

(4.1) 
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Full-body  
(𝑚𝐻𝑟

∗[𝑡𝑠]) [ ] 
( 𝑚𝐻𝑟[𝑑]|=|𝑚𝐻𝑙[𝑑]) ≫ ((𝑚𝐻𝑟

∗[d]|| 𝑚𝐻𝑙
∗[𝑑]) 

                  [> (𝑚𝐻𝑟[�̅�] |=| 𝑚𝐻𝑙[�̅�])) 

The UI behaviour associated to the gesture definition can be summarized 

as follows: 

 To the 𝑀𝑜𝑣𝑒 block of the pan gesture and to the 𝑚𝐻𝑟 block of the 

pointing gesture, we associated an event handler that draws a line 

from the previous touch position to the current one. 

 To each one of the 𝑀𝑜𝑣𝑒 blocks of the pinch gesture and to the 𝑚𝐻𝑟 

blocks of the diverge or converge gestures, we associated an event 

handler that computes the difference between the previous and the 

current distance between the two touches. If it is increased, the 

canvas zooms in the view, otherwise it zooms out the view 

accordingly. 

The iPhone version included the definition of the TmpExp that describes 

the gesture definition as discussed in section 5.1.2 and 5.2.  

The UI controls and the listeners that define the UI behaviour for the 

multitouch version are coded exploiting the UI Kit framework [6] for iOS. 

The resulting user interface is shown in Figure 5.5. 

 

 
Figure 5.5 Simple canvas UI, multitouch version 
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Figure 5.6 Simple canvas UI, full-body version 

For the Kinect version, the definition of the UI reaction with respect to 

the notification of the gesture recognition is symmetric with respect to the 

iPhone version. However, this time the application exploits the Qt4 for the 

application UI, which is shown in Figure 5.6. 

5.4.2 Photo viewer 

The second application we discuss is a multitouch photo viewer for iOS 

devices, which is the sample application that is shipped with the GestIT 

library in order to show how it is possible to create multitouch interfaces 

with it. 

With all the currently available UI toolkits for multitouch mobile devices, 

the creation of an application that is able to simply show a photo is simply 

a matter of exploiting an image view widget. Usually, such widget provides 

the possibility to interact with the contained photo, using the pinch for 

zooming and a single touch for panning the view. When the device recognizes 

one of these gestures, it raises an event corresponding respectively to the 

change of the image scale factor or position.  

It is possible to identify two problems with this approach from the gesture 

interaction design point of view: 
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1. The gestures that have been selected for the interaction cannot be 

modified. They are completely tied to the implementation of the 

UI graphic control 

2. If the events are raised only when the corresponding gesture has 

been completely recognized, it is difficult for the developer to 

provide intermediate feedback during the gesture execution. 

Therefore, in order to show the GestIT library capabilities, we started 

from this simple photo viewer application, but with a small variant: when 

the user is panning or zooming the photo, the application has to show one 

or more arrows under the user’s fingers, which change their orientation 

according to the finger movement direction.  

Exploiting directly the image viewer widget is still possible but, in order 

to provide the intermediate feedback, the developer has to register to the 

following low-level touch events: 

1. Detect when a new touch is detected, in order to show the arrow(s) 

2. Maintain the count of the currently detected fingers 

3. Track the movement of the different touches for detecting the 

movement direction 

4. Detect when a touch ends, in order to hide the arrow(s) 

The application we discuss in this section shows a different way to create 

an application for this simple yet exhaustive scenario.  

Through the GestIT library, we separated the UI control for visualizing 

the photo from the definition of the gestures that manipulates it. We 

exploited the existing image viewer shipped with the iOS UI toolkit, but we 

“deviated” the touch events to a GestIT expression.  

Such expression is a composition of the pan and the pinch gestures 

through a choice operator, respectively discussed in section 4.1.3 and 4.1.5. 

The photo scale factor and viewport position are now changed through 

two different handlers attached to the gesture expression ground terms. Such 

expression is exposed by the image control. In this way, the developer can 

inspect such definition and it is possible to easily add behaviour to an 

existing definition. 

In our case, it is possible to add the arrow feedback through three simple 

handler methods, one for showing or hiding one arrow, one for changing its 

position and orientation. 

Without re-implementing the touch tracking logic, it is possible to connect 

such handlers to the recognition of the appropriate ground term (e.g. touch 

start for showing the arrow, touch move for changing the position and the 
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orientation etc.) and the developer can really reuse the UI control and the 

definition of the gestures. 

 

 
Figure 5.7 The photo viewer application 

5.4.3 3D viewer 

In this section, we describe a 3D viewer we created for demonstrating the 

library capabilities in [125]. The application visualizes a 3D car model, which 

can be moved and rotated by the user through a set of on-air gestures.   

In order to avoid unwanted interactions, we specified that users have to 

stand with the shoulders in a plane (almost) parallel to the sensor, before 

starting the interaction with the car. Thus, if the user is not in front of the 

device that means most of the times in front of the screen, the interface will 

not give any response.  
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The car position can be changed with a grab gesture (see section 4.2.2), 

which consists of closing the right hand, moving and reopening it.  

In addition, the car can be rotated performing the roll gesture (an on-air 

grab with both hands), which means closing two hands, moving them 

maintaining almost the same distance in between, and then reopening them 

(see section 4.2.13) 

We want also to display the 2D projected hand position on the screen, in 

order to provide an immediate feedback to the user for each hand movement.  

The resulting gesture model is defined in equation 4.2. The Front and 

NotFront gestures respectively activate and deactivate the UI interaction. 

When a change in the feature associated to the left and right shoulder 

(indicated as Sl and Sr) occurs, they respectively check if the sensor parallel 

plane property (p) is true or false. 

The UI interaction consists of three gestures in parallel. The first and the 

second one are simply a hand position change. The UI reacts to their 

completion moving a correspondent (left or right) hand icon. The Grab 

gesture is the one associated to the car position change, and consists of a 

sequence of a right hand close (represented 𝑜𝐻𝑟[𝑐]) and a unbounded 

number of right hand moves (𝑚𝐻𝑟
∗), interrupted by the opening of the right 

hand (𝑜𝐻𝑟[𝑜]). 

The Roll gesture is represented by the same sequence, performed with 

both hands in parallel, almost maintaining the same distance (the d 

condition). 
𝐹𝑟𝑜𝑛𝑡 ≫ (𝑚𝐻𝑟 

∗ | |𝑚𝐻𝑙 
∗| | ( 𝐺𝑟𝑎𝑏 [ ] 𝑅𝑜𝑙𝑙)))∗[> 𝑁𝑜𝑡𝐹𝑟𝑜𝑛𝑡 

𝐹𝑟𝑜𝑛𝑡 =  (𝑆𝑙[𝑝]| | | 𝑆𝑟 [𝑝]) 
𝑁𝑜𝑡𝐹𝑟𝑜𝑛𝑡 =  (𝑆𝑙[! 𝑝]| | | 𝑆𝑟 [! 𝑝]) 
𝐺𝑟𝑎𝑏 =  𝑜𝐻𝑟[𝑐] ≫ (𝑚𝐻𝑟

∗ [>  𝑜𝐻𝑟
 [𝑜]) 

𝑅𝑜𝑙𝑙 =  (𝑜𝐻𝑟[𝑐]||𝑜𝐻𝑙[𝑐]) ≫ 
                     ((𝑚𝐻𝑟[𝑑]||𝑚𝐻𝑙[𝑑])∗[> (𝑜𝐻𝑟[𝑜]||𝑜𝐻𝑙[𝑜])) 

(4.2) 

The intermediate feedback associated to different sub-parts of the 

composed gestures is shown in Figure 5.8, the upper part shows the UI 

feedback provided while performing the gestures represented in the lower 

part.  

 The interaction proceeds as follows: when the correct pose is detected 

(the Front gesture is completed), the car passes from a grayscale to a full-

colour visualization, indicating that it is possible to start the interaction 

(the B square in Figure 5.8).  
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When the user “grabs” the car with one hand (completes cHr), a four arrow 

icon is shown on top of the car (C square). The change of the car position 

is associated to the following hand movements (mHr
*).  

The interface during the grab gesture is shown in Figure 5.9: the central 

part shows a car model with the user feedback for the grab gesture on top. 

The sidebar shows the representation of the user’s skeleton, the video 

coming from the RGB camera of the Kinect sensor and a label with the 

current tracking state (true or false) of the application.  

The other interaction command is associated with a two-hands closure in 

parallel (completion of (𝑜𝐻𝑟[𝑐]||𝑜𝐻𝑙[𝑐]), the roll gesture of section 4.2.13), a 

circular arrow is displayed (D square), suggesting the gesture function. The 

car rotation is associated to the parallel movement of the two hands (the 

completion of (𝑚𝐻𝑟[𝑑]||𝑚𝐻𝑙[𝑑]) ∗). The car returns inactive when the user 

is not in the front position any more (A square).  

Figure 5.10 shows the interface during the rotation of the 3D model: the 

central part shows the rotation feedback, while the right part still shows the 

position of the skeleton, the RGB video and the tracking label.  

Writing such application with the support of the GestIT library has a set 

of advantages, which is possible to notice also in this simple case.  

First of all, the defined gestures are separated from the UI control. Indeed, 

the car viewer is a standard WPF 3D viewport, enhanced with full body 

gestures at the application window level.  

Second, the possibility to inspect the gesture definition and to attach 

handlers at the desired level of granularity allowed us to define easily when 

and how to react to the user input, without mixing the logic of the reactions 

with the conditions that need to be satisfied for executing them.  

 
Figure 5.8 3D viewer interaction 
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Figure 5.9 3D viewer UI, grab gesture 

Finally, we do not define any additional UI state for maintaining the 

gesture execution. Indeed, if we created such application simply with the 

Kinect for Windows SDK, we would have needed at least a state variable 

for maintaining what the user has already done and, consequently, for 

deciding what she is allowed to do next (e.g. when the user closes the right 

hand the state has to change for moving the car at next hand movement).  

Most of the times, this is managed with the implementation of a state 

machine inside the handler of the skeleton tracking update, which mixes the 

management of all gestures together. Especially when we want to support 

parallel gestures, mixing the different gestures leads to code difficult to 

understand and maintain. 

 
Figure 5.10 3D viewer UI, roll gesture 
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The approach discussed in this thesis helps the developer to separate the 

temporal aspect and the UI reaction and to reuse gesture definition in 

different applications, while maintaining the possibility to define fine-

grained feedback. 

5.4.4 Touchless recipe browser 

In this section, we describe how we exploited the GestIT library in order to 

create an interactive support to be used in a kitchen environment, which 

has been presented in [127]. 

Indeed, depth sensors are useful when users are performing tasks that do 

not allow the use of traditional pointing devices or keyboards. For instance, 

the primary user’s task may be the creation of an artefact in the real world, 

which requires several steps to be completed, like assembling furniture or 

replacing a part of an appliance.  

An interactive support that enables the user to browse the information 

while performing the primary task can be really effective in such situations. 

Its advantages and its risks have been analyzed in [77], where the authors 

concluded that a touchless direct manipulation is well accepted by the users, 

but designers should be careful while choosing the vocabulary, which has to 

be immediately understandable for them.  

It is possible to find in literature examples of touchless interfaces for 

specific appliances in the kitchen environment [48], or for getting a full 

control of different devices [108], but problems such as gesture reuse or how 

to distinguish movement aimed to interact with the system from those that 

are not (the well-known Midas Touch) are still open.  

In this section, we consider the kitchen environment as an example for 

such kind of applications. The case-study scenario envisions the assistance 

during the dish preparation through information displayed on a screen, 

which can be browsed while touching the food or using kitchen tools. In such 

situation, the touchless interaction has the advantage of avoiding the 

contact with the input devices, which can create hygiene problems or the 

risk of damaging the electronic equipment (e.g. touching it with wet hands). 

For the development of the touchless user interface, we considered a 

scenario in which the user wants to cook a dish, but she does not really 

master the particular procedure. Therefore, she needs a description of the 

steps to be accomplished in order to complete the preparation, which is 

usually provided through books or specialised magazines.  
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We try to enhance such experience with an interactive support for 

delivering the information: the steps are described by the interactive system 

through a combination of text and video. In order to browse the recipes, the 

user does not need to touch any particular input device, which has the 

advantage of supporting the interaction while the cooker is manipulating 

tools or she has dirty hands.  

Instead, she controls the application through a multimodal combination 

of voice and gestures. In order to enable such kind of interaction, we 

exploited a Microsoft Kinect, together with a computer screen or TV that 

displays the user interface.  

The touchless recipe browser supports two tasks: the first one is the recipe 

selection, while the second one is the presentation of the cooking step. The 

selection of the recipe consists of two screens: the first one for selecting the 

recipe category (starter, first course, second course, dessert etc.) and then 

the selection of the recipe itself.  

The presentation of the cooking steps is performed through a combination 

of text and video. The user can watch the entire video with subtitles that 

show how to cook the selected dish, or she can browse back and forth among 

the different steps with a previous and next function or controlling a 

timeline. 

In order to combine the vocal and the gestural modality, we extended the 

GestIT library adding the possibility to react to vocal input, representing 

the different keywords that activate vocal commands as features that can 

be detected by the Kinect support. Therefore, it is possible to combine in 

the gesture description expression also vocal inputs.  

With respect to the design of the user interface, we decided to assign 

commands that do not need any argument (e.g. going back to the previous 

screen) to the vocal modality, while we assigned commands related to object 

selection and/or manipulation to the gesture modality. The rationale behind 

this choice is trying to keep the user’s focus on her main task (cooking the 

dish) as much as possible: gestures have a higher cognitive load with respect 

to speech interaction.  

In addition, the design of such kind of user interface must take into 

account the well-known Midas Touch problem. We exploited the possibility 

to define the temporal relationships between gestures provided by GestIT 

in order to mitigate it. Indeed, we chose to enable the interaction with the 

user interface only if the user stands in front of the screen, while we do not 

consider any movement or interaction otherwise. The rationale behind this 
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design choice is that, being the dish cooking the main task, we assume that 

most of the times the user does not want to interact with the application. 

When the user wants to get some information from the application, she will 

look at the screen, positioning herself in front of it.  

Using the GestIT library, the interaction with the different application 

presentation follows the schema defined in equation 4.3. The Front gesture 

enables the ScreenInteraction, which represents the allowed gestures or 

vocal commands for the considered presentation, and it is disabled by the 

NotFront gesture. Such expression term is refined in different ways 

according to the considered presentation. 
𝐹𝑟𝑜𝑛𝑡 ≫ 𝑆𝑐𝑟𝑒𝑒𝑛𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛∗[> 𝑁𝑜𝑡𝐹𝑟𝑜𝑛𝑡 

𝐹𝑟𝑜𝑛𝑡 =  (𝑆𝑙[𝑝] | |𝑆𝑟[𝑝]) 
𝑁𝑜𝑡𝐹𝑟𝑜𝑛𝑡 =  (𝑆𝑙[! 𝑝] | |𝑆𝑟[! 𝑝]) 

 

(4.3) 

As it is possible to observe in equation 4.3, Front and NotFront are 

symmetric: they respectively check whether the shoulder position (Sl  and 

Sr) are parallel with respect to the sensor (and screen) plane (the p 

predicate) or not. This means that as long as the user stays in front of the 

screen, it is possible to interact with the application.  

The Front and NotFront gestures have handlers that provides the user 

with feedback for signalling whether the application is ready to receive 

inputs (a green “Tracking” label) or not (a red “Not Tracking” label). 

Figure 5.11 shows the presentation for selecting the recipe category. The 

user points the screen and moves the hand in order to highlight the different 

categories, which are magnified using a fisheye effect. The selected one has 

a thick red border. When the user closes her hand, the presentation changes, 

and the application shows the interface in Figure 5.12, which supports a 

similar interaction for selecting one of the recipes in the different categories.  

As already discussed before, we assigned the commands without 

arguments to the vocal modality: in this screen it is possible to use the 

following commands: back for going back to the previous screen and exit for 

closing the application.  

 

 
𝑆𝑐𝑟𝑒𝑒𝑛𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑉[𝑏𝑎𝑐𝑘][ ]𝑉[𝑒𝑥𝑖𝑡][ ]𝐺𝑟𝑎𝑏 

𝐺𝑟𝑎𝑏 =  𝑚𝐻𝑟
∗ [>  𝑐𝐻𝑟

  

(4.4) 
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Figure 5.11 Recipe category selection 

 

 
Figure 5.12 Recipe selection 
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Equation 4.4 shows the ScreenInteraction gesture definition for the 

selection presentation (we describe movements only for the right hand for 

simplicity, but the actual implementation provide a symmetric support also 

for the left hand). The features marked with 𝑉[𝑤𝑜𝑟𝑑] are those related to 

the voice and indicate the pronunciation of the specified word, with the 

obvious effect on the user interface (respectively going back to the previous 

screen or closing the application).  

 

 
Figure 5.13 Recipe browser 

The Grab gesture is used for selecting the recipe category and it is 

composed by an iterative hand movement (𝑚𝐻𝑟
∗) disabled by a closure of 

the hand (𝑐𝐻𝑟
 ). As already explained in section 5.1.1, it is possible to attach 

event handlers not only to the whole gesture completion (which performs 

the category selection and therefore changes the screen), but also to its sub-

parts. In this case, the fisheye effect in Figure 5.11 is driven by an event 

handler attached to the completion of the hand movement (𝑚𝐻𝑟
∗). 

Figure 5.13 shows the screen for the preparation of a dish. In the upper 

part, it is possible to read the recipe name, in the centre there is a video 

tutorial for the preparation1 together with a text describing the procedure 

                                      
1 The sample recipes included with the application prototype have been created using some videos 

from the public website of the Italian cooking TV show “I Menu di Benedetta” 

(http://www.la7.it/imenudibenedetta/) 

http://www.la7.it/imenudibenedetta/
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to follow in order to complete the current step. In the lower part, a slider 

represents the video timeline.  

The interaction for this presentation is defined in equation 4.5. The vocal 

commands back and exit are still available in this screen. The video playback 

can be continuous or it can stop at each step. A vocal command is available 

for activating both modes.  

It is possible to pronounce the words next and previous respectively to 

show the previous or the next step of the preparation. Such command can 

be activated also through the Swipe gesture, an iterative linear hand 

movement performed at a certain speed (verified by the properties linear 

and speed), disabled by a hand movement that does not have this 

characteristics (for finishing the iteration loop).  
𝑆𝑐𝑟𝑒𝑒𝑛𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑉[𝑏𝑎𝑐𝑘][ ]𝑉[𝑒𝑥𝑖𝑡][ ]𝑉[𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠][ ] 
                                            𝑉[𝑛𝑒𝑥𝑡][ ]𝑉[𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑠][ ]𝑉[𝑠𝑡𝑒𝑝] 
                                            𝑆𝑤𝑖𝑝𝑒[ ]𝐷𝑟𝑎𝑔 
𝑆𝑤𝑖𝑝𝑒 = 𝑚𝐻𝑟

∗[𝑙𝑖𝑛𝑒𝑎𝑟 ∧  𝑠𝑝𝑒𝑒𝑑][> 𝑚𝐻 
𝐷𝑟𝑎𝑔 = 𝐺𝑟𝑎𝑏 ≫ 𝑅𝑒𝑙𝑒𝑎𝑠𝑒               𝑅𝑒𝑙𝑒𝑎𝑠𝑒 =  𝑚𝐻𝑟

∗[> 𝑜𝐻𝑟 

(4.5) 

If the swipe movement has been performed from left to right, the tutorial 

proceeds to the next step, if it has been performed from right to left the 

tutorial goes back to the previous step.  

Finally, it is possible to control the video timeline through the Drag 

gesture. The latter is a composition of two sub gestures: the first one is Grab 

(already defined for the recipe and dish selection) and the second one is 

Release, which is an iteration of hand movement disabled by its opening 

(𝑜𝐻𝑟).  

Through such gesture description is possible to notice the reuse possibility 

offered by the library (we defined the Grab gesture and reused it for the 

Drag one). Different handlers have been assigned to the different gesture 

sub-parts, which allow to define easily the user interface reactions while 

performing the gesture: when the user closes the hand (completion of 𝑐𝐻𝑟 in 

the Grab gesture), the user interface changes the colour of the slider knob, 

after that its position is changed according to the hand movement direction 

together with the displayed video frame (completion of .𝑚𝐻𝑟
∗ in the Release 

gesture) and finally, when the whole gesture is completed, the video 

playback restarts from the point selected by the user. 

 

                                      
 





 

Chapter 6  

A Gestural Concrete User 

Interface in MARIA 

In this chapter we extend MARIA [111], a model-based user interface 

definition language with different abstraction levels, in order to define full-

body gestural interfaces.  

We first describe the general modelling concepts of the language, and then 

we detail how we extended the entities in order to model gestural interfaces. 

After that, we discuss the implementation of a model to code transformation 

that we exploit in order to create running applications starting from the 

MARIA model definition, showing a sample application.  

6.1 MARIA 

MARIA [111](Model-based lAnguage foR Interactive Applications) is a set 

of XML languages for defining UIs at different levels of abstractions.  

Created as an evolution of TERESA [96], the different languages inherit 

the CAMELEON [27] reference framework structure.  

Indeed, the set includes an abstract language that has multiple extensions 

for the different interaction platform supported.  

For designers of multi-device user interfaces, one advantage of using a 

multi-layer description for specifying UIs is that they do not have to learn 

all the details of the many possible implementation languages supported by 

the various devices, but they can reason in abstract terms without being 

tied to a particular UI modality or, even worse, implementation language. 

In this way, they can better focus on the semantics of the interaction, 

namely what the intended goal of the interaction is, regardless of the details 

and specificities of the particular environment considered. 
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The languages have also an associated authoring tool called MARIAE 

[112] (MARIA Environment), publicly available for download2.  

Exploiting the CTT [114] language for the task modelling, the tool is able 

to support the CAMELEON design process for different platforms, allowing 

the designer to create and edit models at different levels of abstraction, 

exploiting also different reification functions (see section 2.4.2).  

The tool is able to derive an AUI from a CTT task model, to derive 

different CUIs from an AUI definition and provides at least one code 

generator (FUI) for each supported platform. 

6.1.1 Abstract User Interface 

The Abstract User Interface (AUI) level describes a UI only through the 

semantics of the interaction, without referring to a particular device 

capability, interaction modality or implementation technology. 

An AUI is composed by various Presentations, which groups logically 

connected model elements to be presented to the user at once.  

A presentation contains modelling elements that belong to two different 

categories: Interactors or Interactor Compositions. The former represents 

every type of interaction object, the latter groups together elements that 

have a logical relationship. 

According to its interaction semantics, an interactor belongs to one the 

following categories: 

 The Selection interactors allow the user to select one or more values 

among the elements in a predefined list. It contains the selected value 

and the information about the list cardinality. According to the 

number of values that can be selected by the user, the selection 

interactor can be either a SingleChoice or a MultipleChoice.  

 The Edit interactors allow the user to manually edit the data 

associated to them, which can be textual (Text Edit), numerical 

(Numerical Edit), related to a position (Position Edit) or a generic 

object (Object Edit). 

 The Control interactors allow the user to switch between 

presentations (Navigator) or to activate UI functionalities 

(Activator). 

 The Only Output interactors represent information that is presented 

to the user but it is not affected by the user actions. An interactor of 

                                      
2 http://giove.isti.cnr.it/tools/MARIAE/home  

http://giove.isti.cnr.it/tools/MARIAE/home
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this category can be a Description, which represents different types 

of media, an Alarm a Feedback or a generic Object. 

The different types of interactor-compositions are: 

 Grouping a generic group of Interactor or InteractorComposition 

elements. 

 Relation a group where two or more elements are related to each 

other. 

 Composite Description that represents a group aimed to present 

contents through a mixture of Description and Navigator elements. 

 Repeater which is used to repeat the content according to data 

retrieved from a generic data source 

MARIA allows describing not only the presentation aspects but also the 

associated behaviour. In addition, the  interface definition contains also the 

description of the data types that are manipulated by the user interface. 

The interactors can be bound with elements of the data model, which means 

that, at runtime, modifying the state of an interactor changes also the value 

of the bound data element and vice-versa. This mechanism allows the 

modelling of correlation between UI elements, conditional layout, 

conditional connections between presentations, input values format. The 

data model is defined using the standard XML Schema Definition 

constructs. 

MARIA has a set of features that allow the creation of multidevice 

applications, in particular based on web services [110,113] or able to adapt 

to the context of use [19]. 

 Generic Back End. The interface definition contains a set of External 

Functions declarations, which represent functionalities exploited by 

the UI but implemented by a generic application back-end support 

(e.g. web services, code libraries, databases etc.). One declaration 

contains the signature of the external function that specifies its name 

and its input/output parameters.  

 Event Model. Each interactor definition has a number of associated 

events that allow the specification of UI reaction triggered by the 

user interaction. Two different classes of events have been identified: 

the Property Change Events that specify the value change of a 

property in the UI or in the data model (with an optional 

precondition), and the Activation Events that can be raised by 

activators and are intended to specify the execution of some 

application functionalities (e.g. invoking an external function). 
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 Dialog Model. The dialog model contains constructs for specifying the 

dynamic behaviour of a presentation, specifying which events can be 

triggered at a given time. The dialog expressions are connected using 

CTT operators in order to define their temporal relationships.  

 Continuous update of fields. It is possible to specify that a given field 

should be periodically updated invoking an external function.  

 Dynamic Set of User Interface Elements. The language contains 

constructs for specifying partial presentation updates (dynamically 

changing the content of entire groupings) and the possibility to 

specify a conditional navigation between presentations.  

This set of features allow having already at the abstract level a model of the 

user interface that is not tied to layout details, but it is complete enough 

for reasoning on how UI supports both the user interaction and the 

application back end. 

6.1.2 Concrete User Interface 

A Concrete User Interface (CUI) in MARIA provides platform-dependent 

but implementation language independent details of a UI. A platform is, as 

stated in [27], a set of software and hardware interaction resources that 

characterize a given set of devices. MARIA currently supports the following 

platforms:  

 Desktop CUI: models graphical interfaces for desktop computers. 

 Mobile CUI: models graphical interfaces for mobile devices. 

 Multimodal Desktop CUI models interfaces that combine the 

graphical and vocal modalities for desktop computers. 

 Multimodal Mobile CUI models interfaces that combine the graphical 

and vocal modalities for mobile devices. 

 Vocal CUI models interfaces with vocal message rendering and speech 

recognition. 

Each platform meta-model is a refinement of the AUI, which specifies how 

a given abstract interactor can be represented in the current platform. For 

instance, if we consider a Single Choice interactor, it can be implemented 

with a radio button, a drop down list or a list box in the graphical modality, 

while on the vocal platform it can be rendered with a list of vocal messages 

for each option associated to a given keyword.  

The same applies for the interactor compositions: a grouping can be 

implemented in a desktop platform using background colours, borders etc., 
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while in a vocal platform it is possible to e.g. use sounds before the first 

group element. 

The model definition can be exploited for creating (or deriving with a code 

generator) final implementations in different target languages. Indeed, it is 

possible to exploit the same mobile CUI for representing an interface for e.g. 

iOS or Android devices. 

6.2 Gestural Concrete User Interface 

As it should be clear from the CAMELEON [27] reference framework 

discussion, we extended MARIA with the definition of gestural interfaces 

simply providing a refinement of the AUI language that covers the modelling 

concepts needed by gestural interfaces.  

In order to provide MARIA with these concepts, we have to create a set 

of modelling entities for the following parts: 

1. A description of the data provided by the device 

2. The description of the gestures and the temporal relationships 

between them 

3. The description of the effects that the gestures have on the other 

parts of the interface 

4. The description of the interface layout 

We recall that the interaction semantics (which kind of task is supported 

by different interactors) is inherited from the AUI level. 

The first point is needed in order to define the constraints and the effects 

of the gestures according to the data received by the recognition device. The 

description of such data needs to be abstract with respect to the actual 

programming language or development toolkit.  

The second point is covered by the gesture meta-model discussed in 

Chapter 3. We detail in section 6.2.2 the entities we included in MARIA in 

order to define gestures. 

The third point deals with two different aspects of the UI model. The first 

one is how it is possible to model the visual feedback that the user has to 

receive during the gesture performance. The second aspect is the need to 

provide the “glue” between the definition of the UI behaviour at the abstract 

level and the recognition of the gestures at the concrete one (section 6.2.3). 

The last point is related to the visual part of the gestural UI. In brief, 

since MARIA already have a Concrete Desktop User Interface definition, we 

describe what was missing in the existing definition of the graphic controls 
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in order to be easily exploited also in the gestural model. It is worth pointing 

out that the solution to modelling problems that we discuss in section 6.2.4 

are general and they can be applied not only to MARIA, but also to all the 

graphical control toolkits that are actually used in order to create the GUIs 

that have a gestural support.  

6.2.1 Modelling device data 

The body data can be modelled with a structure that contains the collection 

of the joint positions (a 3D point) and the joint orientation (a 3D vector) as 

defined in section 3.3. One instance of such data structure is available for 

each tracked user.  

In addition, it is available for modelling the gestures also the history of 

the body data at the previous steps during the recognition. Therefore, for 

each user, the first instance provided by the runtime support is the current 

body data, while the following ones are related to the previous recognition 

step, providing access to what we called the gesture recognition support 

state sequence in section 3.1.1. 

This structure is referenced in both event handlers and the modelling of 

the recognition constraints that are detailed in the following sections. The 

implementation of the runtime support for has to provide the access to this 

data in order to execute the model.  

6.2.2 Gestures definition 

In a gestural interface, the description of the gestures provides the temporal 

sequence for the exchange of information between the user and the 

application. Such sequence defines on the one hand how the application 

reacts to the user inputs while, on the other hand, provides the description 

of the set of actions that are available for the user in order to interact with 

the application. 

In MARIA, as already described in section 6.1.1, the Dialog Model 

contains constructs for specifying the dynamic behaviour of a presentation, 

specifying what events can be triggered at a given time. The dialog 

expressions are connected using CTT [114] operators in order to define their 

temporal relationships.  
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Figure 6.1 MARIA gesture description meta-model 

A gesture description is a concrete example of such dialog expressions. In 

its simplest form, the dialog expression is related to the recognition of a 

ground term (see Chapter 3), which is an event triggered by the recognition 

device. The complex gestures, can be defined simply connecting ground 

terms and/or other complex gestures through the set of composition 

operators.  

Therefore, we identified the Dialog Model as the point to extend in the 

gestural concrete user interface in order to define the gesture description. In 

order to do this, we created a refinement of the dialog expression that 

represents a generic expression in GestIT: the GestureExpression.  
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Figure 6.1 show the UML class diagram for the DialogModel extension, 

which introduces the gesture model in MARIA.  

Using the same modelling approach we exploited in Chapter 5, the 

GestureExpression has two attributes. The first one models the only unary 

operator in the set: the iterative operator. The second one models the 

minimum number of times that one gesture has to be recognized, the 

minOccurs attribute.  

Exploiting the combination of both attributes it is possible to specify the 

short-hands defined in section 3.1.2.7, in order to model gestures that can 

be repeated iteratively, but starting from a minimum number of times.  

The abstract GestureExpression class is in turn refined into two different 

classes: the SimpleGesture which represents the ground term expressions 

and the ComplexGesture, which represent a composed gesture. 

The SimpleGesture class has an associated feature attribute, which defines 

the feature change that is recognized by the simple gesture. Such attribute 

has an enumerated value for each feature described in section 3.3. 

In addition, the SimpleGesture instances may specify some constraints on 

the recognition of the ground term they represent. In MARIA, it is possible 

to specify such constraints directly modelling them with instances of the 

PropertyConditionGroup class, which represents a boolean expression. The 

literals of the expression are represented by: 

1. The value of an interactor attribute 

2. The value of a data model element 

3. The result of the execution of an ExternalFunction, which 

represents a functionality that is external to the definition of the 

UI model. 

In particular, exploiting the external functions in order to model the 

gesture predicates allows the designer to reuse the predicate definition across 

various UI models. For instance, if the FUI exploits the GestIT library, it is 

possible to define as external functions each one of the predicates involved 

in the modeling of the common full-body gestures described in section 4.2.  

The ComplexGesture class has an operator attribute, which specifies the 

temporal operator used for combining the set of sub-gestures. This attribute 

is specified through an enumeration that has one value for each one of the 

operator discussed in section 3.1.2.  

From the XML syntax point of view, we created an element for each one 

of the features that can be recognized with a ground term. Therefore, the 

instances of the SimpleGesture class are serialized in XML using a different 
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tag according to the feature attribute. This leads to a more readable XML 

code. 

For the same reason, we introduced an element for each one of the 

composition operators. Therefore, the ComplexGesture instances are 

serialized with different tags according to the operator attribute.  

The relation between a composite gesture and its sub-components is 

specified with the XML element hierarchy in the document tree.  

6.2.3 Gesture effects 

According to the discussion in Chapter 3, our modelling approach allows the 

designer to attach the UI behaviour to both the successful recognition of a 

gesture component and also in case of a recognition error.  

In the same way, we need to include such possibility also in the MARIA 

meta-model. In MARIA, the dynamic changes to the UI and to the data 

model state are defined through the Script class, an element of the AUI 

meta-model. It contains elements that represent expressions and statements 

that define such changes at both the abstract and the concrete level.  

In order to distinguish the behaviour for the successful recognition from 

the error handling, we connected the GestureExpression class with two 

instances of the Script class: the first one represent the reaction to the 

complete event raised by a generic gesture expression, while the second one 

defines the reaction to the error event. 

It is worth pointing out that in MARIA the behaviour which is 

independent from the concrete platform is already defined in the AUI model. 

The concrete model inherits the definition of such behaviour. The 

completion of a given gesture must be able not only to trigger the execution 

of some concrete-platform dependent behaviour, but it should be also able 

to activate the behaviour that is defined at the abstract level. 

One simple example of the situation is represented by a presentation with 

two different activators, each one associated to a different application 

functionality, for instance save and new file. The triggering of the 

functionalities is associated in the AUI to the abstract event activation. 

When the AUI is refined to the concrete level, the activators can be in turn 

refined into two buttons. The abstract event (and its handlers) are inherited 

also in the CUI.  

In a classical desktop interface, the buttons are activated using the mouse 

pointer, which is a singleton for the entire window system. In addition, for 
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activating them, the user (and obviously the designers) has the only option 

of clicking one of the mouse buttons.  

In the case of the gestural interaction, the designer may use different 

paradigms for both the interactor selection and activation. The gestural 

interaction provides a richer vocabulary for selecting and activating a 

graphical control in general, and the buttons in particular. For instance, it 

is possible that the user activates the first button raising the left hand, while 

she activates the second one raising the right hand. Another possible 

interaction is that the user points with the hand one of the two buttons and 

closes the hand for activating it. 

From the previous description, it should be clear that the binding between 

the gestures and the abstract events cannot be derived implicitly as in the 

classical desktop interfaces, but it has to be defined explicitly. 

The way we identified for connecting the recognition of a gesture 

expression with the behaviour defined at the abstract level is to explicitly 

raise the abstract events inside the definition of the behaviour associated to 

a gesture expression. Indeed the MARIA meta-model contains, among the 

other statements for the definition of the UI behaviour, the Raise element. 

This modelling construct allows raising a specific event (either abstract or 

concrete) specifying the event name, the interactor identifier and the event 

arguments (if needed).  

Therefore, the schema for binding the definition of the behaviour 

associated to the gestures to the abstract one consists of first managing the 

changes that involve the concrete level (most of the times providing the 

intermediate feedback) and then raising the abstract event that the designer 

wants to trigger. 

If we consider the hand-pointing interaction in our example, when the 

user changes the hand position, the interface should give some feedback for 

identifying which button she is currently pointing (e.g. drawing the button 

border in a different colour). When she closes the hand, the behaviour 

associated to the gesture completion has first to identify which is the button 

currently pointed (and this part is related to the concrete level) and then it 

is possible to raise the activation event of the selected button, executing the 

behaviour defined at the abstract level. We provide a real modelling example 

for such binding in section 6.4. 
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6.2.4 Interactors 

The definition of the graphical part of the gestural CUI is based on the 

interactors that are already defined for the graphical desktop CUI. In order 

to do this, the meta-model of the gestural CUI imports the classes that refine 

the abstract interactors as described in section 6.1.2.  

As we already explained in the previous section, in a gestural interface 

the binding between how the user selects the different interactors (e.g. 

pointing them with the mouse) is not implicit anymore, and the designer 

may select different ways for let the user start the interaction with a concrete 

UI object.  

From the modelling language point of view, the events defined by both 

the concrete desktop interactors and the ones raised when the gestures are 

completed in the dialog model are already sufficient for defining different 

selection techniques. However, the resulting models are complex to define 

and consequently to read and to understand. Indeed, the following 

definitions are necessary: 

 In the completion event of the interactor selection gesture, the 

designer has to define how to calculate which interactor has been 

selected by the user, according to a given selection logic. For 

instance, it is possible to directly point one interactor (and 

therefore specify a pick-correlation algorithm). Another example is 

a list of interactors where the user can change the currently selected 

one in a sequential manner. The previous one in the list may be 

selected with a swipe gesture from right to left, while the following 

one may be selected with a swipe from left to right. 

 After that, the designer should define how to provide feedback to 

the user for recognizing which interactor is currently selected, 

tracking the currently selected interactor. 

 Once an interactor has been selected, the UI has to execute a 

conditional handler that behaves differently according to the 

selection, in order to define different reactions. 

This problem obviously recourses in different interfaces. Therefore, we 

extended the definition of the Interactor Composition refinement in order 

to ease the definition of such recurring interaction scheme.  

We exposed a property called focusPoint, which can be used in order to 

specify a specific point that currently focuses the user’s attention. When 

such point is changed, the runtime support automatically calculates which 

interactor is the currently selected one. With this protocol, the designer is 
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no more in charge of defining the pick-correlation between the point and the 

interactors. However, she can still define different ways for selecting the 

interactors in a composite UI, modelling the selection of the actual point 

with different strategies. 

In addition, each refinement of the Interactor Composition category 

contains a new element, which defines the style for showing which one is the 

selected interactor. The element was added in the GroupingSettings class, 

which contains the styles for rendering the grouping (and the other classes 

of the Interactor Composition category). Such element contains attributes 

for defining e.g. the border for the selected element, a different background 

colour etc. 

In addition, we added a property to the presentation class in order to 

maintain which interactor currently has the interface focus. The property 

has to be automatically updated by the runtime support, according to the 

focus point selected. This eases the definition of the interaction making such 

information always accessible without specifying the logic for the property 

update.  

6.3 Model to code transformation 

Having defined the various components of the gestural CUI modelling 

elements, we created a model to code transformation, which shows how it is 

possible to exploit the modelling language for creating the FUI.  

Differently from the other generators provided with the MARIAE tool, 

which transform the models into running web applications, we defined one 

of the first transformations that creates a standalone application. 

The target implementation exploits the following technologies: 

 Windows Presentation Foundation as presentation layer [89] 

 C# for defining the application behaviour 

 The GestIT library for defining full-body gestures 

 The Kinect SDK [87] for managing the data coming from the 

Kinect sensor device. 

The transformation process consists of two steps. The first one transforms 

the MARIA model, defined through the usual XML syntax into a XAML 

[89] definition of the presentation layer.  

The second step takes as input the same MARIA model and creates a C# 

file that contains the definition of the application behaviour.  
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Both files represent a partial definition of the application window, but 

their combination defines the application completely (exploiting the partial 

class definition mechanism [85]). The communication between the two parts 

relays on a naming convention for the class methods, which is shared 

between the two transformations (e.g. the event handler for a button 

specified in the presentation layer is then implemented with the same name 

in the behaviour file). Both transformations are defined using an XSLT [136] 

stylesheet.  

The whole interface is mapped into a single window, while the different 

presentations are mapped into a separate panel in the window content.  

For each one of the interactors and interactor compositions contained into 

the different presentation, the transformation selects the corresponding 

widget in the WPF framework. In particular: 

 For each interactor that specifies the id attribute, the 

transformation fills the Name attribute in the corresponding WPF 

widget. In this way, the behaviour part (a C# file) can access the 

interactor and its properties simply considering it as an instance 

variable.  

 The interactor composition refinements are mapped into different 

WPF panels, according to their specification. For instance, if a 

grouping is implemented using the Grid technique, it is mapped 

into a grid panel in WPF, if a grouping is implemented with the 

tab technique, it is mapped into a TabPanel in WPF etc. 

Otherwise, the transformation uses a vertical StackPanel, which 

positions the inner elements vertically, according to the their 

definition order. 

 The interactors are mapped into the correspondent widgets in 

WPF (buttons, images, videos etc.). 

 The connections between the different presentations are mapped a 

change of the currently visualized content inside the main window. 

 The event handlers, which are defined in the C# part of the UI, 

are attached to the WPF widgets simply specifying the method 

name in the XAML code.  

The gesture model is mapped into the corresponding XAML elements 

provided by the GestIT library, with a straightforward transformation. The 

recognition constraints and the handlers for the successful or erroneous 

performance of the gesture are attached to the expression definition 

specifying the name of the corresponding method in the C# class.  
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The second transformation defines the UI behaviour in C#.  The first 

part defines the overall structure of the class (importing the external 

libraries, defining the class name and the constructors). After that, the class 

defines a set of methods for changing the gesture model together with the 

presentation: we recall that the gesture model is associated to a specific 

presentation. Such methods are triggered in correspondence of the activation 

of an interactor specified in a Connection.  

The third part of the class contains the gesture recognition constraints, 

associated to the accept property of the ground term expression. The C# 

code implements the definition expressed with the PropertyCondition and 

InvokeFunction constructs in the model (see section 6.2.2). 

The fourth part symmetrically defines the UI reaction to the completion 

of the gesture expression (both simple and composed). In the same way are 

transformed also the reaction to the erroneous recognition of the different 

gestures (if defined). 

The last part is dedicated to the implementation of the event-handlers 

associated to the different interactors. In this part are also considered the 

handling of the connections among the presentations.  

In the following section, we present a sample application generated from 

a MARIA model definition.  

6.4 Sample application 

We show in this section a concrete modelling example in MARIA. We 

modelled a simple gestural interface for controlling a digital TV.  

We first describe the tasks that need to be supported by this application 

and the implementation of the UI at the abstract level. After that, we 

discuss the concrete gestural refinement and we show the final result. 

The application allows the user to watch a TV show. In addition, the user 

should be able to change the current TV channel and to retrieve information 

on the program scheduling.  

The temporal sequencing of the tasks supported by the application is 

shown in Figure 6.2, using the CTT notation [114]: the application normally 

shows a TV program, represented by the showChannel task, until the user 

request the control of the device (the requestControl task).  

The user can control the TV through two commands in choice: the first 

one allows changing the current selected channel and the second one for 

retrieving information on the program scheduling.  
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The first functionality is the channel selection (the select channel task), 

followed by the actual change of the channel performed by the application 

(the save selection task). 

The second functionality allows the user to browse the information (select 

info), which is provided by the control application (the show info task). 

Finally, the user goes back and watches again a TV show (back to tv).  

 
Figure 6.2 Task model for the TV control application 

At the AUI level, the interface can be modelled using four different 

presentations, which are shown in Figure 6.3. The first one is dedicated to 

watching the TV show. Inside this presentation, a description interactor 

provides the information on the TV show (which will be obviously refined 

in a video). In addition, the presentation contains the navigator for changing 

the presentation to the second one, shown in Figure 6.3 (2). 

The second presentation allows the user to select the two controls 

functions: changing the current channel or retrieving the schedule 

information. 

The third presentation implements the first control functionality: the 

selection, which consists in changing the current TV channel. The user 

selects the current channel in a predefined list of values (Figure 6.3 part 3).  

The fourth presentation provides the information about the TV show 

scheduling (Figure 6.3 part 4). 

 It is possible to go back to the first presentation after the completion of 

the TV control task, in order to continue watching the show.  
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Figure 6.3 TV application AUI 

For providing a gestural refinement for the proposed AUI, we have to 

select the concrete implementation for the different abstract interactors. 

In the first presentation, the description is obviously refined into a video, 

which allows watching the selected TV show. In our design, the navigator 

is refined into a simple link that we do not want to be visible in the concrete 

UI. Therefore, we set its hidden attribute to true, leaving the full screen to 

the video. In order to activate the navigator, we chose to exploit the wave 

gesture (see section 4.2.7), which has the effect to change the current 

presentation, showing the second one. We selected the wave gesture because 

it is more difficult to have false positive in the recognition. Watching the 

TV show is the main task and it is important to avoid unwanted 

interruptions. 

The second presentation contains two different links: the first one takes 

the user to the channel selection presentation, while the second one to the 
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visualization of the show schedule. We decided to position the two links 

horizontally, providing both an image and a textual label. The user can 

select one between the two links pointing at the screen. The application 

highlights the currently selected link showing a thick blue border around 

the link. The link can be activated simply closing the hand. In summary, 

we exploited in the dialog model of this presentation the grab gesture (see 

section 4.2.2).  

As in other applications discussed in this thesis, we exploited the turn 

gesture (section 4.2.10) for mitigating the Midas touch problem: the user is 

allowed to perform the grab gesture only if she is in front of the screen. 

Otherwise, the application does not react to any gesture. Figure 6.4 shows 

the interface for the functionality selection. 

 
Figure 6.4 MARIA application: function selection presentation 

If the user selects the show info functionality, the application shows the 

presentation in Figure 6.5. The TV programs schedules are grouped per day. 

The user can change the selected day with a swipe gesture (see section 4.2.8). 

A left-to-right swipe selects the next day while a right to left the previous 

one. Instead, if the user selects the channel selection functionality, the 

channel list is shown using a grid (see Figure 6.6). It is again possible to 

select among the different options (channels) pointing one of the elements 

in the grid and confirming the selection closing the hand. Each element 

changes the current value of the video URL contained in the first 

presentation and then changes the currently visualized presentation. 
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Figure 6.5 MARIA application: channel information presentation 

 

 

 

 
Figure 6.6 MARIA application: channel selection presentation 
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<bodyGesture name="channelSelectionGesture"> 
  <sequence iterative="true"> 
    <shoulderLeft> 
      <accepts> 
        <invoke_function name="Predicate.axisParallel"> 
          <parameter name="point1" data_ref="body:shoulderLeft"/> 
          <parameter name="point2" data_ref="body:shoulderRight"/> 
          <parameter name="axis"  data_ref="x"/> 
        </invoke_function> 
      </accepts> 
      <completed> 
        <script> 
          <change_property interactor_id="trackingState" 
            property_name="properties/background/background_color" 
            property_value="#CC00CC00"/> 
          <change_property interactor_id="feedback" 
           property_name="text/string" 
           property_value="Tracking user !" /> 
        </script> 
      </completed> 
    </shoulderLeft> 
    <disabling> 
      <disabling iterative="true"> 
        <handRight iterative="true"> 
          <completed> 
            <change_property interactor_id="channelMain" 
                property_name="focusPoint" 
                property_value="body:handRight"/> 
          </completed> 
        </handRight> 
        <openHandRight> 
          <accepts> 
            <invoke_function name="Predicate.handClosed"> 
              <parameter name="point" 
                data_ref="body:openHandRight"/> 
            </invoke_function> 
          </accepts> 
          <completed> 
            <script> 
              <raise event_name="activation" 
                  interactor_id="ui:channelMain/focusInteractor"/> 
            </script> 
          </completed> 
        </openHandRight> 
      </disabling> 
      <shoulderLeft> 
        <accepts operator="not"> 
          <invoke_function name="Predicate.axisParallel"> 
            <parameter name="point1"  
                       data_ref="body:shoulderLeft"/> 
            <parameter name="point2" 
                      data_ref="body:shoulderRight"/> 
            <parameter name="axis"  data_ref="x"/> 
          </invoke_function> 
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        </accepts> 
        <completed> 
          <change_property interactor_id="trackingState" 
            property_name="properties/background/background_color" 
             property_value="#CCCC0000"/> 
          <change_property interactor_id="feedback" 
             property_name="text/string" 
             property_value="Not tracking... " /> 
        </completed> 
      </shoulderLeft> 
    </disabling> 
  </sequence> 
</bodyGesture> 
 

Table 6.1: Channel selection gesture 

We conclude this section describing in detail an XML excerpt from the 

sample application definition in order to provide a complete view of the 

different elements described in this section. The XML definition is shown in 

Table 6.1 and it defines the gesture for selecting a channel in the 

presentation shown in Figure 6.6. 

The gesture definition is a sequence of two sub-gestures, that can be 

repeated an indefinite number of times (line 2). The first one is exploited in 

order to detect whether the user is in front of the screen or not through the 

turn gesture (line 3). The ground term predicate test (represented by the 

accept tag at line 4) is provided by a GestIT library function. Therefore, in 

MARIA we can model this functionality through an external function, and 

we can invoke it using the invoke function tag at line 4. Such function needs 

two body points (namely the shoulder left and right) and the axis for the 

comparison (X in our case, lines 5-9).  

If this gesture completes successfully (line 11), we change the background 

colour of the tracking state grouping (which is visible at the bottom of Figure 

6.6) to green (lines 13-15) and then we change the text in the feedback label 

to “Tracking user!” (lines 16-18).  

The next step is modelling the hand pointing gesture (line 23-45), which 

is disabled (line 22) if the user turns and she is no more in front of the screen 

(line 46). The latter gesture is symmetric with respect to the one at line 3, 

it exploits the same external function for computing the ground term 

predicate (line 48). The only different is that this time the invocation result 

is logically negated (the operator attribute at line 47). If  this gesture is 

recognized and the interaction is disabled, the tracking state grouping colour 

is reset to red and the feedback label is reset to “Not tracking”, providing 
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the user with a feedback on the system state (similar to the one shown at 

the bottom of Figure 6.5). 

The hand pointing gesture (line 23-45) is an iterative repetition of hand 

movements (line 24-30), which is disabled by the hand closure (line 31-44). 

For each change of the hand position, the gesture model updates the 

focusPoint of the grouping containing all the presentation interactors, which 

has id channelMain, using the current right hand position (line 25-29). As 

already discussed in the previous sections, this has the effect of providing 

feedback for identifying the currently pointed interactor (Figure 6.6). 

Finally, the channel is selected closing the right hand. The ground term 

accepts only the change from open to close provided that, at line 33, the 

model exploits another library function that returns if the hand is closed or 

not. If this is the case, it is possible to complete the interaction with the 

current presentation.  

In order to do this, it is sufficient to raise the activation event of the 

currently pointed activator that, as already explained, it is possible simply 

exploiting the raise statement. Such statement is specified at line 40: the 

activator is maintained by the runtime support in the focusInteractor 

property of the channelMain grouping.  

 





 

 

Chapter 7  

Discussion 

In this chapter, we discuss how it is possible to address a set of problems in 

the engineering and development of gestural interfaces, how they can be 

addressed by declarative approaches and, in particular, the one proposed in 

this thesis. The discussion contained in this chapter has been published in 

[124]. 

The first and the second problem are related to the gesture modelling in 

general, while the third is related to the compositional approach for gesture 

definition. The three problems we address can be summarized as follows: 

1. It is difficult to model a gesture only with a single event raised when 

its performance is completed. The need for intermediate feedback 

forces the developer to redefine the tracking part. From now on, we 

refer to this issue as the granularity problem. 

2. In [72], the authors state “Multiouch gesture recognition code is split 

across many locations in the source”. This problem is even worse if 

we consider full-body gesture recognition, which has a higher number 

of points to track, in addition to the other features (e.g. joints 

orientation, voice etc.). We refer to this issue as the spaghetti code 

problem. 

3. A compositional approach for gestures has to deal with the fact that 

“Multiple gestures may be based on the same initiating sequence of 

events” [72]. This means that a support for the gesture composition 

has to manage possible ambiguities in the resulting gesture definition. 

We refer to this issue as the selection ambiguity problem. 

In this chapter, we discuss the advantages of a declarative and 

compositional approach for gestural interaction, which are able to solve the 

aforementioned problems and we discuss how it is possible to support a 

cross-platform gesture definition exploiting the discussed approach. 
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7.1 Granularity problem 

The granularity problem derives from the modelling of complex gestures 

with a single event notification when it completes. Due to the time duration 

of the interaction gestures, it is usually needed to provide intermediate 

feedback during the performance, with the consequent need to split the 

complex gesture in smaller parts.  

In order to show the impact of such problem even for simple interactions, 

here we focus on two specific hand gestures we exploited in the touchless 

recipe browser (see section 5.4.4): the first one is a simple hand grab, which 

is used in the first and the second presentation for selecting an object. The 

second one is a hand-drag gesture we used for controlling the recipe 

preparation video: the user grabs the knob of the video timeline and then it 

moves it back and forth before “releasing” it by simply opening the hand. 

Table 7.1 shows how it is possible to model such gestures with GestIT. 

The grab gesture is composed by an iteration of the hand movement (𝑚𝐻𝑟
∗), 

which is disabled by a change on the feature that tracks the opened or closed 

status of the hand (𝑐𝐻𝑟 in the expression). 

We force the recognition only of a hand closure specifying the 𝑐𝑙𝑜𝑠𝑒𝑑 

predicate, which accepts only changes from opened to closed. The grab 

gesture is a prefix for the drag one. Indeed, it is defined by a grab gesture 

followed in sequence by an iterative movement of the hand, disabled again 

by a change on the hand status, this time from opened to closed (modelled 

by the 𝑜𝑝𝑒𝑛 predicate). 

Grab 𝑚𝐻𝑟
∗ [>  𝑐𝐻𝑟

 [𝑐𝑙𝑜𝑠𝑒𝑑] 

Drag 𝐺𝑟𝑎𝑏 ≫ 𝑅𝑒𝑙𝑒𝑎𝑠𝑒 
𝑅𝑒𝑙𝑒𝑎𝑠𝑒 = 𝑚𝐻𝑟

∗[> 𝑐𝐻𝑟[𝑜𝑝𝑒𝑛] 
Table 7.1 Grab and Drag gestures defined with GestIT 

With GestIT it is possible to reuse the definition of the grab gesture for 

defining the drag one, as it is shown Table 7.1. However, the possibility to 

compose gestures with a set of operators does not guarantee the reusability 

of the definition.  

Indeed, even in this simple example, the programmer needs a fine-grained 

control not only on the gesture itself, but also on it subparts. In the first 

two screens of the recipe browser application the grab gesture is exploited 

for an object selection, and the user has to be aware of which object she is 

currently pointing. Therefore, there is the need to provide intermediate 

feedback during the grab gesture execution. This is supported in the 
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application exploiting the fact that GestIT notifies the completion of the 

gesture sub-parts.  

With this mechanism, the application receives a notification when each 

time 𝑚𝐻𝑟
 is completed, highlighting the pointed object. The handler 

associated to the completion of the entire gesture performs the recipe 

selection and the presentation change.  

It is worth pointing out that our meta-model does not make any 

assumption on the distance in time between two notifications for an iterative 

gesture. Since all device notifications are external with respect to the Petri 

Net that models the gesture, the device controls the event notification rate. 

If needed, the designer may specify some timing constraint using the 

predicates associated to the ground terms.  

While performing the drag gesture, there is no need to attach a handler 

to the hand movement in the grab part, but it is sufficient to specify that 

the position in the video stream is changing after the grab completion, and 

to update it during the movement of the hand in the release part of the 

gesture. 

It should be clear now how the declarative and compositional pattern 

offered by GestIT solves the granularity problem: the application developer 

is not bound to receiving a single notification when the whole gesture is 

completed. If needed, she is able to attach the behaviour also to the gesture 

sub-parts, handling them at the desired level of granularity. 

In our approach, the finest granularity is represented by ground terms-

They cannot be further decomposed into smaller components since they 

represent the features tracked by the recognition device.   

7.2 Spaghetti code problem 

The previous example may be used also for showing how it is possible to 

solve the problem of having the gesture recognition code spread in many 

places (spaghetti code problem). Indeed, the declarative and compositional 

approach to the gesture definition allow the developer to separate the 

temporal sequencing aspect from the UI behaviour while defining a gesture. 

This allows maintaining the gesture recognition code isolated in a single 

place. 

In the example, the recognition code corresponds to the declaration of the 

gesture expression. The handlers define the UI behaviour, but they are not 
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part of the recognition code, since they are simply attached to the run-time 

notification of the gesture completion (or its sub-parts). 

 In this way it is not only possible to isolate the recognition code into a 

single application, but it is also possible to provide a library of complex 

gesture definitions, which may be reused in different scenarios, maintaining 

the possibility to attach the UI behaviour at the desired level of granularity.  

In addition, the definition of the gesture is separated from the UI graphic 

control: it is not shipped with a particular image viewer or canvas, but it 

can be exploited in different UI configurations. 

In this particular example, it would be possible to model the entire 

interaction instantiating a single complex gesture. Indeed, the Grab and the 

Release gestures differ only for the predicate on the change of the hand 

status feature. Therefore, it is possible to define with GestIT a complex 

gesture that is parametric with respect to this predicate. 

Table 7.2 shows a different definition of the gestures in Table 7.1, which 

demonstrates the level of flexibility in the factorization of the gesture 

recognition code in the proposed framework. 

Hand Status 𝐻𝑎𝑛𝑑𝑆𝑡𝑎𝑡𝑢𝑠[𝑝] = 𝑚𝐻𝑟
∗ [>  𝑐𝐻𝑟

 [𝑝] 

Grab 𝐻𝑎𝑛𝑑𝑆𝑡𝑎𝑡𝑢𝑠[𝑐𝑙𝑜𝑠𝑒𝑑] 
  

Drag 𝐻𝑎𝑛𝑑𝑆𝑡𝑎𝑡𝑢𝑠[𝑐𝑙𝑜𝑠𝑒𝑑] 
 ≫ 𝐻𝑎𝑛𝑑𝑆𝑡𝑎𝑡𝑢𝑠[𝑜𝑝𝑒𝑛] 

Table 7.2: Grab and Drag gestures e parametric definition 

7.3 Selection Ambiguity Problem 

In this section, we show how the problem of possible ambiguities that may 

arise when composing gestures is handled in GestIT. We exemplify the 

problem through the simple 3D viewer application we introduced in section 

5.4.3.  

The interaction with the 3D model is the following: the user can change 

the camera position performing a “grabbing” the model gesture with a single 

hand and moving it, while it is possible to rotate the model executing the 

same gesture with both hands. The complete definition is shown Table 7.3.  
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𝑀𝑜𝑣𝑒 [] 𝑅𝑜𝑡𝑎𝑡𝑒  
𝑀𝑜𝑣𝑒 = 𝑐𝐻𝑟[𝑐𝑙𝑜𝑠𝑒𝑑] ≫ (𝑚𝐻𝑟

∗ [>  𝑐𝐻𝑟
 [𝑜𝑝𝑒𝑛]) 

𝑅𝑜𝑡𝑎𝑡𝑒 =  (𝑐𝐻𝑟[𝑐𝑙𝑜𝑠𝑒𝑑]||𝑐𝐻𝑙[𝑐𝑙𝑜𝑠𝑒𝑑]) ≫ 
                     ((𝑚𝐻𝑟[𝑑]||𝑚𝐻𝑙[𝑑])∗[> 
                      (𝑐𝐻𝑟[𝑜𝑝𝑒𝑛]||𝑐𝐻𝑙[𝑐𝑙𝑜𝑠𝑒𝑑])) 
Table 7.3 Gesture definition for the 3D viewer application 

The Move and the Rotate gestures are composed through a choice operator 

but, as it is possible to see in the definition, both gestures start with 

𝑐𝐻𝑟[𝑐𝑙𝑜𝑠𝑒𝑑]. Therefore, it is not possible to perform the selection 

immediately after the recognition of the first ground term, but the 

recognition engine needs at least one “look ahead” term, and the selection 

has to be postponed to the next event raised from the device. However, the 

two instances of 𝑐𝐻𝑟[𝑐𝑙𝑜𝑠𝑒𝑑] may have different handlers attached to the 

completion event, which should be executed in the meantime.  

In general it is possible that, when composing a set of different gestures 

through the choice operator, two or more gestures have a common prefix, 

which does not allow an immediate choice among them. We identified three 

possible ways for addressing this problem. The different solutions have an 

impact on the recognition behaviour while traversing the prefix. 

The first solution is the one proposed in [72], where the authors define an 

algorithm for extracting the prefix at design time. After having identified it, 

it is possible to apply a factorization process to the gesture definition 

expression, removing the ambiguity. This solution has the advantage that, 

since there is no ambiguity anymore, the recognition engine is always able 

perform the selection among the gestures immediately. The main drawback 

is that it breaks the compositional approach: after the factorization the two 

gesture definitions are merged and it is difficult for the designer to clearly 

identify them in the resulting expression. This leads to a lack of reusability 

of the resulting definition.  

The second possible solution is again to calculate the common prefix at 

design time, without changing the gesture definition. In this case, the 

recognition support is provided with both the gesture definition and the 

identified prefix. During the selection phase at runtime, the support buffers 

the raw device events until only one among the possible gestures can be 

selected according to the pre-calculated prefix, and then flushes the buffer 

considering only the selected gesture.  

This approach has the advantage of maintaining the compositional 

approach, while selecting the exact match for the gestures in choice: the 
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runtime support suspends the selection until it receives the minimum 

number of events for identifying the correct gesture to choose. Once the 

gesture has been selected, the application receives the notification of the 

buffered events.  

The latter is the main drawback of this approach: the buffering causes a 

delay on the recognition that is reflected on the possibility to provide 

intermediate feedback while performing the common prefix gesture. Another 

drawback is that the common prefix has to be calculated at design time, 

which may need an exponential procedure for enumerating all the possible 

recognizable event sequences, which are needed for extracting the common 

prefix. For instance, an order independence expression with n operands in 

GestIT recognizes n! event sequences, since we should consider that the 

operands can be performed in any order.  

The third solution is based on a best effort approach, and is the one 

implemented by GestIT. When two or more expressions are connected with 

a choice operand, the recognition support executes them as if they were in 

parallel. If the user correctly performed one of the gestures in choice, when 

the parallel recognition passes the common prefix only one among the 

operands can further continue in the recognition process.  

At this point the choice is performed and only one gesture is successfully 

recognized, and the support stops trying to recognize the others. This 

approach solves the buffering delay problem of the previous solution, since 

the effects of the gestures contained into the common prefix is immediately 

visible for the user.  

However, in this case the recognition support notified the recognition of 

the gestures included in the common prefix of all the operands involved in 

the choice. Consequently, the UI showed the effects associated to all of them, 

while only the ones related to the selected gesture should be visible. In order 

to have a correct behaviour, we need a mechanism to compensate the 

changes made by the gestures that were not selected by the recognition 

support, which means to revert the effects they had on the UI. Such 

mechanism can be supported through another notification, signalling that 

the recognition of a gesture (ground term or complex) has been interrupted. 

In this way, it is possible for the developer to specify how to compensate 

the undesired changes. This is the main drawback for this solution: the 

developer is responsible of handling the compensating actions.  

In order to better explain how this solution works, we present a small 

example of compensation. We consider the gesture model in Table 7.3, which 
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allows the user to move and to rotate a 3D model. The UI provides 

intermediate feedback during the gesture execution in the following way: a 

four-heads arrow while the camera position is changing, and a circular arrow 

while the user is rotating the model.  

We suppose in our example that the user performs the grab gesture with 

both hands and we describe the behaviour of the recognition support during 

the recognition of the common prefix (in this case 𝑐𝐻𝑟[𝑐𝑙𝑜𝑠𝑒𝑑]) and after 

the gesture selection has been performed.  

 
Figure 7.1 Common prefix handling for the choice operator (1) 

The common prefix handling is depicted in Figure 7.1: the upper part 

represents the stream of updates that comes from the device, the black arrow 

highlights the one that is currently in progress. The central part shows the 

gesture expression represented as a tree, with the ground terms that can be 

recognized immediately highlighted in black (we do not show the predicates 

associated to the ground terms, since for this example we suppose that they 

are always verified).  

Some tree nodes are associated to rectangular and circular badges, which 

represent respectively the completion and the compensation behaviour. Such 

handlers are external with respect to the gesture description and are defined 

by the developer. The lower part shows the effects on the UI of the gesture 
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recognition. The left part depicts the UI before the recognition, the middle 

part shows the intermediate effects, while the right one shows the resulting 

state after the recognition.  

During the recognition of the common prefix, the support behaves as 

follows: after receiving the update coming from the device, the support 

executes the two instances of 𝑐𝐻𝑟, highlighted by the black arrows in Figure 

7.1, central part. Since the leftmost one has an associated completion 

handler (the A rectangular badge), the recognition support executes it. 

Therefore the UI changes its state and an arrow is shown above the 3D 

model (Figure 7.1, lower part).  

After that, the expression state changes (two ground terms have been 

recognized) and we have the situation depicted in Figure 7.2: the ground 

terms with a grey background have been completed, therefore the ground 

terms that may be recognized at this step are 𝑚𝐻𝑟 or 𝑐𝐻𝑙. Since the next 

device update we are considering is 𝑐𝐻𝑙 (Figure 7.2, upper part), the 

recognition support is now able to perform the selection of the right-hand 

part of the expression tree, while the left-hand part cannot be further 

executed.  

 
Figure 7.2 Common prefix handling for the choice operator (2) 
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Therefore, the latter sub-tree needs compensation, which consists of 

invoking the handlers associated to all the expressions previously completed 

(𝑐𝐻𝑟). In our example, this corresponds to the execution of the handler 

identified with the B circular badge, which hides the four-heads arrow. After 

that, it is possible to continue with recognition of the gesture: the 𝑐𝐻𝑙 ground 

term in the right-hand part of the expression is completed and also the 

parallel expression highlighted with a black arrow in Figure 7.2.  

Consequently, the recognition support executes the completion handler 

represented with the C rectangular badge, which shows the circular arrow 

for providing the intermediate feedback during the model rotation, and the 

gesture recognition continues taking into account only the Rotate gesture. 

The effects of the handlers on the UI for this step are summarized by the 

lower part of Figure 7.2: before the recognition of the ground term, it was 

visible on the UI the four-head arrow, which has been hidden by the B 

compensation handler. The C completion handler instead showed the 

circular arrow that determines the state of the UI after the ground term 

recognition.  

From a theoretical point of view, the proposed solution considers the set 

of gestures in choice as instances of long-running transactions [47] but in 

this case the components involved are not distributed. In case of failure of 

such kind of transactions, it is not possible in general to restore the initial 

state, as happens with the effects on the UI of the gestures that are not 

selected by the choice. Instead, a compensation process is provided, which 

handles the return to a consistent state. There is a large literature on how 

to manage long-running transactions, in [34] the authors provide a good 

survey on this topic. 

7.4 Cross-platform gesture modelling 

In this section, we discuss an advantage provided by the compositional and 

declarative approach for modelling gestural interaction. Since such definition 

is based on a set of building blocks (ground terms), connected through a set 

of well-defined composition operators, it is possible to create interfaces that 

share the same gesture definition across different recognition platforms 

finding a meaningful translation of the source platform ground terms 

towards the target one.  

This opens the possibility to reuse the gesture definition not only for 

different applications that exploit the same recognition device but also, if 
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the interaction provided still makes sense, with different devices that have 

different recognition capabilities.  

In order to explain how such reuse is possible, we report here on a first 

experiment we conducted with the two platforms supported by GestIT: 

multitouch and full-body.  

We started from the simple drawing canvas application for iPhone we 

described in section 5.4.1, which supported the pan gesture for drawing and 

the pinch gesture for zooming. Such gestures were connected through the 

choice operator (see Table 7.4). 

𝑃𝑎𝑛 [ ]𝑃𝑖𝑛𝑐ℎ 
𝑃𝑎𝑛 = 𝑆𝑡𝑎𝑟𝑡1 ≫ 𝑀𝑜𝑣𝑒1

∗ [> 𝐸𝑛𝑑1 
𝑃𝑖𝑛𝑐ℎ = (𝑆𝑡𝑎𝑟𝑡1|=| 𝑆𝑡𝑎𝑟𝑡2) ≫ (𝑀𝑜𝑣𝑒1

∗ | |𝑀𝑜𝑣𝑒2
∗) [> 

                  (𝐸𝑛𝑑1|=| 𝐸𝑛𝑑2) 
 

Table 7.4 Simple drawing canvas gesture modelling 

In order to create a Kinect version it is not possible to reuse directly the 

gesture definition, because concepts as pan, pinch, touch etc. do not have 

any meaning in such device. However, having a precise definition or the 

gestures allows us also to define precisely new concepts. In our case, what is 

missing is a precise definition of what a touch start, a touch move and a 

touch end are. If we add a precise definition of these concepts, all the 

gestures that have been constructed starting from such building blocks will 

be defined consequently.  

One simple idea is to associate a point that represents a finger position on 

the iPhone to the position of one hand with the Kinect (therefore, the 

maximum number of touch points is two). In addition, we have to define a 

criterion for distinguish when the touch starts and when the touch ends. A 

simple way we discussed many times in this thesis, is to rely on the depth 

value of the position of a given hand: if it is under a certain threshold, we 

can consider that the user is “touching” our virtual screen, otherwise we do 

not consider the current hand position as a touch.  

More precisely, we need to define the multitouch basic gestures according 

to the 3D position of the left and right hand, indicated respectively as 𝑙 =

(𝑥𝑙, 𝑦𝑙 , 𝑧𝑙) and 𝑟 = (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟). Moreover, we have to define a plane, which 

represents the depth barrier for the touch emulation, as 𝑇𝑝 = (𝑥, 𝑦, 𝑘) where 

𝑘 is a constant. The complete definition can be found in Table 7.5.  

It is worth pointing out that, even if we used such definition for a quite 

“extreme” change of platform, the redefinition of the ground term allows us 
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to support with the Kinect platform all the multitouch gestures that involve 

no more than two fingers, which are the large majority of those used in such 

kind of applications.  

Obviously, from the interaction design point of view it may be a bad idea 

to port multitouch gestures to the full body gesture recognition support 

directly, and the example should be considered only as a proof of concept. 

However, such kind of approach may be used for those devices that are 

exploited for recognizing gestures in similar settings.  

For instance, it can be useful for designing applications that recognize the 

same full body gestures with a remote or a depth camera-based optical 

device. In this case, having such kind of homomorphism may reduce the 

complexity in supporting different devices. 

M ultitouch Ground Term Interaction 

𝑆𝑡𝑎𝑟𝑡1 = 𝑟[𝑧𝑟(𝑡 − 1) > 𝑘 ∧ 𝑧𝑟(𝑡) ≤ 𝑘] 
𝑆𝑡𝑎𝑟𝑡2 = 𝑙[𝑧𝑙(𝑡 − 1) > 𝑘 ∧ 𝑧𝑙(𝑡) ≤ 𝑘] 

 

𝑀𝑜𝑣𝑒1 = 𝑟[𝑧𝑟(𝑡 − 1) ≤ 𝑘 ∧ 𝑧𝑟(𝑡) ≤ 𝑘] 
𝑀𝑜𝑣𝑒2 = 𝑙[𝑧𝑙(𝑡 − 1) ≤ 𝑘 ∧ 𝑧𝑙(𝑡) ≤ 𝑘] 

 

𝐸𝑛𝑑1 = 𝑟[𝑧𝑟(𝑡 − 1) ≤ 𝑘 ∧ 𝑧𝑟(𝑡) > 𝑘] 
𝐸𝑛𝑑2 = 𝑙[𝑧𝑙(𝑡 − 1) ≤ 𝑘 ∧ 𝑧𝑙(𝑡) > 𝑘] 

 
Table 7.5  Mapping multitouch ground terms to the full-body platform 

 





 

Chapter 8  

Evaluation 

The definition of methods and techniques for the evaluating a new user 

interface description language or tool is an open problem for the HCI 

community [105]. An evaluation with real users (gesture interface developers 

in our case) requires time for setting-up a community around the new tool, 

waiting for the development of real-world applications with the proposed 

solution. Therefore, in this thesis we opted for an inspection-based approach, 

similar to a heuristic evaluation [100]. 

The inspection we report in this chapter follows three list of criteria: 

1. A review of the meta-model requirements that we identified from 

the state of the art analysis, detailed in section 8.1. 

2. The five themes identified by Myers et al. [97] for assessing a 

specification tool: the tool target, the threshold and ceiling, the 

path of least resistance, predictability and the adaptation to 

moving targets. In section 8.2, we define each one of these aspects 

and we inspect our modelling language accordingly. 

3. The Cognitive Dimensions Framework by Green and Petre [51], 

which sets a small vocabulary for cognitive aspects of a language 

structure. In section 8.3, we provide the definition of the different 

dimensions and we discuss the weakness and the strength of our 

approach. 

Finally, we provide some data on the recognition library performance, 

comparing a version of the 3D viewer application created tracking gestures 

with a simple Finite State Machine and the version we created with GestIT. 
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8.1 Requirements review 

In this section, we review the requirements for definition of the gesture meta-

model, which have been identified through an analysis of the state of the 

art in section 2.3.  

8.1.1 Temporal evolution  

The meta-model must describe the gesture temporal 

evolution. The developers should be able to define the 

behaviour of the user interface according to this temporal 

evolution, without the need of tracking explicitly the 

different stages of the gesture performance outside the 

model definition. 

The meta-model proposed in this thesis describes the temporal evolution of 

different gestures through a compositional approach. Gestures are modelled 

starting from a set of ground terms, which are connected together through 

a set of formally defined composition operators.  

Each one of the different terms that compose the gesture (either simple 

or complex) provides an event for its recognition. The developer can attach 

the definition of the UI behaviour to this event, separating it from the 

gesture definition. 

In addition, each term provides an event for notifying an error during its 

recognition, in order to allow the developer to recover the UI changes due 

to a partial recognition of the considered gesture.  

8.1.2 Granularity  

Provided that a gesture may take seconds to complete, it 

must be possible for developers to define user interface 

reactions to partially completed gestures, not only to their 

complete recognition. 

Each one of the terms that compose a gesture definition compliant with the 

meta-model proposed in this thesis provides a notification for its successful 

completion. Therefore, the developer can attach handlers not only to the 

completion of the whole gesture, but also to all its sub parts. Such handlers 

define the UI behaviour with different levels of granularity, allowing to 

provide intermediate feedback during the gesture performance. 



8.1.5 PARALLEL INTERACTION  

 

171 

The maximum level of granularity is provided by the ground terms, which 

correspond to all the features that may be tracked by the gesture recognition 

device (e.g. the position of the touches for multitouch screens, the joint 

position for depth cameras etc.). 

8.1.3 Separation of concerns  

The definition of gestures and the user interface 

behaviour must be separated, in order to allow the reuse of 

the same gesture model in different applications. 

The definition of a gesture model does not contain any information on the 

associated behaviour. That aspect of the UI can be defined specifying a set 

of event handlers for the completion of the whole gesture or its subparts.  

Such notification mechanism allows reusing the definition of the same 

gesture in different applications with different effects.  

8.1.4 Multiple recognition devices  

The meta-model must support different recognition 

devices, abstracting from a particular recognition 

technology. 

The proposed meta-model is abstract with respect to a particular recognition 

device. In this thesis, we discussed how it is possible to support multitouch 

and full-body interaction. In the same way, it is possible to add further 

recognition platforms: through the definition of the set of ground terms that 

are specific to the new platform.  

The proposed set of composition operators has been defined independently 

from any recognition technology.  

8.1.5 Parallel interaction  

The meta-model must handle the recognition of different 

gestures at the same time, in order to allow parallel 

interactions with the same application. 

We included a parallel composition operator in our meta-model. Such 

operator allows the simultaneous recognition of the different connected 

terms. The parallel operator support parallel interactions for both single and 

multiple users.  
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8.1.6 Equivalent descriptions  

The same gesture can be performed in different ways 

(e.g. a pinch may be performed either with one hand or 

with two hands). The meta-model must support the 

definition of equivalent gestures. 

It is possible to specify two equivalent gestures connecting them with the 

choice operator, which guarantees the recognition of exactly one among the 

connected terms. In this way, it is possible to provide different gestures with 

an equivalent effect. 

8.1.7 Selection ambiguity  

The recognition support must provide means for 

identifying or managing the selection between two 

different gestures that shares the same initial sequence. 

GestIT provides a best-effort solution for the selection ambiguity problem: 

when two gestures are connected in choice and they share a common prefix, 

the library supports the parallel recognition of both gestures. When such 

prefix has been entirely recognized, only one between the two gestures can 

continue its recognition. The other one raises an event related to its 

erroneous recognition, which can be exploited by the developer for 

compensating the previous changes to the UI. In this way, the support allows 

the developer to identify such situation. For further details, see section 7.3. 

8.2 Five themes in evaluating tools 

The work by Myers et al [97] contains a review of different tools that have 

been used in both research and industrial settings for creating user 

interfaces. The authors identify a set of themes that help in identifying 

strength and weaknesses and in explaining the reasons behind the success 

or the failure of different approaches. 

In this section, we report the definition of the five themes and we inspect 

GestIT accordingly. 
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8.2.1 Parts of the user interface that are 
addressed 

In [97], Myers et al. stated that the successful tools in the development of 

UIs had a precise target, and they limited their scope only to the task that 

was needed.  

Our modelling approach is focused on the description of gestures, limiting 

to their temporal evolution. We do not aim to redefine again the other parts 

of the UI, such as the layout or the behaviour. Instead, we provide a different 

approach for describing an aspect of the UI definition that is currently 

spread among different parts of the code, creating what we call the spaghetti 

code problem (see section 7.2).  

In addition, the proposed modelling technique allows reusing a gesture 

definition in different applications, since it is possible to attach the 

behaviour not only to the whole gesture, but also to its sub-parts (the 

granularity problem see section 7.1).  

The proposed solution, as demonstrated by the supporting library, can be 

employed with different UI toolkits and do not enforce the developers to 

select a specific technology, therefore it does not interfere with others aspects 

of the development. 

8.2.2 Threshold and ceiling 

According to [97], the threshold is “how difficult is to learn how to use the 

system”, while the ceiling is “how much can be done using the system”.  

In the ideal tool, the threshold is low, while the ceiling is high. This means 

that the developer or the designer are able to use the tool with little or no 

training at all and the tool is able to cover appropriately every type of UI 

that should be created. 

In order to evaluate the threshold we should have data on the time needed 

for learning how to model gestures with GestIT, starting from scratch. 

Unfortunately, at the time of writing we have no sufficient data for drawing 

any conclusion. However, we can point out here that the model is based on 

two different concepts that are familiar for UI developers.  

The first are the device related events (e.g. the one related to the touches 

or the joint positions) that should be understandable for people who design 

gestural interaction, since they are commonly used in all toolkits. 

The second concept is the description of the evolution of the gesture 

through the time with a set of temporal operators. Such operators are well 
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known in other contexts and languages, for instance such the CTT [114] for 

task modelling or LOTOS [18] for process modelling. Therefore, people who 

already know the semantics of the different temporal operators may apply 

such knowledge in a different context. Otherwise, the learning path should 

not take longer with respect to the aforementioned languages and, since they 

are widely applied in their respectively areas, it should be reasonable to 

claim that the temporal operators will not constitute a problem for adopting 

GestIT. 

With respect to the ceiling aspect, we can claim that the proposed 

modelling technique covers adequately the target interaction. This is 

supported by the different examples of models that we provided in Chapter 

4, which cover a broad set of gestures. In addition, we demonstrated that it 

is possible to apply the model to different existing gesture recognition 

platforms and that the approach can be easily extended for new ones. 

8.2.3 Path of Least Resistance 

This path of least resistance aspect is about how “tools influence the kinds 

of user interfaces that can be created. Successful tools use this for their 

advantage, leading implementers towards doing the right things, and away 

from doing the wrong things” [97]. 

We are confident that our modelling technique is able to “force” the 

developers to: 

1. Create gesture definitions separated from other UI aspects, such as 

the layout and the behaviour (see section 7.2) 

2. Provide means for inspecting the gesture definition and to define 

reactions at the desired level of granularity (see section 7.1). 

Such advantages are provided by the way the developer creates the 

gesture definition in GestIT, and they require the only effort of adopting 

the model, without assuming any additional technique or pattern. 

8.2.4 Predictability 

The predictability aspect is about the fact that “tools which use automatic 

techniques that are sometimes unpredictable have been poorly received by 

programmers”.  

Although we do provide an automatic support for recognizing gestures 

modelled through the proposed notation, we can claim that such aspect do 

not represent an issue for GestIT. Indeed, we provided a precise formal 
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definition of both the terms and the composition operators that are involved 

in a gesture definition. This helps the developers in understanding and 

predicting the runtime behaviour of the defined model. 

However, we are aware that not all developers may be interested in 

studying the formal definition of the meta-model. Therefore, it may be useful 

to provide an high level (but obviously imprecise) description of the 

compositional operators and support the development with an interactive 

simulator, that may help the developer in finding out himself the recognizer 

behaviour against a particular event sequence. Such approach has been 

proved useful for the same set of composition operators in task modelling 

[114]. 

8.2.5 Moving Targets 

The moving targets aspect is related the fact that, in order to provide a 

useful support, designer must have a different understating of the target 

tasks. However, since the development of UI evolves with at a high speed, 

once the knowledge about how to support a given task is mature, it is 

possible that such support is no more needed, since the task has become 

obsolete.  

In our case, the moving targets problems does not apply to the gestural 

interaction itself, since it exists from at least 30 years now, and we can be 

positive that it will last for a long time. However, it may be related to the 

change of the supporting technology for recognizing gestures. Indeed, this 

field proposes an increasing number of recognition devices, and it may 

happen that a new one device overtakes the capabilities of the existing ones. 

Therefore, it may be reasonable to shift the development towards a new 

device even if the supporting tools for the old one are more mature and 

stable.  

We tried to create a model that can be tailored for supporting new devices, 

providing a definition of ground term that can already cover devices that 

employ different technologies for tracking gestures. We considered this 

aspect from the very beginning in order to create a modelling technique able 

to last more than the recognition devices. 
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8.3 Cognitive Dimensions Framework 

The cognitive dimensions [51] define set of cognitive-related aspects that 

capture how the structure of a notation influence their usability. The aspect 

are called “dimensions” since they are supposed to be orthogonal 

characteristics of a given notation, which may need a trade-off against each 

other. 

Such kind of evaluation enables scientists to broaden the scope while 

evaluating a given notation, without limiting to the notation expressiveness. 

The framework is applied usually to visual notations but, as stated by the 

authors, may be used also for non-interactive notations.  

The methodology we followed is similar to a heuristic evaluation [100]: we 

inspected our notation considering each one of the cognitive dimensions and 

we report on the results of such inspection. In order to guide our inspection, 

we used the questionnaire in [13], which has been created by the cognitive 

dimensions framework authors. 

8.3.1 Abstraction gradient 

What are the minimum and maximum levels of 

abstraction? Can fragments be encapsulated? 

The minimum level of abstraction depends on the feature that can be 

tracked by a specific device. Obviously, this is a lower bound for the 

notation, since it is no possible to split in sub-parts such features.  

We do not impose any upper bound to complex gestures, they can ideally 

consist of any combination of complex and simple gestures. However, the 

fact that we are modelling interactive applications sets an upper bound for 

the model complexity: the feedback has to be delivered in a timely manner 

during the gesture performance, otherwise the abstractions are useless. 

8.3.2 Closeness of mapping 

What ‘programming games’ need to be learned? 

This aspect is related to the distance between the mental model that a 

developer has about a specific notation and the construct that such notation 

provides.  

The elements of our model corresponds exactly to the notation we provided. 

The different phases of a gesture performance can be mapped to those 
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different terms that can be connected together, according to the gesture 

analysis. We provide different examples of such kind of mapping while we 

describe how we modelled different gestures for multitouch and the full-body 

interaction in Chapter 4: we provide a high level description of the different 

phases and then we map them to different terms, composed through 

temporal operators.  

8.3.3 Consistency 

When some of the language has been learnt, how much 

of the rest can be inferred? 

The notation exploits similar programming language constructs for similar 

elements in the model, which would help the developers in inferring i.e. how 

it is possible to connect complex gestures starting from the knowledge they 

acquire connecting ground terms.  

Understanding such compositional concept through ground terms is easier, 

since the space of all possible combinations that can be recognized remains 

small. In order to stress such similarity, simple and complex gestures share 

the same base class. Consequently, they can be connected through temporal 

operators in the same way even at the programming level. 

8.3.4  Diffuseness 

How many symbols or graphic entities are required to 

express a meaning? 

The notation is reasonably brief and it contains an element for each of the 

different ground terms that need to be composed and for all the temporal 

relations that need to be expressed. 

The predicates take more space to define, since they may include different 

accesses to the gesture state and may contain a complex logic. 

8.3.5 Error proneness  

Does the design of the notation induce ‘careless 

mistakes’? 
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The most common mistake so far is forgetting to set the iterative flag to a 

term. This obviously causes a strange UI behavior, and sometimes it results 

difficult to find exactly where this slip happened 

In addition, the object-oriented notation has the problem of connecting 

the objects through variable names that may be in a high number. 

Therefore, it is possible that the developer erroneously connects two or more 

terms that should not be connected. 

8.3.6 Hard mental operations  

Are there places where the user needs to resort to 

fingers or pencilled annotation to keep track of what’s 

happening? 

Most mental effort is required for identifying the different parts of the 

gesture performance and to generalize them in a way that is appropriate for 

different “styles” that may be encountered with different people. Therefore, 

it may be useful to sketch on paper or on different media some graphs or 

schemas for identifying such different parts. 

In addition, it may be difficult to work out all the different combinations 

that are possible when two gestures are connected in parallel. This may have 

consequences if the UI resources they access enter in conflict.  

8.3.7 Hidden dependencies 

Is every dependency overtly indicated in both 

directions? Is the indication perceptual or only symbolic? 

In our notation, it is possible to have hidden dependencies among the 

predicates associated to the different ground terms. Indeed, some of them 

may depend on each other (e.g. one is the logical negation of the other) but, 

since the different predicates are referenced by name, such kind of 

relationships are not immediately visible. The same holds for the behavior 

definition, but is less frequent to reuse exactly the same definition. 

8.3.8 Premature commitment 

Do programmers have to make decisions before they 

have the information they need? 
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The programmers can follow different paths for reaching the same model. 

They can start by defining all the terms that need to be composed and then 

define the associated predicates, or they can choose to define completely 

each one of the terms before composing them. In addition, they may also 

choose to define the effects of the different commands in advance and to 

provide gestures for executing them, or they can first select the gestures and 

then define the effects. 

This means that the developer may take decisions about the interaction 

when he has all the information needed.  

8.3.9 Progressive evaluation 

Can a partially complete program be executed to obtain 

feedback on ‘How am I doing?’ 

The compositional structure enables you to create the whole gesture 

definition iteratively, trying the different parts in isolation, or composed 

with a subset of terms. This allows achieving a good gesture model even by 

trial and error. 

8.3.10 Role expressiveness 

Can the reader see how each component of a program 

relates to the whole? 

The different modelling constructs are mapped on different syntactical 

elements in both the XML and the code notation. However, the tree 

structure of the XML notation allows the developer to visualize the relations 

between the different gestures and sub-gestures in the whole expression. 

Understanding such relationship through the code notation is more 

difficult, since the developer has more freedom on the declaration structure 

and may interleave the gesture specification logic with code related to other 

aspects of the UI (e.g. graphics controls).  

8.3.11 Secondary notation 

Can programmers use layout, colour, other cues to 

convey extra meaning, above and beyond the ‘official’ 

semantics of the language? 
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Whit the current notation, it is not possible to provide hints to the developer 

for identifying different parts of the model other than writing some 

comments on the XML or object-oriented code.  

This is an aspect that can be considered in future work in an appropriate 

authoring environment, since it would be useful to immediately identify 

expressions that belong to two different complex gestures that are composed 

in order to define the whole gestural interaction. For instance, if we consider 

the 3D viewer application in section 5.4.3, there should be some way for 

differentiating the sub-expression belonging to the Grab from those 

belonging to the Roll gesture. 

8.3.12 Viscosity 

How much effort is required to perform a single change? 

Making a change is easy once the expression corresponding to the phase of 

the gesture performance has been identified. It may be difficult to find the 

phase if predicates or the attached methods for defining the behavior does 

not have meaningful names. Eventually, for really long expressions, it is 

possible to use comments for identifying the expression parts. 

There are no changes that are more difficult than others, all of them 

require about the same effort. 

8.3.13 Visibility 

Is every part of the code simultaneously visible 

(assuming a large enough display), or it is at least possible 

to juxtapose any two parts side-by-side at will? If the code 

is dispersed, is it at least possible to know in what order 

to read it? 

The various part of the notation can be identified easily, since only the 

different terms of the expression can be instantiated as objects, while the 

connection between the different terms are possible through methods. In the 

XML definition, the tag names and their structure allow to distinguish the 

different parts of the defined gestures. 

If the gesture is defined through the XML notation, there can be some 

difficulties in identifying the predicates that can be optionally attached to 

the ground terms and the methods that define the behavior, since they are 

defined in a different file.  
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There is space for improvement, and in a possible authoring tool it should 

be possible to navigate from the XML definition to the code behind. 

It is possible to see the different parts if they are defined in the same UI 

(e.g. the same code file). Otherwise, the user should work of two different 

files before the combination. The same holds for the comparison. 

8.4 Performance analysis 

In this section, we discuss the results of a preliminary analysis of the GestIT 

library performance. Even if the implementation described in this thesis is 

a proof of concept, we show here that the overhead introduced by the library 

does not invalidate the entire application performance.  

The discussed analysis is not complete, but it shows that the required 

resources are reasonable for the advantages provided by the library. A 

throughout discussion of how to create a high-performance version of the 

library is beyond the scope of this thesis. 

We analyze the performance of the 3D car viewer application, discussed 

in section 5.4.3. We recall that the application is able to show a 3D model 

of a car, which can be moved through a grab gesture and/or rotated through 

a roll gesture. The application tracks the user only if she stands in front of 

the screen (with the shoulders contained in a plane roughly parallel to the 

one of the sensor).  

Using the GestIT notation, the interaction can be modelled with the 

equation 8.1. 

 

 
𝐹𝑟𝑜𝑛𝑡 ≫ (𝑚𝐻𝑟 

∗ | |𝑚𝐻𝑙 
∗| | ( 𝐺𝑟𝑎𝑏 [ ] 𝑅𝑜𝑙𝑙)))∗[> 𝑁𝑜𝑡𝐹𝑟𝑜𝑛𝑡 

𝐹𝑟𝑜𝑛𝑡 =  (𝑆𝑙[𝑝]| | | 𝑆𝑟 [𝑝]) 
𝑁𝑜𝑡𝐹𝑟𝑜𝑛𝑡 =  (𝑆𝑙[! 𝑝]| | | 𝑆𝑟 [! 𝑝]) 
𝐺𝑟𝑎𝑏 =  𝑜𝐻𝑟[𝑐] ≫ (𝑚𝐻𝑟

∗ [>  𝑜𝐻𝑟
 [𝑜]) 

𝑅𝑜𝑙𝑙 =  (𝑜𝐻𝑟[𝑐]||𝑜𝐻𝑙[𝑐]) ≫ 
                     ((𝑚𝐻𝑟[𝑑]||𝑚𝐻𝑙[𝑑])∗[> (𝑜𝐻𝑟[𝑜]||𝑜𝐻𝑙[𝑜])) 

(8.1) 

In order to estimate the overhead introduced by the library, we created a 

version of the 3D viewer without using the GestIT library, which recognizes 

the gestures through a simple Finite State Machine (FSM). This application 

provides the same interaction capabilities with respect to the GestIT 

version, thus it can be considered as a baseline implementation for the 3D 

viewer. 
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The FSM defined in the baseline version of the 3D viewer application is 

shown in Figure 8.1. The recognition starts with the not front state, where 

the application the position and the rotation of the 3D model cannot be 

changed. When the users is in front of the screen, the current state changes 

to front (firing the parallel transition). The application is now ready for 

accepting the input through the grab and the roll gestures. In this state, the 

UI shows a green label with the text “Tracking” for informing the user that 

the application is ready for tracking gestures. 

From this state, the FSM is able to recognize the grab gesture firing a 

transition for each hand. If the user closed the right hand (close DX), the 

state is updated to DX closed, and the interface shows a four arrow icon, 

indicating that the 3D model can be moved iteratively. The firing of the 

move DX transition updates the model position. The recognition of the grab 

gesture for the left hand is symmetric (close SX – SX closed – move SX). 

 
Figure 8.1 Finite State Machine for the 3D viewer interaction 

The roll gesture can be recognized closing right or the left hand when the 

current state is respectively SX closed or DX closed. The associated 

transitions close DX and close SX changes the current state to both closed, 

where the model can be rotated and the application shows a circular arrow 

for suggesting that the rotation angle can be updated moving both hands 

(the move transition). From all the states included in the FSM, if the user 

is no more in front of the screen, the gesture recognition is interrupted and 

the current state is set to not front. 

In the following sections, we report the resources (CPU and memory) 

consumed by both versions of the application. In order to remove the input 

variability in the comparison, we recorded the interaction sequence with 

Kinect Studio [90]. After that, we profiled with Visual Studio 2012 [94] both 
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versions of the applications in order to collect the CPU and memory 

consumption data.  

All tests were performed with the following configuration: 

 CPU: Intel Core i5-3470, 3.20 GHz 

 RAM: 8.00 Gb 

 OS: Windows 8 Pro, x64 

 Kinect for XBOX 360 

8.4.1 CPU (sampling) 

In this section, we report the CPU profiling data, obtained through 

sampling. This profiling method interrupts the processor at set intervals, 

collecting the list of functions contained in the call stack. At the end of the 

profiling session, we obtain for each function the number of times that it 

was contained in the call stack. Therefore, the functions using more CPU 

have a higher sample count. 

We start the analysis from the overall CPU usage percentage. Figure 8.2 

shows the CPU consumption for the FSM-based version, while Figure 8.3 

shows it for the GestIT version. As it is possible to see, there is no 

meaningful difference between the two line graphs, which have a similar 

trend. In both versions, the CPU consumption never went above the 40%. 

The overall trend of the two lines indicates that the resources consumed by 

the GestIT library does not have a sensible impact on the overall 

performance of the application.  

In order to analyse this aspect more in detail, we report in Table 8.1 and 

Table 8.2 the sample count respectively for the FSM and the GestIT 

versions. In both tables, the counters are grouped by DLL, since we are not 

interested in establishing exactly which function is consuming more 

resources, but we limit granularity of our analysis at the software component 

level. For the FSM version, we isolated the state machine definition into a 

specific library, the FsmGestureRecognition.dll. In order to evaluate the 

consumption for the GestIT version, we have to consider two different DLLs: 

the Gestit.dll, which contains the definition of the temporal operators and 

the abstract classes for the ground terms, and the BodyGestit.dll, which 

contains the extension of the base classes for supporting the Kinect device 

through our modelling approach. The FsmGestureRecognition.dll is 

highlighted in Table 8.1 while the Gestit.dll and the BodyGestit.dll are 

highlighted in Table 8.2 
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Figure 8.2 3D viewer CPU usage (FSM version) 

 
Figure 8.3 3D viewer CPU usage (GestIT version) 

In both tables we report the following data, as defined in [91]: 

 Inclusive samples: the total number of samples that are collected 

during the execution of the target function. It includes the samples 

collected during the execution of child functions, which have been 

called by the target one.  

 Exclusive samples: the total number of samples that are collected 

during the execution of the instructions of the target function, 

without counting those belonging to child functions. 

 Inclusive percent: the percentage of the total number of inclusive 

samples in the profiling run. 

 Exclusive percent: the percentage of the total number of exclusive 

samples in the profiling run. 

As it is possible to see in Table 8.1 and Table 8.2 the gesture recognition 

DLLs produced similar results for both versions: the state machine DLL was 

included in the 18.07% of the samples and occupied exclusively the CPU for 

the 0.02%. The BodyGestit functions inclusively occupied the CPU for the 

19.22% and exclusively for the 0.07% of the samples, while the Gestit 

functions for the 0.18% inclusively and 0.01% exclusively.  

The difference is about 1.5% for the inclusive samples and the 0.08% for 

the exclusive samples. 
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Name 
Inclusive 

Samples 
Exclusive 

Samples 
Inclusive 

Samples % 
Exclusive 

Samples % 

nvd3dum.dll 9253 7542 51.40 41.90 

PresentationFramework.ni.dll 8747 2593 48.59 14.40 

CarViewer.exe 8747 19 48.59 0.11 

FsmGestureRecognition.dll 3252 3 18.07 0.02 

Microsoft.Kinect.Toolkit.Interaction.dll 3050 3050 16.94 16.94 

PresentationCore.ni.dll 2066 2066 11.48 11.48 

d3d9.dll 1505 1505 8.36 8.36 

Microsoft.Kinect.dll 720 720 4.00 4.00 

ntdll.dll 163 163 0.91 0.91 

WindowsBase.ni.dll 145 142 0.81 0.79 

Microsoft.Kinect.Toolkit.dll 132 1 0.73 0.01 

clr.dll 117 117 0.65 0.65 

mscorlib.ni.dll 36 36 0.20 0.20 

gdi32.dll 21 21 0.12 0.12 

nvSCPAPI.dll 16 0 0.09 0.00 

nvapi.dll 9 0 0.05 0.00 

3DTools.dl 8 0 0.04 0.00 

setupapi.dll 5 5 0.03 0.03 

user32.dll 5 5 0.03 0.03 

KernelBase.dl 4 4 0.02 0.02 

wow64cpu.dll 4 4 0.02 0.02 

kernel32.dll 2 2 0.01 0.01 

msvcrt.dl 2 2 0.01 0.01 

dxgi.dll 1 1 0.01 0.01 

rxinput.dll 1 0 0.01 0.00 

Table 8.1 3D viewer CPU profiling (sampling, FSM version) 
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Name 
Inclusive 
Samples 

Exclusive 
Samples 

Inclusive 
Samples % 

Exclusive 
Samples % 

PresentationFramework.ni.dll 9470 2623 52.67 14.59 

CarViewer.exe 9470 23 52.67 0.13 

nvd3dum.dl 8508 5710 47.32 31.76 

BodyTmpLib.dll 3455 13 19.22 0.07 

Microsoft.Kinect.Toolkit.Interaction.dll 3217 3217 17.89 17.89 

d3d9.dll 2648 2648 14.73 14.73 

PresentationCore.ni.dll 2406 2406 13.38 13.38 

Microsoft.Kinect.dll 865 865 4.81 4.81 

WindowsBase.ni.dl 144 140 0.80 0.78 

Microsoft.Kinect.Toolkit.dll 141 5 0.78 0.03 

clr.dll 137 137 0.76 0.76 

ntdll.dll 123 123 0.68 0.68 

mscorlib.ni.dll 40 40 0.22 0.22 

TmpLib.dll 32 1 0.18 0.01 

gdi32.dll 17 17 0.09 0.09 

wow64cpu.dll 7 7 0.04 0.04 

3DTools.dll 3 0 0.02 0.00 

kernel32.dl 2 2 0.01 0.01 

msvcrt.dll 2 2 0.01 0.01 

nvSCPAPI.dll 1 0 0.01 0.00 

Table 8.2 3D viewer CPU profiling (sampling, GestIT version) 

8.4.2 CPU (instrumentation) 

We repeated the profiling experiment using the instrumentation profiling 

method, which records detailed timing information about the execution of 

the application code, injecting some profiling code at the start and the end 

of each target function [92]. We again grouped all the counters by the 

containing DLL. 

The values recorded in this second experiment are the following: 

 Number of calls: the total number of calls to the target function  

 Elapsed inclusive time percentage: the percentage of time spent 

executing the target and the child functions 

 Elapsed exclusive time percentage: the percentage of time spent in 

executing the target function, without considering child functions 

 Elapsed inclusive time: the total time spent in the target and the 

child functions (milliseconds). 

 Elapsed exclusive time: the total time spent in the target function, 

without considering child functions (milliseconds) 
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The profiling results show that the GestIT version requires 0.78% more 

inclusive time and 0.16% more exclusive time with respect to the overall 

application time, which can be considered a low impact. However, it is 

possible to notice a sensibly higher elapsed inclusive time and total number 

of calls for the functions contained in BodyGestit.dll. Therefore, it may be 

reasonable to optimize the code that translates the data coming from the 

Kinect sensor into a format manageable by the GestIT library.  

 

 

 

Name 
Number of 
Calls 

Elapsed 
Inclusive 
Time % 

Elapsed 
Exclusive 
Time % 

Elapsed 
Inclusive 
Time 

Elapsed 
Exclusive 
Time 

CarViewer.exe 207615 100.00 0.07 99191.85 72.60 

PresentationFramework.dll 657 100.00 89.98 99188.71 89257.71 

FsmGestureRecognition.dll 24331 3.80 0.02 3758.85 2045 

Microsoft.Kinect.Toolkit. 
  Interaction.dll 

116875 3.57 3.57 3542.77 3541.90 

Microsoft.Kinect.dll 1320554 3.28 3.28 3253.83 3253.83 

PresentationCore.dll 125643 2.06 2.06 2041.67 2041.67 

Microsoft.Kinect.Toolkit.dll 24 0.65 0.65 646.81 646.81 

mscorlib.dll 302814 0.34 0.34 333.60 333.60 

3DTools.dll 325 0.02 0.02 17.76 17.76 

WindowsBase.dll 142961 0.00 0.00 8.50 2.31 

System.dll 4 0.00 0.00 3.21 3.21 

Table 8.3 3D viewer CPU profiling (instrumentation, FSM version) 

 

 

Name 
Number of 
Calls 

Elapsed 
Inclusive 
Time % 

Elapsed 
Exclusive 
Time % 

Elapsed 
Inclusive 
Time 

Elapsed 
Exclusive 
Time 

CarViewer.exe 204464 100.00 0.08 98.356.87 74.82 

PresentationFramework.dll 449 100.00 89.33 98.353.59 87.864.40 

BodyGestit.dll 119676 4.25 0.15 4179.38 151.93 

Microsoft.Kinect.Toolkit. 
  Interaction.dll 

134141 3.75 3.75 3.684.37 3.683.89 

Microsoft.Kinect.dll 3715440 3.38 3.38 3.325.18 3.325.18 

PresentationCore.dll 122.804 2.25 2.25 2.215.43 2.215.43 

Microsoft.Kinect.Toolkit.dll 24 0.66 0.66 649.62 649.62 

mscorlib.dll 685086 0.36 0.36 352.09 352.09 

Gestit.dll 174359 0.33 0.03 225.13 18.30 

3DTools.dll 213 0.01 0.01 13.02 13.02 

WindowsBase.dll 142423 0.00 0.00 3.23 3.23 

System.dll 16 0.00 0.00 0.01 0.01 

Table 8.4 3D viewer CPU profiling (instrumentation, GestIT version) 
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8.4.3 Memory 

The memory profiler included in Visual Studio 2012 [93] provides 

information about the size and the number of objects created during the 

execution of the target function code.  

We again grouped all the counters by DLL, and we report here the 

following data: 

 Inclusive allocations: the number of allocations made in the target 

function and its children. 

 Exclusive allocations: the number of allocations made in the target 

function, without considering its children. 

 Inclusive bytes: the number of bytes allocated in the target 

function and its children.  

 Exclusive allocations: the number of bytes allocations in the target 

function, without considering its children. 

The comparison of the two profiling session data shows an increase of the 

allocation and bytes counters for the BodyGestit.dll with respect to the 

baseline implementation. Such increase is especially high for the exclusive 

allocation number and bytes (respectively 52% and 28%), confirming the 

need of an optimization in the library code that connects the Kinect sensor 

with the GestIT library. Instead, the part of the library that defines the 

temporal operators and the ground terms (the Gestit.dll) has a low impact 

on the memory consumption increase.  

However, the amount of memory consumed by the FSM and GestIT DLLs 

are two orders of magnitude below the amount consumed by the Kinect 

sensor driver, which is the main responsible for the memory consumption in 

this application. This means again that the overall impact of using the 

GestIT library on whole application as a whole cannot be considered high.  
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Name 
Inclusive 
Allocations 

Exclusive 
Allocations 

Inclusive  
Bytes 

Exclusive 
Bytes 

CarViewer.exe 3129945 148232 159320630 3285646 

PresentationFramework.ni.dll 3129942 231986 159320424 19016158 

FsmGestureRecognition.dll 1287576 5126 23208425 164104 

Microsoft.Kinect.dll 1151146 1151146 23362566 23362566 

PresentationCore.dll 951919 951919 97159963 97159963 

Microsoft.Kinect.Toolkit. 
     Interaction.dll 

526203 521090 12891040 12727424 

mscorlib.ni.dll 73514 73514 2365703 2365703 

WindowsBase.ni.dll 41806 41070 1127672 1101122 

Microsoft.Kinect.Toolkit.dll 21048 4740 1925101 78042 

3DTools.dll 1735 651 46084 15828 

clr.dll 468 468 44014 44014 

System.ni.dll 3 3 60 60 

PresentationFramework.Aero2.ni.dll 0 0 0 0 

System.Core.ni.dll 0 0 0 0 

System.Xaml.ni.dll 0 0 0 0 

UIAutomationTypes.ni.dl 0 0 0 0 

Table 8.5 3D viewer memory profiling (FSM version) 

Name 
Inclusive 
Allocations 

Exclusive 
Allocations 

Inclusive  
Bytes 

Exclusive  
Bytes 

CarViewer.exe 3424747 143.210 171514376 3204490 

PresentationFramework.ni.dll 3424744 488085 171514178 33889952 

BodyGestit.dll 1336355 7794 24872174 208982 

Microsoft.Kinect.dll 1131988 1131988 22977390 22977390 

PresentationCore.ni.dll 944591 944591 92900375 92900375 

Microsoft.Kinect.Toolkit. 
  Interaction.dll 

517574 512485 12696600 12533752 

mscorlib.ni.dll 144819 144819 4427685 4427685 

WindowsBase.ni.dll 39389 38653 1063468 1036918 

Gestit.dll 30427 55 941082 1812 

Microsoft.Kinect.Toolkit.dll 20853 4155 1927916 68658 

USER32.dll 8012 8012 208312 208312 

3DTools.dll 1120 427 29988 10452 

clr.dll 470 470 45538 45538 

System.ni.dll 3 3 60 60 

PresentationFramework.Aero2.ni.dll 0 0 0 0 

System.Core.ni.dll 0 0 0 0 

System.Xaml.ni.dll 0 0 0 0 

UIAutomationTypes.ni.dll 0 0 0 0 

Table 8.6 3D viewer memory profiling (GestIT version) 
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8.5 Summary 

In this chapter, we provided an evaluation of the proposed gesture modelling 

approach, which consisted of three different sets of inspection criteria.  

We first assessed the requirements we identified for the development of 

gestural interfaces, showing that we advanced the state of the art, providing 

a meta-model able to describe the temporal evolution of gestures in a 

reusable and compositional way. We support different gesture recognition 

devices, defining a programming model that can be instantiated even to 

other recognition supports that are not covered by our work. 

The second set of criteria has been defined in [97], reviewing different tools 

that have been used for defining UIs and the reasons behind their success or 

failure. We showed that our modelling technique did not repeated well-

known errors, even if some aspects will need further investigation (e.g. how 

difficult is to learn our modelling technique from scratch). 

The third set of criteria is represented by the Cognitive Dimension 

Framework, defined in [51]. The analysis highlighted the need for a clearer 

representation of the dependencies among the different predicates associated 

to the ground terms. In addition, if a gesture model is created 

programmatically (i.e. without using XML or another declarative notation), 

it is more likely to have modelling errors, since the composition aspect is 

not explicit in the notation. Therefore, it may be reasonable to provide a 

graphical notation that solves these problems in the future. 

Finally, we provided a preliminary analysis of the GestIT library 

performance, comparing two versions of the 3D viewer application. The first 

one was implemented with a simple FSM and represents the baseline for the 

application performance. The second version defined the gestural interaction 

through the GestIT notation.  

The comparison results show that the GestIT version requires a low 

increase of the CPU usage and a sensible increase of the memory 

consumption. Provided that the main responsible for the increment is the 

part connecting the Kinect sensor the GestIT temporal operators, the 

optimization work should start from that part of the library. 

 



 

Chapter 9  

Conclusion 

The lack of proper programming models for defining gestures is a major 

issue in defining gesture-based interfaces and it limits significantly the 

ability to fully exploit the new multitouch and 3D input devices, now 

becoming widely available. The observer pattern underlying the traditional 

event-based programming is largely inadequate for tracking gestures made 

of multiple inputs over time, forcing the programmer to choose between 

handling the complexity of this process or picking one of a pre-defined 

gestures recognized by the framework used. 

In this thesis, we proposed GestIT, a declarative, compositional meta- 

model for defining gestures, addressing this key issue and allowing for 

simultaneous recognition of multiple gestures and sub-gestures under control 

of the programmer rather than the framework. The meta-model elements 

contain ground terms and composition operators that have been 

theoretically defined using Non Autonomous Petri Nets.  

It allows reusing and composing the definition of gestures in different 

applications, providing the possibility to define UI reactions for the 

recognition not only for the entire gesture, but also for its sub-components. 

The declarative and compositional approach proposed in this thesis for 

gesture definition solves the single-event granularity problem and provides 

a separation of concerns (the temporal sequence definition is separated from 

the behaviour), which allows a more understandable and maintainable code. 

In addition, we discussed the selection ambiguity problem, which affects the 

composition of gestures that have a common prefix through a choice 

operator. The recognition support has different possibilities for dealing with 

the uncertainty in the selection while performing this common prefix. We 

discussed different solutions and we adopted the compensation approach in 

GestIT. 
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Moreover, we reported on a proof-of-concept library, which has been 

exploited for managing two different gesture recognition supports 

(multitouch and full-body), showing the flexibility and the generality of the 

approach. We developed different sample applications for demonstrating the 

advantages of the proposed modelling technique in reusing gesture 

definitions, which can be exploited at the desired level of granularity. 

Finally we extended MARIA [111], a state of the art User Interface 

Description Language, providing it with a concrete user interface model that 

is able to exploit gestural interaction, according to the proposed meta-model. 

9.1 Future work 

The work discussed in this thesis can be extended in different directions. 

The first one it the most obvious: we did not cover the entire set of devices 

that can be used for recognizing gestures. Adding both the formal modelling 

and the library support for existing devices, such as remotes and floor 

boards, or new ones such as the Leap Motion or the new version of Microsoft 

Kinect, may enforce the validity of the proposed modelling technique and 

also provide the source for enhancing the model with other features. 

We already started this work, through an optimized implementation of 

the modelling technique that supports web applications (through javascript) 

and that will be ready for supporting commercial and production-level 

applications. In addition, such more engineered version of the library will 

provide a way for creating personalised combination of sensors providing a 

way for defining new ground terms in a simple way, in order to increase the 

flexibility of the approach. The implementation of this new version will be 

open source and available at http://gestit.github.io/GestIT/. 

Another research direction is the investigation of the impact that such 

modelling techniques may have on tools and authoring environments for 

creating gestural interaction. The compositional approach may be exploited 

for creating a sort of workflow visualization that can be interactively 

explored for analysing the defined interaction. 

A declarative description can be also exploited for describing not only the 

interaction, but also for estimating different parameters connected to 

gesture performance. For instance, it is possible define a cost model based 

on the composition of ground terms and complex gestures. The cost model 

may predict different types of efforts that users put in gesture performance: 

from physical (which may assess ergonomics aspects) to cognitive. An 
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effective prediction based on the declarative definition may be successfully 

exploited in both UI design and analysis tools.  

In addition, the gesture modelling can be applied for emotion analysis, 

defining a set of gestures or postures that communicate implicit information 

on the user’s emotional state.  

Last but not least, the main future direction that we foresee for this work 

is its refinement and application in UI toolkits for both desktop and mobile 

devices. In the future, we believe that this kind of interaction will be 

embedded in different everyday use devices, such as televisions, home 

appliances etc., enhancing their interaction possibilities. We think that the 

proposed approach can have a role on the creation of the future UI toolkits, 

that will host such kind of interaction as a first-class citizen, as happened 

for instance for the animation support. 

In order to do that, we think that it is necessary to apply the modelling 

technique in a large-scale application scenario, in order to test it outside the 

research environment and inside an industrial setting. The feedback 

provided by such kind of application may benefit both the industry, which 

will exploit a more efficient and effective way for creating gestural 

interaction, but also the research per se, since it may provide an engineering 

pattern that can be applied for all the different continuous input sources we 

use for interacting with computers. 

Beyond further enhancements of the meta-model and a more deep 

evaluation of the proposed approach, it would be interesting to investigate 

if our approach provides advantages not only for developers but also for 

end-users. Our hypothesis is that providing a way for reuse existing gesture 

definitions encourages developers in reapplying tested definitions against 

naïve implementations that may be incomplete. In addition, this promotes 

the adoption of commonly-used gestures for similar functionalities, which 

may have a positive influence on the overall gesture interface usability 
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